Citation: Wen-Ming Zhang, Jian Zhang, Zhu Qiao, Jun Yin. Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 273-287. doi: 10.1007/s10118-018-2035-9 shu

Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications

  • Corresponding author: Jun Yin, yinjun@hfut.edu.cn
  • These authors contributed equally to this work
  • Received Date: 17 August 2017
    Accepted Date: 5 September 2017
    Available Online: 20 December 2017

  • The excellent drug encapsulation, prolonged in vivo circulation time, enhanced pharmacokinetics, and reduced adverse effects make the polymeric assemblies ideal carriers in nanomedicine, and become an emerging research field with rapid development. In vivo, the polymer nanoassemblies will experience five steps, including circulation in the blood, accumulation in the tumoral site, penetration into the deep tumor tissue to reach cancer cells, internalization into cancer cells, and intracellular drug release. However, although tremendous efforts have been made to the material design, currently available carriers still have difficulties in fulfilling all of the requirements. Moreover, the long-standing dilemma of the synchronized stability and permeability of vesicles is still a big challenge, which confused researchers for a long time. This feature article focuses on the recent progress of single-or multi-stimuli triggered theranostic platforms, and the extracellularly reengineered shell-sheddable polymeric nanocarriers are systematically discussed. The perspectives for future developments in the nanocarriers functioned with artificial helical polymers (the potential cell-penetrating peptides mimics) are also proposed. We speculate that this feature article can fit the interesting of diverse readers and a guideline for the design of next generation of drug nanocarriers.
  • 加载中
    1. [1]

      Ross J. S., Schenkein D. P., Pietrusko R., Rolfe M., Linette G. P., Stec J., Stagliano N. E., Ginsburg G. S., Symmans W. F., Pusztai L., Hortobagyi G. N.. Targeted therapies for cancer[J]. Am. J. Clin. Pathol., 2004,122(4):598-609. doi: 10.1309/5CWPU41AFR1VYM3F

    2. [2]

      Langer R., Tirrell D. A.. Designing materials for biology and medicine[J]. Nature, 2004,428:487-492. doi: 10.1038/nature02388

    3. [3]

      Hu J. M., Liu S. Y.. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications[J]. Acc. Chem. Res., 2014,47(7):2084-2095. doi: 10.1021/ar5001007

    4. [4]

      Yin J., Hu H. B., Wu Y. H., Liu S. Y.. Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels[J]. Polym. Chem., 2011,2:363-371. doi: 10.1039/C0PY00254B

    5. [5]

      Hu J. M., Liu S. Y.. Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures[J]. Dalton Trans., 2015,44:3904-3922. doi: 10.1039/C4DT03609C

    6. [6]

      Yin J., Chen Y., Zhang Z. H., Han X.. Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications[J]. Polymers, 2016,8(7):268-296.  

    7. [7]

      Zheng X. C., Wang X., Mao H., Wu W., Liu B. R., Jiang X. Q.. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo[J]. Nat. Commun., 20156. doi: 10.1038/ncomms6834

    8. [8]

      Yin J., Hu J. M., Zhang G. Y., Liu S. Y.. Schizophrenic core-shell microgels:thermoregulated core and shell swelling/collapse by combining ucst and lcst phase transitions[J]. Langmuir, 2014,30(9):2551-2558. doi: 10.1021/la500133y

    9. [9]

      Zheng X. C., Mai H., Huo D., Wu W., Liu B. R., Jiang X. Q.. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia[J]. Nat. Biomed. Eng., 20171. doi: 10.1038/s41551-017-0057

    10. [10]

      Yin J., He Y. G., Li W., Wu Z. Q., Ding Y. S.. Wide range temperature detection with hybrid nanoparticles traced by surface-enhanced Raman scattering[J]. Sci. China Chem., 2014,57(3):417-425. doi: 10.1007/s11426-013-4974-x

    11. [11]

      Zhang L. Z., Zhang Y. J., Wu W., Jiang X. Q.. Doxorubicin-loaded boron-rich polymer nanoparticles for orthotopically implanted liver tumor treatment[J]. Chinese J. Polym. Sci., 2013,31(5):778-786. doi: 10.1007/s10118-013-1267-y

    12. [12]

      Long C. Y., Sheng M. M., He B., Wu Y., Wang G., Gu Z. W.. Comparison of drug delivery properties of PEG-b-PDHPC micelles with different compositions[J]. Chinese J. Polym. Sci., 2012,30(3):387-396. doi: 10.1007/s10118-012-1138-y

    13. [13]

      Lu Y., Aimetti A. A., Langer R., Gu Z.. Bioresponsive materials[J]. Nat. Rev. Mater., 2017,2(1)16075.  

