Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications
- Corresponding author: Jun Yin, yinjun@hfut.edu.cn †These authors contributed equally to this work
Citation:
Wen-Ming Zhang, Jian Zhang, Zhu Qiao, Jun Yin. Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications[J]. Chinese Journal of Polymer Science,
;2018, 36(3): 273-287.
doi:
10.1007/s10118-018-2035-9
Ross J. S., Schenkein D. P., Pietrusko R., Rolfe M., Linette G. P., Stec J., Stagliano N. E., Ginsburg G. S., Symmans W. F., Pusztai L., Hortobagyi G. N.. Targeted therapies for cancer[J]. Am. J. Clin. Pathol., 2004,122(4):598-609. doi: 10.1309/5CWPU41AFR1VYM3F
Langer R., Tirrell D. A.. Designing materials for biology and medicine[J]. Nature, 2004,428:487-492. doi: 10.1038/nature02388
Hu J. M., Liu S. Y.. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications[J]. Acc. Chem. Res., 2014,47(7):2084-2095. doi: 10.1021/ar5001007
Yin J., Hu H. B., Wu Y. H., Liu S. Y.. Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels[J]. Polym. Chem., 2011,2:363-371. doi: 10.1039/C0PY00254B
Hu J. M., Liu S. Y.. Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures[J]. Dalton Trans., 2015,44:3904-3922. doi: 10.1039/C4DT03609C
Yin J., Chen Y., Zhang Z. H., Han X.. Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications[J]. Polymers, 2016,8(7):268-296.
Zheng X. C., Wang X., Mao H., Wu W., Liu B. R., Jiang X. Q.. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo[J]. Nat. Commun., 20156. doi: 10.1038/ncomms6834
Yin J., Hu J. M., Zhang G. Y., Liu S. Y.. Schizophrenic core-shell microgels:thermoregulated core and shell swelling/collapse by combining ucst and lcst phase transitions[J]. Langmuir, 2014,30(9):2551-2558. doi: 10.1021/la500133y
Zheng X. C., Mai H., Huo D., Wu W., Liu B. R., Jiang X. Q.. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia[J]. Nat. Biomed. Eng., 20171. doi: 10.1038/s41551-017-0057
Yin J., He Y. G., Li W., Wu Z. Q., Ding Y. S.. Wide range temperature detection with hybrid nanoparticles traced by surface-enhanced Raman scattering[J]. Sci. China Chem., 2014,57(3):417-425. doi: 10.1007/s11426-013-4974-x
Zhang L. Z., Zhang Y. J., Wu W., Jiang X. Q.. Doxorubicin-loaded boron-rich polymer nanoparticles for orthotopically implanted liver tumor treatment[J]. Chinese J. Polym. Sci., 2013,31(5):778-786. doi: 10.1007/s10118-013-1267-y
Long C. Y., Sheng M. M., He B., Wu Y., Wang G., Gu Z. W.. Comparison of drug delivery properties of PEG-b-PDHPC micelles with different compositions[J]. Chinese J. Polym. Sci., 2012,30(3):387-396. doi: 10.1007/s10118-012-1138-y
Lu Y., Aimetti A. A., Langer R., Gu Z.. Bioresponsive materials[J]. Nat. Rev. Mater., 2017,2(1)16075.
