Citation: Jia-Hui Chen, Xu-Pei An, Yi-Dong Li, Ming Wang, Jian-Bing Zeng. Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 641-648. doi: 10.1007/s10118-018-2027-9 shu

Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability

  • Corresponding author: Yi-Dong Li, liyidong@swu.edu.cn Jian-Bing Zeng, jbzeng@swu.edu.cn
  • Received Date: 24 July 2017
    Accepted Date: 28 August 2017
    Available Online: 11 January 2018

  • In order to extend the application of epoxy vitrimer, 1, 4-cyclohexanedicarboxylic acid (CHDA) was used as a co-curing agent and structure modifier for sebacic acid (SA) cured diglycidyl ether of bisphenol A (DGEBA) epoxy vitrimer to tailor the mechanical properties of epoxy vitrimers with 1, 5, 7-triazabicylo[4.4.0]dec-5-ene (TBD) as a transesterification catalyst. The glass transition temperature (Tg) of vitrimer increased gradually with the increase in CHDA content. Vitrimers behaved from elastomer to tough and hard plastics were successfully achieved by varying the feed ratio of CHDA to SA. Both the Young's modulus and storage modulus increased apparently with the increase in CHDA content. Stress relaxation measurement indicated that more prominent stress relaxation occurred at elevated temperatures and the stress relaxation decreased with the increase of CHDA content due to the reduced mobility of the vitrimer backbone. The vitrimers showed excellent recyclability as evidenced by the unchanged gel fraction and mechanical properties after compression molded for several times. With tunable mechanical properties, the epoxy vitrimers may find extensive potential applications.
  • 加载中
    1. [1]

      Montarnal D., Capelot M., Tournilhac F., Leibler L.. Silica-like malleable materials from permanent organic networks[J]. Science, 2011,334(6058):965-968. doi: 10.1126/science.1212648

    2. [2]

      Brutman J. P., Delgado P. A., Hillmyer M. A.. Polylactide vitrimers[J]. ACS Macro Lett., 2014,3(7):607-610. doi: 10.1021/mz500269w

    3. [3]

      Maeda T., Otsuka H., Takahara A.. Dynamic covalent polymers:reorganizable polymers with dynamic covalent bonds[J]. Prog. Polym. Sci., 2009,34(7):581-604. doi: 10.1016/j.progpolymsci.2009.03.001

    4. [4]

      Wojtecki R. J., Meador M. A., Rowan S. J.. Using the dynamic bond to access macroscopicallyresponsive structurally dynamic polymers[J]. Nat. Mater., 2011,10(1):14-27. doi: 10.1038/nmat2891

    5. [5]

      Azcune I., Odriozola I.. Aromatic disulfide crosslinks in polymer systems:self-healing, reprocessability, recyclability and more[J]. Eur. Polym. J., 2016,84:147-160. doi: 10.1016/j.eurpolymj.2016.09.023

    6. [6]

      Kloxin C. J., Scott T. F., Adzima B. J., Bowman C. N.. Covalent adaptable networks (CANs):aunique paradigm in cross-linked polymers[J]. Macromolecules, 2010,43(6):2643-2653. doi: 10.1021/ma902596s

    7. [7]

      Kloxin C. J., Bowman C. N.. Covalent adaptable networks:smart, reconfigurable and responsive network systems[J]. Chem. Soc. Rev., 2013,42(17):7161-7173. doi: 10.1039/C3CS60046G

    8. [8]

      Adzima B. J., Aguirre H. A., Kloxin C. J., Scott T. F., Bowman C. N.. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network[J]. Macromolecules, 2008,41(23):9112-9117. doi: 10.1021/ma801863d

    9. [9]

      Chen X., Dam M. A., Ono K., Mal A., Shen H., Nutt S. R., Sheran K., Wudl F.. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002,295(5560):1698-1702. doi: 10.1126/science.1065879

    10. [10]