    14. [14]

      Hu J. M., Zhang G. Q., Liu S. Y.. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels[J]. Chem. Soc. Rev., 2012,41:5933-5949. doi: 10.1039/c2cs35103j

    15. [15]

      Yin J., Shi S. Y., Hu J. M., Liu S. Y.. Construction of polyelectrolyte-responsive microgels, and polyelectrolyte concentration and chain length-dependent adsorption kinetics[J]. Langmuir, 2014,30(31):9551-9559. doi: 10.1021/la501918s

    16. [16]

      Wu Y. Z., Zhang Z. H., Han X., Zhang J., Zhang W. M., Yin J.. Affinity switching for lysozyme and dual-responsive microgels by stopped-flow technique:kinetic control and activity evaluation[J]. Chinese J. Polym. Sci., 2017,35(8):950-960. doi: 10.1007/s10118-017-1948-z

    17. [17]

      Deng Z. Y., Hu J. M., Liu S. Y.. Reactive oxygen, nitrogen, and sulfur species (RONSS)-responsive polymersomes for triggered drug release[J]. Macromol. Rapid Commun., 2017,38(11). doi: 10.1002/marc.201600685

    18. [18]

      Ge Z. S., Liu S. Y.. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance[J]. Chem. Soc. Rev., 2013,42:7289-7325. doi: 10.1039/c3cs60048c

    19. [19]

      Barenholz Y.. Doxil®-The first FDA-approved nano-drug:lessons learned[J]. J. Control. Release, 2012,160:117-134. doi: 10.1016/j.jconrel.2012.03.020

    20. [20]

      Von Hoff D. D., Ramanathan R. K., Borad M. J., Laheru D. A., Smith L. S., Wood T. E., Korn R. L., Desai N., Trieu V., Iglesias J. L., Zhang H., Soon-Shiong P., Shi T., Rajeshkumar N. V., Maitra A, Hidalgo M. J.. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer:a phase Ⅰ/Ⅱ trial[J]. Clin. Oncol., 2011,29(34):4548-4554. doi: 10.1200/JCO.2011.36.5742

    21. [21]

      Forssen E. A.. The design and development of DaunoXome® for solid tumor targeting in vivo[J]. Adv. Drug Delivery Rev., 1997,24:133-150. doi: 10.1016/S0169-409X(96)00453-X

    22. [22]

      Bregoli L., Movia D., Gavigan-Imedio J. D., Lysaght J., Reynolds J., Prina-Mello A.. Nanomedicine applied to translational oncology:a future perspective on cancer treatment[J]. Nanomed. Nanotechnol. Biol. Med., 2016,12:81-103. doi: 10.1016/j.nano.2015.08.006

    23. [23]

      Sun Q., Zhou Z., Qiu N., Shen Y.. Rational design of cancer nanomedicine:nanoproperty integration and synchronization[J]. Adv. Mater., 2017,29(14). doi: 10.1002/adma.201606628

    24. [24]

      Sun Q., Radosz M., Shen Y. J.. Challenges in design of translational nanocarriers[J]. J. Control. Release, 2012,164:156-169. doi: 10.1016/j.jconrel.2012.05.042

    25. [25]

      Otsuka H., Nagasaki Y., Kataoka K.. PEGylated nanoparticles for biological and pharmaceutical applications[J]. Adv. Drug Delivery Rev., 2003,55:403-419. doi: 10.1016/S0169-409X(02)00226-0

    26. [26]

      Talelli M., Rijcken C. J. F., Van N. C. F., Storm G., Hennink W. E.. Micelles based on HPMA copolymers[J]. Adv. Drug Delivery Rev., 2010,62:231-239. doi: 10.1016/j.addr.2009.11.029

    27. [27]

      Sun C.Y., Shen S., Xu C. F., Li H. J., Liu Y., Cao Z. T., Yang X. Z., Xia J. X., Wang J.. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery[J]. J. Am. Chem. Soc., 2015,137(48):15217-15224. doi: 10.1021/jacs.5b09602

    28. [28]

      Sethuraman V. A., Na K., Bae Y. H.. pH-Responsive sulfonamide/PEI system for tumor specific gene delivery:an in vitro study[J]. Biomacromolecules, 2006,7(1):64-70. doi: 10.1021/bm0503571

    29. [29]

      Zhu L., Wang T., Perche F., Taigind A., Torchilin V. P.. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety[J]. Proc. Natl. Acad. Sci. USA, 2013,110(42):17047-17052. doi: 10.1073/pnas.1304987110

    30. [30]

      Yang X. Z., Du J. Z., Dou S., Mao C. Q., Long H. Y., Wang J.. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery[J]. ACS Nano, 2012,6(1):771-781. doi: 10.1021/nn204240b

    31. [31]

      Sun C. Y., Liu Y., Du J. Z., Cao Z. T., Xu C. F., Wang J.. Facile generation of tumor-pH-Labile linkage-bridged block copolymers for chemotherapeutic delivery[J]. Angew. Chem. Int. Ed., 2016,55(3):1010-1014.  