Hu J. M., Zhang G. Q., Liu S. Y.. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels[J]. Chem. Soc. Rev., 2012,41:5933-5949. doi: 10.1039/c2cs35103j
Yin J., Shi S. Y., Hu J. M., Liu S. Y.. Construction of polyelectrolyte-responsive microgels, and polyelectrolyte concentration and chain length-dependent adsorption kinetics[J]. Langmuir, 2014,30(31):9551-9559. doi: 10.1021/la501918s
Wu Y. Z., Zhang Z. H., Han X., Zhang J., Zhang W. M., Yin J.. Affinity switching for lysozyme and dual-responsive microgels by stopped-flow technique:kinetic control and activity evaluation[J]. Chinese J. Polym. Sci., 2017,35(8):950-960. doi: 10.1007/s10118-017-1948-z
Deng Z. Y., Hu J. M., Liu S. Y.. Reactive oxygen, nitrogen, and sulfur species (RONSS)-responsive polymersomes for triggered drug release[J]. Macromol. Rapid Commun., 2017,38(11). doi: 10.1002/marc.201600685
Ge Z. S., Liu S. Y.. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance[J]. Chem. Soc. Rev., 2013,42:7289-7325. doi: 10.1039/c3cs60048c
Barenholz Y.. Doxil®-The first FDA-approved nano-drug:lessons learned[J]. J. Control. Release, 2012,160:117-134. doi: 10.1016/j.jconrel.2012.03.020
Von Hoff D. D., Ramanathan R. K., Borad M. J., Laheru D. A., Smith L. S., Wood T. E., Korn R. L., Desai N., Trieu V., Iglesias J. L., Zhang H., Soon-Shiong P., Shi T., Rajeshkumar N. V., Maitra A, Hidalgo M. J.. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer:a phase Ⅰ/Ⅱ trial[J]. Clin. Oncol., 2011,29(34):4548-4554. doi: 10.1200/JCO.2011.36.5742
Forssen E. A.. The design and development of DaunoXome® for solid tumor targeting in vivo[J]. Adv. Drug Delivery Rev., 1997,24:133-150. doi: 10.1016/S0169-409X(96)00453-X
Bregoli L., Movia D., Gavigan-Imedio J. D., Lysaght J., Reynolds J., Prina-Mello A.. Nanomedicine applied to translational oncology:a future perspective on cancer treatment[J]. Nanomed. Nanotechnol. Biol. Med., 2016,12:81-103. doi: 10.1016/j.nano.2015.08.006
Sun Q., Zhou Z., Qiu N., Shen Y.. Rational design of cancer nanomedicine:nanoproperty integration and synchronization[J]. Adv. Mater., 2017,29(14). doi: 10.1002/adma.201606628
Sun Q., Radosz M., Shen Y. J.. Challenges in design of translational nanocarriers[J]. J. Control. Release, 2012,164:156-169. doi: 10.1016/j.jconrel.2012.05.042
Otsuka H., Nagasaki Y., Kataoka K.. PEGylated nanoparticles for biological and pharmaceutical applications[J]. Adv. Drug Delivery Rev., 2003,55:403-419. doi: 10.1016/S0169-409X(02)00226-0
Talelli M., Rijcken C. J. F., Van N. C. F., Storm G., Hennink W. E.. Micelles based on HPMA copolymers[J]. Adv. Drug Delivery Rev., 2010,62:231-239. doi: 10.1016/j.addr.2009.11.029
Sun C.Y., Shen S., Xu C. F., Li H. J., Liu Y., Cao Z. T., Yang X. Z., Xia J. X., Wang J.. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery[J]. J. Am. Chem. Soc., 2015,137(48):15217-15224. doi: 10.1021/jacs.5b09602
Sethuraman V. A., Na K., Bae Y. H.. pH-Responsive sulfonamide/PEI system for tumor specific gene delivery:an in vitro study[J]. Biomacromolecules, 2006,7(1):64-70. doi: 10.1021/bm0503571
Zhu L., Wang T., Perche F., Taigind A., Torchilin V. P.. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety[J]. Proc. Natl. Acad. Sci. USA, 2013,110(42):17047-17052. doi: 10.1073/pnas.1304987110
Yang X. Z., Du J. Z., Dou S., Mao C. Q., Long H. Y., Wang J.. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery[J]. ACS Nano, 2012,6(1):771-781. doi: 10.1021/nn204240b
Sun C. Y., Liu Y., Du J. Z., Cao Z. T., Xu C. F., Wang J.. Facile generation of tumor-pH-Labile linkage-bridged block copolymers for chemotherapeutic delivery[J]. Angew. Chem. Int. Ed., 2016,55(3):1010-1014.