      Zhang J., Niu Y., Huang C., Xiao L., Chen Z., Yang K., Wang Y.. Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction[J]. Polym. Chem., 2012,3(6):1390-1393. doi: 10.1039/c2py20028g

    11. [11]

      Tasdelen M. A.. Diels-Alder "click" reactions:recent applications in polymer and material science[J]. Polym. Chem., 2011,2(10):2133-2145. doi: 10.1039/c1py00041a

    12. [12]

      Johnson L. M., Ledet E., Huffman N. D., Swarner S. L., Shepherd S. D., Durham P. G., Rothrock G. D.. Controlled degradation of disulfide-based epoxy thermosets for extreme environments[J]. Polymer, 2015,64:84-92. doi: 10.1016/j.polymer.2015.03.020

    13. [13]

      Ruiz de Luzuriaga A., Martin R., Markaide N., Rekondo A., Cabanero G., Rodriguez J., Odriozola I.. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Mater. Horiz., 2016,3(3):241-247. doi: 10.1039/C6MH00029K

    14. [14]

      Ruiz de Luzuriaga A., Matxain J. M., Ruiperez F., Martin R., Asua J. M., Cabanero G., Odriozola I.. Transient mechanochromism in epoxy vitrimer composites containing aromatic disulfide crosslinks[J]. J. Mater. Chem. C, 2016,4(26):6220-6223. doi: 10.1039/C6TC02383E

    15. [15]

      Xu C. H., Cao L. M., Lin B. F., Liang X. Q., Chen Y. K.. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization[J]. ACS Appl. Mater. Interfaces, 2016,8(27):17728-17737. doi: 10.1021/acsami.6b05941

    16. [16]

      Capelot M., Montarnal D., Tournilhac F., Leibler L.. Metal-catalyzed transesterification for healing and assembling of thermosets[J]. J. Am. Chem. Soc., 2012,134(18):7664-7667. doi: 10.1021/ja302894k

    17. [17]

      Fortman D. J., Brutman J. P., Cramer C. J., Hillmyer M. A., Dichtel W. R.. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers[J]. J. Am. Chem. Soc., 2015,137(44):14019-14022. doi: 10.1021/jacs.5b08084

    18. [18]

      Taynton P., Yu K., Shoemaker R. K., Jin Y., Qi H. J., Zhang W.. Heat-or water-driven malleability in a highly recyclable covalent network polymer[J]. Adv. Mater., 2014,26(23):3938-3942. doi: 10.1002/adma.201400317

    19. [19]

      Denissen W., Winne J. M., Du Prez F. E.. Vitrimers:permanent organic networks with glass-like fluidity[J]. Chem. Sci., 2016,7(1):30-38. doi: 10.1039/C5SC02223A

    20. [20]

      Gu H., Ma C., Gu J., Guo J., Yan X., Huang J., Zhang Q., Guo Z.. An overview of multifunctional epoxy nanocomposites[J]. J. Mater. Chem. C, 2016,4(25):5890-5906. doi: 10.1039/C6TC01210H

    21. [21]

      Auvergne R., Caillol S., David G., Boutevin B., Pascault J. P.. Biobased thermosetting epoxy:present and future[J]. Chem. Rev., 2014,114(2):1082-1115. doi: 10.1021/cr3001274

    22. [22]

      Wan J., Zhao J., Gan B., Li C., Molina-Aldareguia J., Zhao Y., Pan Y. T., Wang D. Y.. Ultrastiff biobased epoxy resin with high Tg and low permittivity:from synthesis to properties[J]. ACS Sustain. Chem. Eng., 2016,4(5):2869-2880. doi: 10.1021/acssuschemeng.6b00479

    23. [23]

      Yang S., Chen J. S., Körner H., Breiner T., Ober C. K., Poliks M. D.. Reworkable epoxies:thermosets with thermally cleavable groups for controlled network breakdown[J]. Chem. Mater., 1998,10(6):1475-1482. doi: 10.1021/cm970667t