    32. [32]

      Chen J. J., Ding J. X., Xiao C. S., Zhuang X. L., Chen X. S.. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers[J]. Biomater. Sci., 2015,3:988-1001. doi: 10.1039/C5BM00044K

    33. [33]

      Liu J. J., Chen Q., Zhu W. W., Yi X., Yang Y., Dong Z. L., Liu Z.. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles:a multistage Redox/pH/H2O2-responsive cancer theranostic nanoplatform[J]. Adv. Funct. Mater., 2017,27(10)1605926. doi: 10.1002/adfm.v27.10

    34. [34]

      Torchilin V. P.. TAT peptide-mediated intracellular delivery of pharmaceutical nanocarriers[J]. Adv. Drug Delivery Rev., 2008,60:548-558. doi: 10.1016/j.addr.2007.10.008

    35. [35]

      Wang W. W., Cheng D., Gong F. M., Miao X. M., Shuai X. T.. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging[J]. Adv. Mater., 2012,24(1):115-120. doi: 10.1002/adma.201104066

    36. [36]

      Remant B. K. C., Chandrashekaran V., Cheng B., Chen H., Peña M. M. O., Zhang J., Montgomery J., Xu P. S.. Redox potential ultrasensitive nanoparticle for the targeted delivery of camptothecin to HER2-positive cancer cells[J]. Mol. Pharm., 2014,11(6):1897-1905. doi: 10.1021/mp5000482

    37. [37]

      Xu P., van Kirk E. A., Zhan Y., Murdoch W. J., Radosz M., Shen Y.. Targeted charge-reversal nanoparticles for nuclear drug delivery[J]. Angew. Chem. Int. Ed., 2007,46(26):4999-5002.  

    38. [38]

      Du J. Z., Du X. J., Mao C. Q., Wang J.. Tailor-made dual ph-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J. Am. Chem. Soc., 2011,133(44):17560-17563. doi: 10.1021/ja207150n

    39. [39]

      Han S. S., Li Z. Y., Zhu J. Y., Han K., Zeng Z. Y., Hong W., Li W. X., Jia H. Z., Liu Y., Zhuo R. X.. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery[J]. Small, 2015,11(21):2543-2554.  

    40. [40]

      Sui M. H., Liu W. W., Shen Y. Q.. Nuclear drug delivery for cancer chemotherapy[J]. J. Control. Release, 2011,155:227-236.  

    41. [41]

      Wang N., Dong A. J., Tang H. D., van Kirk E. A., Johnson P. A., Murdoch W. J., Radosz M., Shen Y. Q.. Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers[J]. Macromol. Biosci., 2007,7(11):1187-1198. doi: 10.1002/(ISSN)1616-5195

    42. [42]

      Sethuraman1 V. A., Bae Y. H.. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors[J]. J. Control. Release, 2007,118:216-224. doi: 10.1016/j.jconrel.2006.12.008

    43. [43]

      Zhang Y., Wang X. J., Guo M., Yan H. S., Wang C. H., Liu K. L.. Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine[J]. Chinese J. Polym. Sci., 2014,32(10):1329-1337. doi: 10.1007/s10118-014-1510-1

    44. [44]

      Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K.. Vascular permeability in a human tumor xenograft:molecular size dependence and cutoff size[J]. Cancer Res., 1995,55(17):3752-3756.  

    45. [45]

      Cabral H., Matsumoto Y., Mizuno K., Chen Q., Murakami M., Kimura M., Terada Y., Kano M. R., Miyazono K., Uesaka M., Nishiyama N., Kataoka K.. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nat. Nanotechnol., 2011,6:815-823. doi: 10.1038/nnano.2011.166

    46. [46]

      Chauhan V. P., Stylianopoulos T., Martin J. D., Popovic Z., Chen O., Kamoun W. S., Bawendi M. G., Fukumura D., Jain R. K.. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner[J]. Nat. Nanotechnol., 2012,7:383-388. doi: 10.1038/nnano.2012.45

    47. [47]

      Sun Q. H., Sun X. R., Ma X.P., Zhou Z. X., Jin E. L., Zhang B., Shen Y. Q., van Kirk E., Murdoch W. J., Lott J. P., Lodge T. P., Radosz M., Zhao Y. L.. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs[J]. Adv. Mater., 2014,26(45):7615-7621. doi: 10.1002/adma.v26.45

    48. [48]

      Piedrafita G., Keller M. A., Ralser M.. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions[J]. Biomolecules, 2015,5(3):2101-2122.  

