Citation: Xiao-Yan Yang, Shao-Shuai Liu, Alexander V. Korobko, Stephen J. Picken, Nicolaas A. M. Besseling. Changes of the Molecular Mobility of Poly(ε-caprolactone) upon Drawing, Studied by Dielectric Relaxation Spectroscopy[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 665-674. doi: 10.1007/s10118-018-2030-1 shu

Changes of the Molecular Mobility of Poly(ε-caprolactone) upon Drawing, Studied by Dielectric Relaxation Spectroscopy

  • Corresponding author: Xiao-Yan Yang, hsiaoyen_yang@hotmail.com
  • Received Date: 19 July 2017
    Accepted Date: 30 August 2017
    Available Online: 15 January 2018

  • Dielectric relaxation spectroscopy (DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation energy of the α process, which corresponds to the dynamic glass transition, increases upon drawing. The enlarged gap between the activation energies of the α process and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes. At low drawing ratios the a process connects with the β process, while at the highest drawing ratio in our measurements, the a process is continuous with the α process. This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing. As the draw ratio increases, the α relaxation broadens and decreases its intensity, indicating an increasing heterogeneity. We observed slope changes in the α traces, when the temperature decreases below that at which τα ≈ 1 s. This may indicate the glass transition from the 'rubbery' state to the non-equilibrium glassy state.
  • 加载中
    1. [1]

      Omid Y., Hamid G.. Development of a simple model to characterize the complex constrained polymer chains in polymer nanocomposites at the interphase of amorphous/semicrystalline ethylene vinyl acetate and nanosheets[J]. J. Compos. Mater., 2016,51(2):179-186.  

    2. [2]

      Perez-de-Eulate N. G., Di Lisio V., Cangialosi D.. Glass Transition and Molecular Dynamics in Polystyrene Nanospheres by Fast Scanning Calorimetry[J]. ACS Macro Lett., 2017,6(6):859-863.  

    3. [3]

      Sharma R. P., Green P. F.. Role of "Hard" and "soft" confinement on polymer dynamics at the nanoscale[J]. ACS Macro Lett., 2017,6(9):908-914. doi: 10.1021/acsmacrolett.7b00374

    4. [4]

      Lee K. H., Kim H. Y., Khil M. S., Ra Y. M., Lee D. R.. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning[J]. Polymer., 2003,44(4):1287-1294. doi: 10.1016/S0032-3861(02)00820-0

    5. [5]

      Chen Z., Cao L., Wang L., Zhu H., Jiang H.. Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(ε-caprolactone) and gelatin[J]. J. Appl. Polym. Sci., 2013,127(6):4225-4232. doi: 10.1002/app.38000

    6. [6]

      Bernards D. A., Bhisitkul R. B., Wynn P., Steedman M. R., Lee O. T., Wong F., Thoongsuwan S., Desai T. A.. Ocular Biocompatibility and Structural Integrity of Micro-and Nanostructured Poly(caprolactone) Films[J]. J. Ocul. Pharmacol. Th., 2013,29(2):249-257. doi: 10.1089/jop.2012.0152

    7. [7]

      Shan G. F., Yang W., Yang M. B., Xie B. H., Fu Q., Mai Y. W.. Investigation on tensile deformation behavior of semi-crystalline polymers[J]. J. Macromol. Sci. B, 2009,48(7):799-811.

    8. [8]

      Li H., Zhou W., Ji Y., Hong Z., Miao B., Li X., Zhang J., Qi Z., Wang X., Li L., Li Z. M.. Spatial distribution of crystal orientation in neck propagation:An in-situ microscopic infrared imaging study on polyethylene[J]. Polymer, 2013,54(2):972-979. doi: 10.1016/j.polymer.2012.12.012

    9. [9]

      Li J. X., Cheung W. L., Chan C. M.. On deformation mechanisms of β-polypropylene 3.Lamella structures after necking and cold drawing[J]. Polymer, 1999,40(13):3641-3656. doi: 10.1016/S0032-3861(98)00578-3

    10. [10]

      Peterlin A.. Molecular model of drawing polyethylene and polypropylene[J]. J. Mater. Sci., 1971,6(6):490-508. doi: 10.1007/BF00550305

    11. [11]

      Van Aerle N. A. J. M., Braam A. W. M.. A structural study on solid state drawing of solution-crystallized ultra-high molecular weight polyethylene[J]. J. Mater. Sci., 1988,23(12):4429-4436. doi: 10.1007/BF00551941

    12. [12]

