Citation: Yi-Ran Zheng, Jie Zhang, Xiao-Li Sun, Hui-Hui Li, Zhong-Jie Ren, Shou-Ke Yan. Enhanced αγ' Transition of Poly(vinylidene fluoride) by Step Crystallization and Subsequent Annealing[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 598-603. doi: 10.1007/s10118-018-2040-z shu

Enhanced αγ' Transition of Poly(vinylidene fluoride) by Step Crystallization and Subsequent Annealing

  • Corresponding author: Shou-Ke Yan, skyan@mail.buct.edu.cn
  • Received Date: 9 August 2017
    Accepted Date: 8 September 2017
    Available Online: 18 January 2018

  • Poly(vinylidene fluoride) (PVDF) exhibits pronounced polymorphs. Its γ phase is attractive due to the electroactive properties. The γ-PVDF is however difficult to obtain under normal crystallization condition. In a previous work, we reported a simple melt-recrystallization approach for producing γ-phase rich PVDF thin films through selective melting and subsequent recrystallization. We reported here another approach for promoting the αγ' phase transition to prepare γ-phase rich PVDF thin films. To this end, a stepwise crystallization and subsequent annealing process was used. The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition. It was found that crystallizing the PVDF melt first at 152℃ for 4 h, then quenching to room temperature and finally annealing the sample at 160℃ for 100 h was the most efficient to produce γ-PVDF rich films. This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160℃, which favors the formation of γ-PVDF crystals for triggering the αγ' phase transition.
  • 加载中
    1. [1]

      Ling Q. D., Liaw D. J., Zhu C., Chan D. S. H., Kang E. T., Neoh K. G.. Polymer electronic memories:materials, devices and mechanisms[J]. Prog. Polym. Sci., 2008,33(10):917-978. doi: 10.1016/j.progpolymsci.2008.08.001

    2. [2]

      Doll W. W., Lando J. B.. The polymorphism of poly(vinylidene fluoride) Ⅳ. The structure of high-pressure-crystallized poly(vinylidene fluoride)[J]. J. Macromol. Sci. B, 1970,4(4):889-896. doi: 10.1080/00222347008217130

    3. [3]

      Lovinger, A. J., in "Developments in Crystalline Polymers, Vol. 1", ed. by Bassett, D. C. Springer, Netherlands, 1982, p. 195

    4. [4]

      Lovinger A. J.. Ferroelectric polymers[J]. Science, 1983,220(4602):1115-1121. doi: 10.1126/science.220.4602.1115

    5. [5]

      Chen Z., Kwon K. Y., Tan X.. Integrated IPMC/PVDF sensory actuator and its validation in feedback control[J]. Sensor Actuat. A-Phys., 2008,144(2):231-241. doi: 10.1016/j.sna.2008.01.023

    6. [6]

      Chu B., Zhou X., Ren K., Neese B., Lin M., Wang Q., Bauer F., Zhang Q. M.. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science, 2006,313(5785):334-336. doi: 10.1126/science.1127798

    7. [7]

      Lovinger A. J.. Annealing of poly(vinylidene fluoride) and formation of a fifth phase[J]. Macromolecules, 1982,15(1):40-44. doi: 10.1021/ma00229a008

    8. [8]

      Li M., Wondergem H. J., Spijkamn M. J., Asadi K., Katsouras I., Blom P. W. M.. Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films[J]. Nat. Mater., 2013,12(5):433-438. doi: 10.1038/nmat3577

    9. [9]

      Kang S. J., Park Y. J., Bae I., Kim K. J., Kim H. C., Bauer S., Thomas E. L., Park C.. Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory[J]. Adv. Funct. Mater., 2009,19(17):2812-2818. doi: 10.1002/adfm.v19:17

    10. [10]

      Kang S. J., Park Y. J., Hwang J. Y., Jeong H. J., Lee J. S., Kim K. J., Kim H. C., Huh J., Park C.. Localized pressure-induced ferroelectric pattern arrays of semicrystalline poly(vinylidene fluoride) by microimprinting[J]. Adv. Mater., 2007,19(4):581-586. doi: 10.1002/(ISSN)1521-4095