    49. [49]

      Ghadiali J. E., Stevens M. M.. Enzyme-responsive nanoparticle systems[J]. Adv. Mater., 2008,20(22):4359-4363. doi: 10.1002/adma.v20:22

    50. [50]

      Hahn M. E., Gianneschi N. C.. Enzyme-directed assembly and manipulation of organic nanomaterials[J]. Chem. Commun., 2011,47:11814-11821. doi: 10.1039/c1cc15220c

    51. [51]

      Ulijn R. V.. Enzyme-responsive materials:a new class of smart biomaterials[J]. J. Mater. Chem., 2006,16:2217-2225. doi: 10.1039/b601776m

    52. [52]

      Li Y. M., Liu G. H., Wa ng, X. R;, Hu J. M., Liu S. Y.. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents[J]. Angew. Chem. Int. Ed., 2016,55(5):1760-1764.  

    53. [53]

      Gullotti E., Park J., Yeo Y.. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles[J]. Pharm. Res., 2013,30(8):1956-1967. doi: 10.1007/s11095-013-1039-y

    54. [54]

      Li D. D., Ma Y. C., Du J. Z., Tao W., Du X. J., Yang X. Z., Wang J.. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy[J]. Nano Lett., 2017,17(5):2871-2878. doi: 10.1021/acs.nanolett.6b05396

    55. [55]

      Jin E. L., Zhang B., Sun X. R., Zhou Z. X., Ma X. P., Sun Q. H., Tang J. B., Shen Y. Q., Van Kirk E., Murdoch W. J., Radosz M.. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery[J]. J. Am. Chem. Soc., 2013,135(2):933-940.  

    56. [56]

      Li Y. M., Yang J. H., Xu B., Gao F., Wang W., Liu W. G.. Enhanced therapeutic siRNA to tumor cells by a pH-sensitive agmatine-chitosan bioconjugate[J]. ACS Appl. Mater. Interfaces, 2015,7(5):8114-8124.  

    57. [57]

      Huang S. X., Shao K., Liu Y., Kuang Y. Y., Li J. F., An S., Guo Y. B., Ma H. J., Jiang C.. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis[J]. ACS Nano, 2013,7(3):2860-2871. doi: 10.1021/nn400548g

    58. [58]

      Jin E. L., Zhang B., Sun X. R., Zhou Z. X., Ma X. P., Sun Q. H., Tang J. B., Shen Y. Q., Kirk E. V., Murdoch W. J., Radosz M.. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery[J]. J. Am. Chem. Soc., 2013,135(2):933-940.  

    59. [59]

      Xia D. Y., Yu G. C., Li J. Y., Huang F. H.. Photo-responsive self-assembly based on a water-soluble pillar[6]arene and an azobenzene-containing amphiphile in water[J]. Chem. Commun., 2014,50:3606-3608. doi: 10.1039/c3cc49686d

    60. [60]

      Xia D. Y., Wei P. F., Shi B. B., Huang F. H.. A pillar[6]arene-based[2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution[J]. Chem. Commun., 2016,52:513-516. doi: 10.1039/C5CC08038J

    61. [61]

      Zhao Y.. Light-responsive block copolymer micelles[J]. Macromolecules, 2012,45(9):3647-3657. doi: 10.1021/ma300094t

    62. [62]

      Li Y. M., Qian Y. F., Liu T., Zhang G. Y., Liu S. Y.. Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles[J]. Biomacromolecules, 2012,13(11):3877-2886. doi: 10.1021/bm301425j

    63. [63]

      Karimi M., Zangabad P. S., Baghaee-Ravari S., Ghazadeh M., Mirshekari H., Hamblin M. R.. Smart nanostructures for cargo delivery:uncaging and activating by light[J]. J. Am. Chem. Soc., 2017,139(13):4584-4610.  

    64. [64]

      Hu J. J., Chen Y. H., Li Y. Q., Zhou Z. G., Cheng Y. Y.. A thermo-degradable hydrogel with light-tunable degradation and drug release[J]. Biomaterials, 2017,112:133-140. doi: 10.1016/j.biomaterials.2016.10.015

    65. [65]

      Chen Q., Xu L. G., Liang C., Wang C., Peng R., Liu Z.. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy[J]. Nat. Commum., 20167. doi: 10.1038/ncomms13193

    66. [66]

      Dvir T., Banghart M. R., Timko B. P., Langer R., Kohane D. S.. Photo-targeted nanoparticles[J]. Nano Lett., 2010,10(1):250-254. doi: 10.1021/nl903411s