Chen J. J., Ding J. X., Xiao C. S., Zhuang X. L., Chen X. S.. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers[J]. Biomater. Sci., 2015,3:988-1001. doi: 10.1039/C5BM00044K
Liu J. J., Chen Q., Zhu W. W., Yi X., Yang Y., Dong Z. L., Liu Z.. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles:a multistage Redox/pH/H2O2-responsive cancer theranostic nanoplatform[J]. Adv. Funct. Mater., 2017,27(10)1605926. doi: 10.1002/adfm.v27.10
Torchilin V. P.. TAT peptide-mediated intracellular delivery of pharmaceutical nanocarriers[J]. Adv. Drug Delivery Rev., 2008,60:548-558. doi: 10.1016/j.addr.2007.10.008
Wang W. W., Cheng D., Gong F. M., Miao X. M., Shuai X. T.. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging[J]. Adv. Mater., 2012,24(1):115-120. doi: 10.1002/adma.201104066
Remant B. K. C., Chandrashekaran V., Cheng B., Chen H., Peña M. M. O., Zhang J., Montgomery J., Xu P. S.. Redox potential ultrasensitive nanoparticle for the targeted delivery of camptothecin to HER2-positive cancer cells[J]. Mol. Pharm., 2014,11(6):1897-1905. doi: 10.1021/mp5000482
Xu P., van Kirk E. A., Zhan Y., Murdoch W. J., Radosz M., Shen Y.. Targeted charge-reversal nanoparticles for nuclear drug delivery[J]. Angew. Chem. Int. Ed., 2007,46(26):4999-5002.
Du J. Z., Du X. J., Mao C. Q., Wang J.. Tailor-made dual ph-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J. Am. Chem. Soc., 2011,133(44):17560-17563. doi: 10.1021/ja207150n
Han S. S., Li Z. Y., Zhu J. Y., Han K., Zeng Z. Y., Hong W., Li W. X., Jia H. Z., Liu Y., Zhuo R. X.. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery[J]. Small, 2015,11(21):2543-2554.
Sui M. H., Liu W. W., Shen Y. Q.. Nuclear drug delivery for cancer chemotherapy[J]. J. Control. Release, 2011,155:227-236.
Wang N., Dong A. J., Tang H. D., van Kirk E. A., Johnson P. A., Murdoch W. J., Radosz M., Shen Y. Q.. Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers[J]. Macromol. Biosci., 2007,7(11):1187-1198. doi: 10.1002/(ISSN)1616-5195
Sethuraman1 V. A., Bae Y. H.. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors[J]. J. Control. Release, 2007,118:216-224. doi: 10.1016/j.jconrel.2006.12.008
Zhang Y., Wang X. J., Guo M., Yan H. S., Wang C. H., Liu K. L.. Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine[J]. Chinese J. Polym. Sci., 2014,32(10):1329-1337. doi: 10.1007/s10118-014-1510-1
Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K.. Vascular permeability in a human tumor xenograft:molecular size dependence and cutoff size[J]. Cancer Res., 1995,55(17):3752-3756.
Cabral H., Matsumoto Y., Mizuno K., Chen Q., Murakami M., Kimura M., Terada Y., Kano M. R., Miyazono K., Uesaka M., Nishiyama N., Kataoka K.. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nat. Nanotechnol., 2011,6:815-823. doi: 10.1038/nnano.2011.166
Chauhan V. P., Stylianopoulos T., Martin J. D., Popovic Z., Chen O., Kamoun W. S., Bawendi M. G., Fukumura D., Jain R. K.. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner[J]. Nat. Nanotechnol., 2012,7:383-388. doi: 10.1038/nnano.2012.45
Sun Q. H., Sun X. R., Ma X.P., Zhou Z. X., Jin E. L., Zhang B., Shen Y. Q., van Kirk E., Murdoch W. J., Lott J. P., Lodge T. P., Radosz M., Zhao Y. L.. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs[J]. Adv. Mater., 2014,26(45):7615-7621. doi: 10.1002/adma.v26.45
Piedrafita G., Keller M. A., Ralser M.. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions[J]. Biomolecules, 2015,5(3):2101-2122.
Ghadiali J. E., Stevens M. M.. Enzyme-responsive nanoparticle systems[J]. Adv. Mater., 2008,20(22):4359-4363. doi: 10.1002/adma.v20:22
Hahn M. E., Gianneschi N. C.. Enzyme-directed assembly and manipulation of organic nanomaterials[J]. Chem. Commun., 2011,47:11814-11821. doi: 10.1039/c1cc15220c
Ulijn R. V.. Enzyme-responsive materials:a new class of smart biomaterials[J]. J. Mater. Chem., 2006,16:2217-2225. doi: 10.1039/b601776m
Li Y. M., Liu G. H., Wa ng, X. R;, Hu J. M., Liu S. Y.. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents[J]. Angew. Chem. Int. Ed., 2016,55(5):1760-1764.