      Mcrae M. A., Maddams W. F., Preedy J. E.. An infra-red spectroscopic and X-ray diffraction study of cold-drawn high density polyethylene samples[J]. J. Mater. Sci., 1976,11(11):2036-2044. doi: 10.1007/PL00020329

    13. [13]

      Flory P. J., Yoon D. Y.. Molecular morphology in semicrystalline polymers[J]. Nature, 1978,272(5650):226-229. doi: 10.1038/272226a0

    14. [14]

      Nozue Y., Shinohara Y., Ogawa Y., Takamizawa T., Sakurai T., Kasahara T., Yamaguchi N., Yagi N., Amemiya Y.. Deformation behavior of banded spherulite during drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement[J]. Polymer, 2010,51(1):222-231. doi: 10.1016/j.polymer.2009.11.031

    15. [15]

      Li J. X., Cheung W. L.. On the deformation mechanisms of β-polypropylene:1.Effect of necking on β-phase PP crystals[J]. Polymer, 1998,39(26):6935-6940. doi: 10.1016/S0032-3861(98)00144-X

    16. [16]

      Zhao Y., Keroack D., Prudȼhomme R.. Crystallization under strain and resultant orientation of poly(ε-caprolactone) in miscible blends[J]. Macromolecules, 1999,32(4):1218-1225. doi: 10.1021/ma981416o

    17. [17]

      Pieruccini M., Ezquerra T. A., Lanza M.. Phenomenological model for the confined dynamics in semicrystalline polymers:the multiple α relaxation in cold-crystallized poly(ethylene terephthalate)[J]. J. Chem. Phys., 2007,127(10). doi: 10.1063/1.2771166

    18. [18]

      Hakme, C. ; Stevenson, I. ; David, L. ; Sixou, B. ; Voice, A. ; Seytre, G. ; Boiteux, G. Molecular mobility in poly(ethylene naphthalene 2, 6 dicarboxylate) (PEN) dielectric films. Proceeding of the 2004 IEEE International Conference on Solid Dielectrics. 2004, Vol. 1, 37-40.

    19. [19]

      Hakme C., Stevenson I., David L., Seytre G., Boiteux G.. Effect of orientation and crystallization on dielectric and mechanical relaxations in uniaxially stretched poly(ethylene naphthalene 2, 6 dicarboxylate) (PEN) films[J]. J. Non-Cryst. Solids, 2006,352(42-49):4746-4752. doi: 10.1016/j.jnoncrysol.2006.01.126

    20. [20]

      Nogales A., Denchev Z., Šics I., Ezquerra T. A.. Influence of the crystalline structure in the segmental mobility of semicrystalline polymers:poly(ethylene naphthalene-2, 6-dicarboxylate)[J]. Macromoleculs, 2000,33(25):9367-9375. doi: 10.1021/ma001066h

    21. [21]

      Frübing P., Kremmer A., Gerhard-Multhaupt R., Spanoudaki A., Pissis P.. Relaxation processes at the glass transition in polyamide 11:from rigidity to viscoelasticity[J]. J. Chem. Phys., 2006,125(21). doi: 10.1063/1.2360266

    22. [22]

      Donth, E. The glass transition: relaxation dynamics in liquids and disordered materials, Springer-Verlag Berlin Heidelberg, New York, 2001, p. 199.

    23. [23]

      Grimau M., Laredo E., Pérez Y. M., Bello C. A.. Study of dielectric relaxation modes in poly(ε-caprolactone):molecular weight, water sorption, and merging effects[J]. J. Chem. Phys., 2001,114(15):6417-6425.  

    24. [24]

      Scönhals, A. ; Kremer, F., in "Broadband dielectric spectroscopy" ed. by Kremer, F. ; Scönhals, A., Springer-Verlag Berlin Heidelberg, New York, 2003, p. 59.

    25. [25]

      Alcock B., Cabrera N. O., Barkoula N. M., Raynolds C. T., Govaert L. E., Peijs T.. The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites[J]. Compos. Sci. Technol., 2007,67(10):2061-2070. doi: 10.1016/j.compscitech.2006.11.012

    26. [26]

      Qiu Z., Yang W., Ikehara T., Nishi T.. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters.Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone)[J]. Polymer, 2005,46(25):11814-11819. doi: 10.1016/j.polymer.2005.10.058

    27. [27]

      Crescenzi V., Manzini G., Calzolari G., Borri C.. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone.comparative analysis of the melting of aliphatic polylactone and polyester chains[J]. Eur. Polym. J., 1972,8(3):449-463. doi: 10.1016/0014-3057(72)90109-7

    28. [28]