    24. [24]

      Pei Z., Yang Y., Chen Q., Terentjev E. M., Wei Y., Ji Y.. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds[J]. Nat. Mater., 2014,13(1):36-41. doi: 10.1038/nmat3812

    25. [25]

      Yang Y., Pei Z., Zhang X., Tao L., Wei Y., Ji Y.. Carbon nanotube-vitrimer composite for facile and efficient photo-welding of epoxy[J]. Chem. Sci., 2014,5(9):3486-3492. doi: 10.1039/C4SC00543K

    26. [26]

      Chabert E., Vial J., Cauchois J. P., Mihaluta M., Tournilhac F.. Multiple welding of long fiber epoxy vitrimer composites[J]. Soft Matter, 2016,12(21):4838-4845. doi: 10.1039/C6SM00257A

    27. [27]

      Demongeot A., Mougnier S. J., Okada S., Soulie-Ziakovic C., Tournilhac F.. Coordination and catalysis of Zn2+ in epoxy-based vitrimers[J]. Polym. Chem., 2016,7(27):4486-4493. doi: 10.1039/C6PY00752J

    28. [28]

      Imbernon L., Norvez S., Leibler L.. Stress relaxation and self-adhesion of rubbers with exchangeable links[J]. Macromolecules, 2016,49(6):2172-2178. doi: 10.1021/acs.macromol.5b02751

    29. [29]

      Legrand A., Soulie-Ziakovic C.. Silica-epoxy vitrimer nanocomposites[J]. Macromolecules, 2016,49(16):5893-5902. doi: 10.1021/acs.macromol.6b00826

    30. [30]

      Pei Z., Yang Y., Chen Q., Wei Y., Ji Y.. Regional shape control of strategically assembled multishape memory vitrimers[J]. Adv. Mater., 2016,28(1):156-160. doi: 10.1002/adma.201503789

    31. [31]

      Yang Y., Pei Z., Li Z., Wei Y., Ji Y.. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold[J]. J. Am. Chem. Soc., 2016,138(7):2118-2121. doi: 10.1021/jacs.5b12531

    32. [32]

      Yang Z., Wang Q., Wang T.. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites[J]. ACS Appl. Mater. Interfaces, 2016,8(33):21691-21699. doi: 10.1021/acsami.6b07403

    33. [33]

      Altuna F. I., Hoppe C. E., Williams R. J. J.. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid[J]. RSC Adv., 2016,6(91):88647-88655. doi: 10.1039/C6RA18010H

    34. [34]

      Zeng J. B., Li Y. D., Zhu Q. Y., Yang K. K., Wang X. L., Wang Y. Z.. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks[J]. Polymer, 2009,50(5):1178-1186. doi: 10.1016/j.polymer.2009.01.001

    35. [35]

      Vinogradov G. V., Isayev A. I., Katsyutsevich E. V.. Critical regimes of oscillatory deformation of polymeric systems above glass transition and melting temperatures[J]. J. Appl. Polym. Sci., 1978,22(3):727-749. doi: 10.1002/app.1978.070220313

    36. [36]

      Denissen W., Rivero G., Nicolay R., Leibler L., Winne J. M., Du Prez F. E.. Vinylogous urethane vitrimers[J]. Adv. Funct. Mater., 2015,25(16):2451-2457. doi: 10.1002/adfm.201404553

    37. [37]

      Capelot M., Unterlass M. M., Tournilhac F., Leibler L.. Catalytic control of the vitrimer glass transition[J]. ACS Macro Lett., 2012,1(7):789-792. doi: 10.1021/mz300239f

  • 加载中
    1. [1]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    2. [2]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    3. [3]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    4. [4]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    7. [7]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    8. [8]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    9. [9]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    10. [10]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    11. [11]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    12. [12]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    13. [13]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    14. [14]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    15. [15]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    16. [16]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    17. [17]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    18. [18]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    19. [19]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(0)
  • Abstract views(806)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return