Gullotti E., Park J., Yeo Y.. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles[J]. Pharm. Res., 2013,30(8):1956-1967. doi: 10.1007/s11095-013-1039-y
Li D. D., Ma Y. C., Du J. Z., Tao W., Du X. J., Yang X. Z., Wang J.. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy[J]. Nano Lett., 2017,17(5):2871-2878. doi: 10.1021/acs.nanolett.6b05396
Jin E. L., Zhang B., Sun X. R., Zhou Z. X., Ma X. P., Sun Q. H., Tang J. B., Shen Y. Q., Van Kirk E., Murdoch W. J., Radosz M.. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery[J]. J. Am. Chem. Soc., 2013,135(2):933-940.
Li Y. M., Yang J. H., Xu B., Gao F., Wang W., Liu W. G.. Enhanced therapeutic siRNA to tumor cells by a pH-sensitive agmatine-chitosan bioconjugate[J]. ACS Appl. Mater. Interfaces, 2015,7(5):8114-8124.
Huang S. X., Shao K., Liu Y., Kuang Y. Y., Li J. F., An S., Guo Y. B., Ma H. J., Jiang C.. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis[J]. ACS Nano, 2013,7(3):2860-2871. doi: 10.1021/nn400548g
Jin E. L., Zhang B., Sun X. R., Zhou Z. X., Ma X. P., Sun Q. H., Tang J. B., Shen Y. Q., Kirk E. V., Murdoch W. J., Radosz M.. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery[J]. J. Am. Chem. Soc., 2013,135(2):933-940.
Xia D. Y., Yu G. C., Li J. Y., Huang F. H.. Photo-responsive self-assembly based on a water-soluble pillar[6]arene and an azobenzene-containing amphiphile in water[J]. Chem. Commun., 2014,50:3606-3608. doi: 10.1039/c3cc49686d
Xia D. Y., Wei P. F., Shi B. B., Huang F. H.. A pillar[6]arene-based[2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution[J]. Chem. Commun., 2016,52:513-516. doi: 10.1039/C5CC08038J
Zhao Y.. Light-responsive block copolymer micelles[J]. Macromolecules, 2012,45(9):3647-3657. doi: 10.1021/ma300094t
Li Y. M., Qian Y. F., Liu T., Zhang G. Y., Liu S. Y.. Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles[J]. Biomacromolecules, 2012,13(11):3877-2886. doi: 10.1021/bm301425j
Karimi M., Zangabad P. S., Baghaee-Ravari S., Ghazadeh M., Mirshekari H., Hamblin M. R.. Smart nanostructures for cargo delivery:uncaging and activating by light[J]. J. Am. Chem. Soc., 2017,139(13):4584-4610.
Hu J. J., Chen Y. H., Li Y. Q., Zhou Z. G., Cheng Y. Y.. A thermo-degradable hydrogel with light-tunable degradation and drug release[J]. Biomaterials, 2017,112:133-140. doi: 10.1016/j.biomaterials.2016.10.015
Chen Q., Xu L. G., Liang C., Wang C., Peng R., Liu Z.. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy[J]. Nat. Commum., 20167. doi: 10.1038/ncomms13193
Dvir T., Banghart M. R., Timko B. P., Langer R., Kohane D. S.. Photo-targeted nanoparticles[J]. Nano Lett., 2010,10(1):250-254. doi: 10.1021/nl903411s
Fan N. C., Cheng F. Y., Ho J. A., Yeh C. S.. Photocontrolled targeted drug delivery:photocaged biologically active folic acid as a light-responsive tumor-targeting molecule[J]. Angew. Chem. Int. Ed., 2012,51(35):8806-8810. doi: 10.1002/anie.v51.35
Cui D., Xie C., Pu C. Y.. Development of semiconducting polymer nanoparticles for photoacoustic imaging[J]. Macromol. Rapid Commun., 2017,38(12). doi: 10.1002/marc.201700125