    67. [67]

      Fan N. C., Cheng F. Y., Ho J. A., Yeh C. S.. Photocontrolled targeted drug delivery:photocaged biologically active folic acid as a light-responsive tumor-targeting molecule[J]. Angew. Chem. Int. Ed., 2012,51(35):8806-8810. doi: 10.1002/anie.v51.35

    68. [68]

      Cui D., Xie C., Pu C. Y.. Development of semiconducting polymer nanoparticles for photoacoustic imaging[J]. Macromol. Rapid Commun., 2017,38(12). doi: 10.1002/marc.201700125

    69. [69]

      Hong B. J., Swindell E. P., MacRenaris K. W., Hankins. P. L., Chipre A, J., Mastarone D., Ahn R. W., Meade T. J., O'Halloran T. V., Nguyen S. T.. pH-responsive theranostic polymer-caged nanobins:enhanced cytotoxicity and T1 MRI contrast by HER2 targeting[J]. Part. Syst. Charact., 2013,30(9):770-774. doi: 10.1002/ppsc.v30.9

    70. [70]

      Li B.. A novel upconversion nanotheranostic agent for multi-modality imaging-guided chemotherapy with on-demand drug release[J]. Sci. China Chem., 2015,58(6):970-70. doi: 10.1007/s11426-015-5428-4

    71. [71]

      Langer A.. A systematic review of PET and PET/CT in oncology:a way to personalize cancer treatment in a cost-effective manner?[J]. BMC Health Serv.Res., 201010. doi: 10.1186/1472-6963-10-283

    72. [72]

      Ke C. Y., Mathias C. J., Green M. A.. Folate-receptor-targeted radionuclide imaging agents[J]. Adv. Drug Delivery Rev., 2004,56:1143-1160. doi: 10.1016/j.addr.2004.01.004

    73. [73]

      Smith B. R., Gambhir S. S.. Nanomaterials for in vivo imaging[J]. Chem. Rev., 2017,117(3):901-986. doi: 10.1021/acs.chemrev.6b00073

    74. [74]

      Ma Y. F., Huang J., Song S. J., Chen H. B., Zhang Z. J.. Cancer-targeted nanotheranostics:recent advances and perspectives[J]. Small, 2016,12(36):4936-4954. doi: 10.1002/smll.v12.36

    75. [75]

      Li X. S., Kim J. H., Yoon J. Y., Chen X.. Y[J]. Cancer-associated, stimuli-driven, turn on theranostics for multimodality imaging and therapy. Adv. Mater., 2017,29(23)1606857(1-24).  

    76. [76]

      Wang S., Huang P., Chen X. Y.. Stimuli-responsive programmed specific targeting in nanomedicine[J]. ACS Nano, 2016,10(3):2991-2994. doi: 10.1021/acsnano.6b00870

    77. [77]

      Deng J., Gao C. Y.. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity[J]. Nanotechnology, 2016,27(41)412002. doi: 10.1088/0957-4484/27/41/412002

    78. [78]

      Guo M., Mao H. J., Li Y. L., Zhu A. J., He H., Yang H., Wang Y. Y., Tian X., Ge C. C., Peng Q. L., Wang X. Y., Yang X. L., Chen X. Y., Liu G., Chen H. B.. Dual imaging-guided photothermal/photodynamic therapy using micelles[J]. Biomaterials, 2014,35:4656-4666. doi: 10.1016/j.biomaterials.2014.02.018

    79. [79]

      Wan Z. H., Mao H. J., Guo M., Li Y. L., Zhu A. J., Yang H., He H., Shen J. K., Zhou L. J., Jiang Z., Ge C. C., Chen X. Y., Yang X. L., Liu G., Chen H. B.. Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication[J]. Theranostics, 2014,4(4):399-411. doi: 10.7150/thno.8171

    80. [80]

      Li Y., Deng Y., Tian X., Ke H., Guo M., Zhu A. J., Yang T., Guo Z. Q., Ge Z. S., Yang X. L., Chen H. B.. Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor[J]. ACS Nano, 2015,9(10):9626-9637. doi: 10.1021/acsnano.5b05097

    81. [81]

      Zhu A. J., Miao K., Deng Y. B., Ke H. T., He H., Yang T., Guo M., Li Y. L., Guo Z. Q., Wang Y. Y., Yang X. L., Zhao Y. L., Chen H. B.. Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermochemotherapy-synergized tumor ablation[J]. ACS Nano, 2015,9(8):7874-7885. doi: 10.1021/acsnano.5b02843

    82. [82]

      Liu G. H., Wang X. R., Hu J. M., Zhang G. Y., Liu S. Y.. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions[J]. J. Am. Chem. Soc., 2014,136(20):7492-7497. doi: 10.1021/ja5030832

    83. [83]

      Liu G. H., Zhang G. F., Hu J. M., Wang X. R., Zhu M. Q., Liu S. Y.. Hyperbranched self-immolative polymers (hSIPs) for programmed payload delivery and ultrasensitive detection[J]. J. Am. Chem. Soc., 2015,137(36):11645-11655. doi: 10.1021/jacs.5b05060

    84. [84]

      Frogley B. J., Wright L. J.. Cover picture:a metallaanthracene and derived metallaanthraquinone[J]. Angew. Chem. Int. Ed., 2017,56(1):143-147.  