    11. [11]

      Kang S. J., Bae I., Choi J. H., Park Y. J., Jo P. S., Kim Y., Kim K. J., Myoung J. M., Kim E., Park C.. Fabrication of micropatterned ferroelectric gamma poly(vinylidene fluoride) film for non-volatile polymer memory[J]. J. Mater. Chem., 2011,21(11):3619-3624. doi: 10.1039/c0jm02732d

    12. [12]

      Lovinger A. J.. Crystalline transformations in spherulites of poly(vinylidene fluoride)[J]. Polymer, 1980,21(11):1317-1322. doi: 10.1016/0032-3861(80)90200-1

    13. [13]

      Lovinger A. J.. Crystallization and morphology of melt-solidified poly(vinylidene fluoride)[J]. J. Polym. Sci. Polym. Phys. Ed., 1980,18(4):793-809. doi: 10.1002/pol.1980.180180412

    14. [14]

      Tashiro K., Kobayahsi M.. Structural phase transition in ferroelectric fluorine polymers:X-ray diffraction and infrared/Raman spectroscopic study[J]. Phase Transit., 1989,18(3-4):213-246. doi: 10.1080/01411598908206864

    15. [15]

      Gregorio R., CapitãO R. C.. Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride)[J]. J. Mater. Sci., 2000,35(2):299-306. doi: 10.1023/A:1004737000016

    16. [16]

      Lovinger A. J.. Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride)[J]. J. Appl. Phys., 1981,52(10):5934-5938. doi: 10.1063/1.328522

    17. [17]

      Takahashi Y., Matsubara Y., Tadokoro H.. Mechanisms for crystal phase transformations by heat treatment and molecular motion in poly(vinylidene fluoride)[J]. Macromolecules, 1982,15(2):334-338. doi: 10.1021/ma00230a026

    18. [18]

      Zheng Y., Zhang J., Sun X., Li H., Ren Z., Yan S.. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization[J]. Ind. Eng. Chem. Res., 2017,56(15):4580-4587. doi: 10.1021/acs.iecr.7b00543

    19. [19]

      Meraga C., Marigo A.. Influence of annealing and chain defects on the melting behavior of poly(vinylidene fluoride)[J]. Eur. Polym. J., 2003,39(8):1713-1720. doi: 10.1016/S0014-3057(03)00062-4

    20. [20]

      Martins P., Lopes A. C., Lanceros-Mendez S.. Electroactive phases of poly(vinylidene fluoride):determination, processing and applications[J]. Prog. Polym. Sci., 2014,39(4):683-706. doi: 10.1016/j.progpolymsci.2013.07.006

    21. [21]

      Tashiro K., Kobayashi M., Tadokoro H.. Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form Ⅲ[J]. Macromolecules, 1981,14(6):1757-1764. doi: 10.1021/ma50007a028

    22. [22]

      Wang Y. T., Liu P. R., Lu Y., Men Y. F.. Mechanism of polymorph selection during crystallization of random butene-1/ethylene copolymer[J]. Chinese J. Polym. Sci., 2016,34(8):1014-1020. doi: 10.1007/s10118-016-1802-8

    23. [23]

      Hu D. D., Ye S. B., Yu F., Feng J. C.. Further understanding on the three domains of isotactic polypropylene by investigating the crystalline morphologies evolution after treatment at different domains[J]. Chinese J. Polym. Sci., 2016,34(3):344-358. doi: 10.1007/s10118-016-1745-0

  • 加载中
    1. [1]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    2. [2]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    3. [3]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    4. [4]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    5. [5]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    6. [6]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    7. [7]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    8. [8]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    9. [9]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    10. [10]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    11. [11]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    12. [12]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    13. [13]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    14. [14]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    15. [15]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    16. [16]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    17. [17]

      Lin Guo Rui Xu Denys Makarov . Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics. Chinese Journal of Structural Chemistry, 2025, 44(2): 100428-100428. doi: 10.1016/j.cjsc.2024.100428

    18. [18]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    19. [19]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    20. [20]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

Metrics
  • PDF Downloads(0)
  • Abstract views(959)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return