Hong B. J., Swindell E. P., MacRenaris K. W., Hankins. P. L., Chipre A, J., Mastarone D., Ahn R. W., Meade T. J., O'Halloran T. V., Nguyen S. T.. pH-responsive theranostic polymer-caged nanobins:enhanced cytotoxicity and T1 MRI contrast by HER2 targeting[J]. Part. Syst. Charact., 2013,30(9):770-774. doi: 10.1002/ppsc.v30.9
Li B.. A novel upconversion nanotheranostic agent for multi-modality imaging-guided chemotherapy with on-demand drug release[J]. Sci. China Chem., 2015,58(6):970-70. doi: 10.1007/s11426-015-5428-4
Langer A.. A systematic review of PET and PET/CT in oncology:a way to personalize cancer treatment in a cost-effective manner?[J]. BMC Health Serv.Res., 201010. doi: 10.1186/1472-6963-10-283
Ke C. Y., Mathias C. J., Green M. A.. Folate-receptor-targeted radionuclide imaging agents[J]. Adv. Drug Delivery Rev., 2004,56:1143-1160. doi: 10.1016/j.addr.2004.01.004
Smith B. R., Gambhir S. S.. Nanomaterials for in vivo imaging[J]. Chem. Rev., 2017,117(3):901-986. doi: 10.1021/acs.chemrev.6b00073
Ma Y. F., Huang J., Song S. J., Chen H. B., Zhang Z. J.. Cancer-targeted nanotheranostics:recent advances and perspectives[J]. Small, 2016,12(36):4936-4954. doi: 10.1002/smll.v12.36
Li X. S., Kim J. H., Yoon J. Y., Chen X.. Y[J]. Cancer-associated, stimuli-driven, turn on theranostics for multimodality imaging and therapy. Adv. Mater., 2017,29(23)1606857(1-24).
Wang S., Huang P., Chen X. Y.. Stimuli-responsive programmed specific targeting in nanomedicine[J]. ACS Nano, 2016,10(3):2991-2994. doi: 10.1021/acsnano.6b00870
Deng J., Gao C. Y.. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity[J]. Nanotechnology, 2016,27(41)412002. doi: 10.1088/0957-4484/27/41/412002
Guo M., Mao H. J., Li Y. L., Zhu A. J., He H., Yang H., Wang Y. Y., Tian X., Ge C. C., Peng Q. L., Wang X. Y., Yang X. L., Chen X. Y., Liu G., Chen H. B.. Dual imaging-guided photothermal/photodynamic therapy using micelles[J]. Biomaterials, 2014,35:4656-4666. doi: 10.1016/j.biomaterials.2014.02.018
Wan Z. H., Mao H. J., Guo M., Li Y. L., Zhu A. J., Yang H., He H., Shen J. K., Zhou L. J., Jiang Z., Ge C. C., Chen X. Y., Yang X. L., Liu G., Chen H. B.. Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication[J]. Theranostics, 2014,4(4):399-411. doi: 10.7150/thno.8171
Li Y., Deng Y., Tian X., Ke H., Guo M., Zhu A. J., Yang T., Guo Z. Q., Ge Z. S., Yang X. L., Chen H. B.. Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor[J]. ACS Nano, 2015,9(10):9626-9637. doi: 10.1021/acsnano.5b05097
Zhu A. J., Miao K., Deng Y. B., Ke H. T., He H., Yang T., Guo M., Li Y. L., Guo Z. Q., Wang Y. Y., Yang X. L., Zhao Y. L., Chen H. B.. Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermochemotherapy-synergized tumor ablation[J]. ACS Nano, 2015,9(8):7874-7885. doi: 10.1021/acsnano.5b02843
Liu G. H., Wang X. R., Hu J. M., Zhang G. Y., Liu S. Y.. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions[J]. J. Am. Chem. Soc., 2014,136(20):7492-7497. doi: 10.1021/ja5030832
Liu G. H., Zhang G. F., Hu J. M., Wang X. R., Zhu M. Q., Liu S. Y.. Hyperbranched self-immolative polymers (hSIPs) for programmed payload delivery and ultrasensitive detection[J]. J. Am. Chem. Soc., 2015,137(36):11645-11655. doi: 10.1021/jacs.5b05060
Frogley B. J., Wright L. J.. Cover picture:a metallaanthracene and derived metallaanthraquinone[J]. Angew. Chem. Int. Ed., 2017,56(1):143-147.