      Bello A., Laredo E., Grimau M.. Comparison of analysis of dielectric spectra of PCL in the ε* and the M* formalism[J]. J. Non-Cryst. Solids., 2007,353(47-51):4283-4287. doi: 10.1016/j.jnoncrysol.2007.08.041

    29. [29]

      Serra R. S. I. J., Ivirico L. E., Dueñas J. M. M., Balado A. A., Ribelles J. L. G., Sánchez M. S.. Segmental dynamics in poly(ε-caprolactone)/poly(L-lactide) copolymer networks[J]. J. Polym. Sci., Part B:Polym. Phys., 2009,47(2):183-193. doi: 10.1002/polb.v47:2

    30. [30]

      Lee H., Paeng K., Swallen S. F., Ediger M. D.. Direct measurement of molecular mobility in actively deformed polymer glasses[J]. Science, 2009,323(5911):231-234. doi: 10.1126/science.1165995

    31. [31]

      Suljovrujić, E. Dielectric studies of molecular β-relaxation in low density polyethylene:the influence of drawing and ionizing radiation. Polymer 2002, 43(22), 5969-5978. (Note:the β and γ relaxations in the reference are the α and β relaxations in this paper, respectively)

    32. [32]

      Adam G., Gibbs J. H.. On the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. J. Chem. Phys., 1965,143(1):139-146.

    33. [33]

      Schröter K., Unger R., Reissig S., Garwe F., Kahle S., Beiner M., Donth E.. Dielectric spectroscopy in the αβ splitting region of glass transition in poly(ethyl methacrylate) and poly(n-butyl methacrylate):different evaluation methods and experimental conditions[J]. Macromolecules, 1998,31(25):8966-8972. doi: 10.1021/ma9713318

    34. [34]

      Hansen C., Stickel F., Berger T., Richert R., Fischer E. W.. Dynamics of glass-forming liquids.Ⅲ. Comparing the dielectric α-and β-relaxation of 1-propanol and ο-terphenyl[J]. J. Chem. Phys., 1997,107(4):1086-1093. doi: 10.1063/1.474456

    35. [35]

      Smith G. D., Bedrov D.. Relationship between the α-and β-relaxation processes in amorphous polymers:Insight from atomistic molecular dynamics simulations of 1, 4-polybutadiene melts and blends[J]. J. Polym. Sci., Part B:Polym. Phys., 2007,45(6):627-643. doi: 10.1002/(ISSN)1099-0488

    36. [36]

      Götze, W. in "Liquid, Freezing and the Glass Transition", ed. by Hansen, J. P. ; Levesque, D. ; Zinn-Justin, J., North-Hollond, Amsterdam, 1991, p. 287.

    37. [37]

      Saiter J. M., Grenet J., Saiter E. A., Delbreilh L.. Glass Transition temperature and value of the relaxation time at Tg in vitreous polymers[J]. Macromol. Symp., 2007,258(1):152-161. doi: 10.1002/(ISSN)1521-3900

    38. [38]

      Li J. X., Cheung W. L., Chan C. M.. On deformation mechanisms of β-polypropylene 2.changes of lamellar structure caused by tensile load[J]. Polymer, 1999,40(8):2089-2102. doi: 10.1016/S0032-3861(98)00412-1

    39. [39]

      Murthy N. S., Minor H., Bednarczyk C.. Structure of the amorphous phase in oriented polymers[J]. Macromolecules, 1993,26(7):1712-1721. doi: 10.1021/ma00059a034

    40. [40]

      Liedermann K.. A simple formula for the temperature dependence of the relaxation frequency in glassy systems[J]. Collid. Polym. Sci., 1996,274(1):20-26. doi: 10.1007/BF00658905

    41. [41]

      Kremer F. ; Huwe A. ; Schönhals A. ; Różański S. A., in "Broadband dielectric spectroscopy" ed. by Kremer, F. ; Scönhals, A., Springer-Verlag Berlin Heidelberg, New York, 2003, p. 171.

    42. [42]

      Arndt M., Stannarius R., Groothues H., Hempel E., Kremer F.. Length Scale of Cooperativity in the Dynamic Glass Transition[J]. Phys. Rev. Lett., 1997,79(11):2077-2080. doi: 10.1103/PhysRevLett.79.2077

  • 加载中
    1. [1]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    2. [2]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    5. [5]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    6. [6]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    7. [7]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    8. [8]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    9. [9]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    10. [10]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    11. [11]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    12. [12]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    13. [13]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    14. [14]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    15. [15]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    16. [16]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    17. [17]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    18. [18]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    19. [19]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    20. [20]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

Metrics
  • PDF Downloads(0)
  • Abstract views(957)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return