    85. [85]

      Shi S. Y., Liu Y. J., Chen Y., Zhang Z. H., Ding Y. S., Wu Z. Q., Yin J., Nie L. M.. Versatile pH-response micelles with high cell-penetrating helical diblock copolymers for photoacoustic imaging guided synergistic chemo-photothermal therapy[J]. Theranostics, 2016,6(12):2170-2182. doi: 10.7150/thno.16633

    86. [86]

      Zhang P. H., Wang Y., Lian J., Shen Q., Wang C., Ma B., Zhang Y. C., Xu T. T., Li J. X., Shao Y. P., Xu F., Zhu J. J.. Engineering the surface of smart nanocarriers using a pH-/thermal-/GSH-responsive polymer zipper for precise tumor targeting therapy in vivo[J]. Adv. Mater., 2017,291702311. doi: 10.1002/adma.201702311

    87. [87]

      Kakizawa Y., Harada A., Kataoka K.. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond[J]. J. Am. Chem. Soc., 1999,121(48):11247-11248. doi: 10.1021/ja993057y

    88. [88]

      Wu Z., Huang J. B., Yan Y.. Electrostatic polyion micelles with fluorescence and MRI dual functions[J]. Langmuir, 2015,31(29):7926-7933. doi: 10.1021/acs.langmuir.5b01516

    89. [89]

      Huynh V. T., Chen G. J., De S. P., Stenzel M. H.. Thiol-yne and Thiol-ene "click" chemistry as a tool for a variety of platinum drug delivery carriers, from statistical copolymers to crosslinked micelles[J]. Biomacromolecules, 2011,12(5):1738-1751. doi: 10.1021/bm200135e

    90. [90]

      O'Reilly R. K., Joralemon M. J., Hawker C. J., Wooley K. L.. Preparation of orthogonally-functionalized core Click cross-linked nanoparticles[J]. New J. Chem., 2007,31:718-724. doi: 10.1039/B616103K

    91. [91]

      Zhang Z. H., Yin L. C., Tu C. L., Song Z. Y., Zhang Y. F., Xu Y. X., Tong R., Zhou Q., Ren J., Cheng J.. J[J]. Redox-responsive, core cross-linked polyester micelles. ACS Macro. Lett., 2013,2(1):40-44.  

    92. [92]

      Deng Z. Y., Qian Y. F., Yu Y. Q., Liu G. H., Hu J. M., Zhang G. Y., Liu S. Y.. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells[J]. J. Am. Chem. Soc., 2016,138(33):10452-10466. doi: 10.1021/jacs.6b04115

    93. [93]

      Wang X. R., Liu G. H., Hu J. M., Zhang G. Y., Liu S. Y.. Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated "traceless" crosslinking[J]. Angew. Chem. lnt. Ed., 2014,53(12):3138-3142. doi: 10.1002/anie.201310589

    94. [94]

      Wang X. R., Hu J. M., Liu G. H., Tian J., Wang H. J., Gong M., Liu S. Y.. Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions[J]. J. Am. Chem. Soc., 2015,137(48):15262-15275. doi: 10.1021/jacs.5b10127

    95. [95]

      Luo J. D., Xie Z. L., Lam J. W. Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B., Tang B. Z.. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chem. Commun., 2001,18:1740-1741.  

    96. [96]

      Wang Z., Yong T. Y., Wan J. S., Li Z. H., Zhao H., Zhao Y. B., Gan L., Yang X. Y., Xu H. B., Zhang C.. Temperature-sensitive fluorescent organic nanoparticles with aggregation-induced emission for long-term cellular tracing[J]. ACS Appl. Mater. Interfaces, 2015,7(5):3420-3425. doi: 10.1021/am509161y

    97. [97]

      Jiang B. P., Tan X. Y., Shen X. C., Lei W. Q., Liang W. Q., Ji S. C., Liang H.. One-step fabrication of a multifunctional aggregation-induced emission nanoaggregate for targeted cell imaging and enzyme-triggered cancer chemotherapy[J]. ACS Macro Lett., 2016,5(4):450-454. doi: 10.1021/acsmacrolett.6b00154