Shi S. Y., Liu Y. J., Chen Y., Zhang Z. H., Ding Y. S., Wu Z. Q., Yin J., Nie L. M.. Versatile pH-response micelles with high cell-penetrating helical diblock copolymers for photoacoustic imaging guided synergistic chemo-photothermal therapy[J]. Theranostics, 2016,6(12):2170-2182. doi: 10.7150/thno.16633
Zhang P. H., Wang Y., Lian J., Shen Q., Wang C., Ma B., Zhang Y. C., Xu T. T., Li J. X., Shao Y. P., Xu F., Zhu J. J.. Engineering the surface of smart nanocarriers using a pH-/thermal-/GSH-responsive polymer zipper for precise tumor targeting therapy in vivo[J]. Adv. Mater., 2017,291702311. doi: 10.1002/adma.201702311
Kakizawa Y., Harada A., Kataoka K.. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond[J]. J. Am. Chem. Soc., 1999,121(48):11247-11248. doi: 10.1021/ja993057y
Wu Z., Huang J. B., Yan Y.. Electrostatic polyion micelles with fluorescence and MRI dual functions[J]. Langmuir, 2015,31(29):7926-7933. doi: 10.1021/acs.langmuir.5b01516
Huynh V. T., Chen G. J., De S. P., Stenzel M. H.. Thiol-yne and Thiol-ene "click" chemistry as a tool for a variety of platinum drug delivery carriers, from statistical copolymers to crosslinked micelles[J]. Biomacromolecules, 2011,12(5):1738-1751. doi: 10.1021/bm200135e
O'Reilly R. K., Joralemon M. J., Hawker C. J., Wooley K. L.. Preparation of orthogonally-functionalized core Click cross-linked nanoparticles[J]. New J. Chem., 2007,31:718-724. doi: 10.1039/B616103K
Zhang Z. H., Yin L. C., Tu C. L., Song Z. Y., Zhang Y. F., Xu Y. X., Tong R., Zhou Q., Ren J., Cheng J.. J[J]. Redox-responsive, core cross-linked polyester micelles. ACS Macro. Lett., 2013,2(1):40-44.
Deng Z. Y., Qian Y. F., Yu Y. Q., Liu G. H., Hu J. M., Zhang G. Y., Liu S. Y.. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells[J]. J. Am. Chem. Soc., 2016,138(33):10452-10466. doi: 10.1021/jacs.6b04115
Wang X. R., Liu G. H., Hu J. M., Zhang G. Y., Liu S. Y.. Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated "traceless" crosslinking[J]. Angew. Chem. lnt. Ed., 2014,53(12):3138-3142. doi: 10.1002/anie.201310589
Wang X. R., Hu J. M., Liu G. H., Tian J., Wang H. J., Gong M., Liu S. Y.. Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions[J]. J. Am. Chem. Soc., 2015,137(48):15262-15275. doi: 10.1021/jacs.5b10127
Luo J. D., Xie Z. L., Lam J. W. Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B., Tang B. Z.. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chem. Commun., 2001,18:1740-1741.