    98. [98]

      Wang X., Yang Y. Y., Zhuang Y. P., Gao P. Y., Yang F., Shen H., Guo H. X., Wu D. C.. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery[J]. Biomacromolecules, 2016,17(9):2920-2929. doi: 10.1021/acs.biomac.6b00744

    99. [99]

      Shi H. B., Kwok R. T. K., Liu J. Z., Xing B. G., Tang B. Z., Liu B.. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics[J]. J. Am. Chem. Soc., 2012,134(43):17972-17981. doi: 10.1021/ja3064588

    100. [100]

      Jiang B. P., Guo D. S., Liu Y. C., Wang K. P., Liu Y.. Photomodulated fluorescence of supramolecular assemblies of sulfonatocalixarenes and tetraphenylethene[J]. ACS Nano, 2014,8(2):1609-1618. doi: 10.1021/nn405923b

    101. [101]

      He Y. G., Shi S. Y., Liu N., Ding Y. S., Yin J., Wu Z. Q.. Tetraphenylethene-functionalized conjugated helical poly(phenyl isocyanide) with tunable light emission, assembly morphology, and specific applications[J]. Macromolecules, 2016,49(1):48-58. doi: 10.1021/acs.macromol.5b02412

    102. [102]

      Han X., Zhang J., Qiao C. Y., Zhang W. M., Yin J., Wu Z. Q.. High-efficiency cell-penetrating helical poly(phenyl isocyanide) chains modified cellular tracer and nanovectors with thiol ratiometric fluorescence imaging performance[J]. Macromolecules, 2017,50(11):4114-4125. doi: 10.1021/acs.macromol.7b00669

    103. [103]

      Chen Y., Zhang Z. Z., Han X., Yin J., Wu Z. Q.. Oxidation and acid milieu-disintegratable nanovectors with rapid cell-penetrating helical polymer chains for programmed drug release and synergistic chemo-photothermal therapy[J]. Macromolecules, 2016,49(20):7718-7727. doi: 10.1021/acs.macromol.6b02063

    104. [104]

      Rajora A. K., Ravishankar D., Osborn H. M. I., Greco F.. Impact of the enhanced permeability and retention (EPR) Effect and cathepsins levels on the activity of polymer-drug conjugates[J]. Polymers, 2014,6(8):2186-2220.  

    105. [105]

      Huang M. M., Zhao K. J., Wang L., Lin S. Q., Li J. J., Chen J. B., Zhao C. G., Ge Z. S.. Dual stimuli-responsive polymer prodrugs quantitatively loaded by nanoparticles for enhanced cellular internalization and triggered drug release[J]. ACS Appl. Mater. Interfaces, 2016,8(18):11226-11236. doi: 10.1021/acsami.5b12227

    106. [106]

      Hu X. L., Hu J. M., Tian J., Ge Z. S, Zhang G. Y., Luo K. F., Liu S. Y.. Polyprodrug amphiphiles:hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery[J]. J. Am. Chem. Soc., 2013,135(46):17617-17629. doi: 10.1021/ja409686x

    107. [107]

      Hu X. L., Liu G. H., Li Y., Wang X. R., Liu S. Y.. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals[J]. J. Am. Chem. Soc., 2015,137(1):362-368.  

    108. [108]

      Cai K. M., He X., Song Z. Y., Yin Q., Zhang Y. F., Uckun F. M., Jiang C., Cheng J. J.. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency[J]. J. Am. Chem. Soc., 2015,137(10):3458-3461.  

    109. [109]

      Morris M. C., Depollier J., Mery J., Heitz F., Divita G.. A peptide carrier for the delivery of biologically active proteins into mammalian cells[J]. Nature Biotechnol., 2001,19:1173-1176. doi: 10.1038/nbt1201-1173

    110. [110]

      Daniels D. S., Schepartz A.. Intrinsically cell-permeable miniature proteins based on a minimal cationic PPⅡ motif[J]. J. Am. Chem. Soc., 2007,129(47):14578-14579. doi: 10.1021/ja0772445

    111. [111]

      Smith B. A., Daniels D. S., Coplin A. E., Jordan G. E., McGregor L. M. A.. Minimally cationic cell-permeable miniature proteins via α-helical arginine display[J]. J. Am. Chem. Soc., 2008,130(10):2948-2949.  

    112. [112]

      Tang H. Y., Yin L. C., Kim K. H., Cheng J. J.. Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties[J]. Chem. Sci., 2013,4:3839-3844. doi: 10.1039/c3sc51328a

    113. [113]

      Yang W. H., Yu C. M., Yao S. Q., Wu S. Z.. Cell-penetrating poly(disulfide)-based star polymers for simultaneous intracellular delivery of miRNAs and small molecule drugs[J]. Polym. Chem., 2017,8:4043-4051. doi: 10.1039/C7PY00666G

    114. [114]

      Green M. M., Park J. W., Sato T., Teramoto A., Lifson S., Selinger R. L. B., Selinger J. V.. The macromolecular route to chiral amplification[J]. Angew. Chem. Int. Ed., 1999,38(21):3138-3154. doi: 10.1002/(ISSN)1521-3773

    115. [115]

      Maeda K., Wakasone S., Shimomura K., Ikai T., Kanoh S.. Helical polymer brushes with a preferred-handed helix-sense triggered by a terminal optically active group in the pendant[J]. Chem. Commun., 2012,48:3342-3344. doi: 10.1039/c2cc00024e

    116. [116]

      Nieh M. P., Goodwin A. A., Stewart J. R., Novak B. M., Hoagland D. A.. Chain stiffness of a high molecular weight polyguanidine prepared by living polymerization[J]. Macromolecules, 1998,31(9):3151-3154. doi: 10.1021/ma9718006

    117. [117]

      Reuther J. F., Bhatt M. P., Tian G., Batchelor B. L., Campos R., Novak B. M.. Controlled living polymerization of carbodiimides using versatile, air-stable nickel(Ⅱ) initiators:facile incorporation of helical, rod-like materials[J]. Macromolecules, 2014,47(14):4587-4595. doi: 10.1021/ma5009429

    118. [118]

      Shi S. Y., He Y. G., Chen W. W., Liu N., Zhu Y. Y., Ding Y. S., Yin J., Wu Z. Q.. Polypeptide-b-poly(phenyl isocyanide) hybrid rod-rod copolymers:one-pot synthesis, self-assembly, and cell imaging[J]. Macromol. Rapid Commun., 2015,36(16):1511-1520. doi: 10.1002/marc.201500185

    119. [119]

      He Y. G., Shi S. Y., Liu N., Zhu Y. Y., Ding Y. S., Yin J., Wu Z. Q.. Fabrication of SERS-active conjugated copolymers/gold nanoparticles composite films by interface-directed assembly[J]. RSC Adv., 2015,5:39697-39704. doi: 10.1039/C5RA05430C

    120. [120]

      Li W., He Y. G., Shi S. Y., Liu N., Zhu Y. Y., Ding Y. S., Yin J., Wu Z. Q.. Fabrication of a multi-charge generable poly(phenyl isocyanide)-block-poly(3-hexylthiophene) rod-rod conjugated copolymer[J]. Polym. Chem., 2015,6:2348-2355. doi: 10.1039/C4PY01624F

    121. [121]

      Yin J., Xu L., Han X., Zhou L., Li C. L., Wu Z. Q.. A facile synthetic route to stereoregular helical poly(phenyl isocyanide)s with defined pendants and controlled helicity[J]. Polym. Chem., 2017,8:545-556. doi: 10.1039/C6PY01881E

    122. [122]

      Zhang Z. Z., Qiao C. Y., Zhang J., Zhang W. M., Yin J., Wu Z. Q.. Synthesis of unimolecular micelles with incorporated hyperbranched boltorn h30 polyester modified with hyperbranched helical poly(phenyl isocyanide) chains and their enantioselective crystallization performance[J]. Macromol. Rapid Commun., 201738. doi: 10.1002/marc.201700315

    123. [123]

      Engelkamp H., Middelbeek S., Nolte R. J. M.. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity[J]. Science, 1999,284(5415):785-788. doi: 10.1126/science.284.5415.785

    124. [124]

      Kajitani T., Onouchi H., Sakurai S. I., Nagai K., Okoshi K., Onitsuka K., Yashima E.. Latticelike smectic liquid crystal phase in a rigid-rod helical polyisocyanide with mesogenic pendants[J]. J. Am. Chem. Soc., 2011,133(24):9156-9159. doi: 10.1021/ja201133d

    125. [125]

      Xu A. Q., Hu G. X., Hu Y. L., Zhang X. Q., Liu K., Kuang G. C., Zhang A. F.. Remarkable structure effects on chiroptical properties of polyisocyanides carrying proline pendants[J]. Chem. Asian J., 2013,8(9):2003-2014. doi: 10.1002/asia.201300297

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    8. [8]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    9. [9]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    10. [10]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    11. [11]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    12. [12]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    13. [13]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    14. [14]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    15. [15]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    16. [16]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    17. [17]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    18. [18]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    19. [19]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    20. [20]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

Metrics
  • PDF Downloads(0)
  • Abstract views(911)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return