Wang Z., Yong T. Y., Wan J. S., Li Z. H., Zhao H., Zhao Y. B., Gan L., Yang X. Y., Xu H. B., Zhang C.. Temperature-sensitive fluorescent organic nanoparticles with aggregation-induced emission for long-term cellular tracing[J]. ACS Appl. Mater. Interfaces, 2015,7(5):3420-3425. doi: 10.1021/am509161y
Jiang B. P., Tan X. Y., Shen X. C., Lei W. Q., Liang W. Q., Ji S. C., Liang H.. One-step fabrication of a multifunctional aggregation-induced emission nanoaggregate for targeted cell imaging and enzyme-triggered cancer chemotherapy[J]. ACS Macro Lett., 2016,5(4):450-454. doi: 10.1021/acsmacrolett.6b00154
Wang X., Yang Y. Y., Zhuang Y. P., Gao P. Y., Yang F., Shen H., Guo H. X., Wu D. C.. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery[J]. Biomacromolecules, 2016,17(9):2920-2929. doi: 10.1021/acs.biomac.6b00744
Shi H. B., Kwok R. T. K., Liu J. Z., Xing B. G., Tang B. Z., Liu B.. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics[J]. J. Am. Chem. Soc., 2012,134(43):17972-17981. doi: 10.1021/ja3064588
Jiang B. P., Guo D. S., Liu Y. C., Wang K. P., Liu Y.. Photomodulated fluorescence of supramolecular assemblies of sulfonatocalixarenes and tetraphenylethene[J]. ACS Nano, 2014,8(2):1609-1618. doi: 10.1021/nn405923b
He Y. G., Shi S. Y., Liu N., Ding Y. S., Yin J., Wu Z. Q.. Tetraphenylethene-functionalized conjugated helical poly(phenyl isocyanide) with tunable light emission, assembly morphology, and specific applications[J]. Macromolecules, 2016,49(1):48-58. doi: 10.1021/acs.macromol.5b02412
Han X., Zhang J., Qiao C. Y., Zhang W. M., Yin J., Wu Z. Q.. High-efficiency cell-penetrating helical poly(phenyl isocyanide) chains modified cellular tracer and nanovectors with thiol ratiometric fluorescence imaging performance[J]. Macromolecules, 2017,50(11):4114-4125. doi: 10.1021/acs.macromol.7b00669
Chen Y., Zhang Z. Z., Han X., Yin J., Wu Z. Q.. Oxidation and acid milieu-disintegratable nanovectors with rapid cell-penetrating helical polymer chains for programmed drug release and synergistic chemo-photothermal therapy[J]. Macromolecules, 2016,49(20):7718-7727. doi: 10.1021/acs.macromol.6b02063
Rajora A. K., Ravishankar D., Osborn H. M. I., Greco F.. Impact of the enhanced permeability and retention (EPR) Effect and cathepsins levels on the activity of polymer-drug conjugates[J]. Polymers, 2014,6(8):2186-2220.
Huang M. M., Zhao K. J., Wang L., Lin S. Q., Li J. J., Chen J. B., Zhao C. G., Ge Z. S.. Dual stimuli-responsive polymer prodrugs quantitatively loaded by nanoparticles for enhanced cellular internalization and triggered drug release[J]. ACS Appl. Mater. Interfaces, 2016,8(18):11226-11236. doi: 10.1021/acsami.5b12227
Hu X. L., Hu J. M., Tian J., Ge Z. S, Zhang G. Y., Luo K. F., Liu S. Y.. Polyprodrug amphiphiles:hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery[J]. J. Am. Chem. Soc., 2013,135(46):17617-17629. doi: 10.1021/ja409686x
Hu X. L., Liu G. H., Li Y., Wang X. R., Liu S. Y.. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals[J]. J. Am. Chem. Soc., 2015,137(1):362-368.
Cai K. M., He X., Song Z. Y., Yin Q., Zhang Y. F., Uckun F. M., Jiang C., Cheng J. J.. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency[J]. J. Am. Chem. Soc., 2015,137(10):3458-3461.
Morris M. C., Depollier J., Mery J., Heitz F., Divita G.. A peptide carrier for the delivery of biologically active proteins into mammalian cells[J]. Nature Biotechnol., 2001,19:1173-1176. doi: 10.1038/nbt1201-1173
Daniels D. S., Schepartz A.. Intrinsically cell-permeable miniature proteins based on a minimal cationic PPⅡ motif[J]. J. Am. Chem. Soc., 2007,129(47):14578-14579. doi: 10.1021/ja0772445
Smith B. A., Daniels D. S., Coplin A. E., Jordan G. E., McGregor L. M. A.. Minimally cationic cell-permeable miniature proteins via α-helical arginine display[J]. J. Am. Chem. Soc., 2008,130(10):2948-2949.
Tang H. Y., Yin L. C., Kim K. H., Cheng J. J.. Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties[J]. Chem. Sci., 2013,4:3839-3844. doi: 10.1039/c3sc51328a
Yang W. H., Yu C. M., Yao S. Q., Wu S. Z.. Cell-penetrating poly(disulfide)-based star polymers for simultaneous intracellular delivery of miRNAs and small molecule drugs[J]. Polym. Chem., 2017,8:4043-4051. doi: 10.1039/C7PY00666G
Green M. M., Park J. W., Sato T., Teramoto A., Lifson S., Selinger R. L. B., Selinger J. V.. The macromolecular route to chiral amplification[J]. Angew. Chem. Int. Ed., 1999,38(21):3138-3154. doi: 10.1002/(ISSN)1521-3773
Maeda K., Wakasone S., Shimomura K., Ikai T., Kanoh S.. Helical polymer brushes with a preferred-handed helix-sense triggered by a terminal optically active group in the pendant[J]. Chem. Commun., 2012,48:3342-3344. doi: 10.1039/c2cc00024e
Nieh M. P., Goodwin A. A., Stewart J. R., Novak B. M., Hoagland D. A.. Chain stiffness of a high molecular weight polyguanidine prepared by living polymerization[J]. Macromolecules, 1998,31(9):3151-3154. doi: 10.1021/ma9718006
Reuther J. F., Bhatt M. P., Tian G., Batchelor B. L., Campos R., Novak B. M.. Controlled living polymerization of carbodiimides using versatile, air-stable nickel(Ⅱ) initiators:facile incorporation of helical, rod-like materials[J]. Macromolecules, 2014,47(14):4587-4595. doi: 10.1021/ma5009429
Shi S. Y., He Y. G., Chen W. W., Liu N., Zhu Y. Y., Ding Y. S., Yin J., Wu Z. Q.. Polypeptide-b-poly(phenyl isocyanide) hybrid rod-rod copolymers:one-pot synthesis, self-assembly, and cell imaging[J]. Macromol. Rapid Commun., 2015,36(16):1511-1520. doi: 10.1002/marc.201500185
He Y. G., Shi S. Y., Liu N., Zhu Y. Y., Ding Y. S., Yin J., Wu Z. Q.. Fabrication of SERS-active conjugated copolymers/gold nanoparticles composite films by interface-directed assembly[J]. RSC Adv., 2015,5:39697-39704. doi: 10.1039/C5RA05430C
Li W., He Y. G., Shi S. Y., Liu N., Zhu Y. Y., Ding Y. S., Yin J., Wu Z. Q.. Fabrication of a multi-charge generable poly(phenyl isocyanide)-block-poly(3-hexylthiophene) rod-rod conjugated copolymer[J]. Polym. Chem., 2015,6:2348-2355. doi: 10.1039/C4PY01624F
Yin J., Xu L., Han X., Zhou L., Li C. L., Wu Z. Q.. A facile synthetic route to stereoregular helical poly(phenyl isocyanide)s with defined pendants and controlled helicity[J]. Polym. Chem., 2017,8:545-556. doi: 10.1039/C6PY01881E
Zhang Z. Z., Qiao C. Y., Zhang J., Zhang W. M., Yin J., Wu Z. Q.. Synthesis of unimolecular micelles with incorporated hyperbranched boltorn h30 polyester modified with hyperbranched helical poly(phenyl isocyanide) chains and their enantioselective crystallization performance[J]. Macromol. Rapid Commun., 201738. doi: 10.1002/marc.201700315
Engelkamp H., Middelbeek S., Nolte R. J. M.. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity[J]. Science, 1999,284(5415):785-788. doi: 10.1126/science.284.5415.785
Kajitani T., Onouchi H., Sakurai S. I., Nagai K., Okoshi K., Onitsuka K., Yashima E.. Latticelike smectic liquid crystal phase in a rigid-rod helical polyisocyanide with mesogenic pendants[J]. J. Am. Chem. Soc., 2011,133(24):9156-9159. doi: 10.1021/ja201133d
Xu A. Q., Hu G. X., Hu Y. L., Zhang X. Q., Liu K., Kuang G. C., Zhang A. F.. Remarkable structure effects on chiroptical properties of polyisocyanides carrying proline pendants[J]. Chem. Asian J., 2013,8(9):2003-2014. doi: 10.1002/asia.201300297
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
Liangliang Jia , Ye Hong , Xinyu He , Ying Zhou , Liujiao Ren , Hongjun Du , Bin Zhao , Bin Qin , Zhe Yang , Di Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Fengying Ye , Ming Hu , Jun Luo , Wei Yu , Zhirong Xu , Jinjin Fu , Yansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254