Citation: Yi-Gang Luan, Xiao-A Zhang, Sheng-Ling Jiang, Jian-Huan Chen, Ya-Fei Lyu. Self-Healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 584-591. doi: 10.1007/s10118-018-2025-y shu

Self-Healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide

  • Corresponding author: Ya-Fei Lyu, ylu623@hotmail.com
  • Received Date: 1 August 2017
    Accepted Date: 25 August 2017
    Available Online: 18 January 2018

  • A self-healing supramolecular polymer composite (HSP-GO) was designed and prepared via incorporation of modified graphene oxide to hyperbranched polymer by hydrogen-bonding interactions. The polymer matrix based on amino-terminated hyperbranched polymer (HSP-NH2) was synthesized by carboxylation, Curtius rearrangement, and amination of hydroxyl-terminated hyperbranched polyester (HP-OH), while the modified graphene oxide was prepared by transformation of hydroxyl to isocyanate and further to carbamate ester. Spectroscopic methods were utilized to characterize the obtained polymer composites. Stress-strain test was selected to carefully study the self-healing property of HSP-GO. It is found that a small amount of modified graphene oxide (up to 2 wt%) improves the glass transition temperature (Tg), tensile strength, Young's modulus, and self-healing efficiency of the polymer composites. After healed at room temperature for 10 min, the addition of modified graphene oxide improves the self-healing efficiency to 37% of its original tensile strength. The experiment result shows that the self-healing efficiency is related to the density of hydrogen bonding site and the molecular movement.
  • 加载中
    1. [1]

      Blaiszik B. J., Kramer S. L. B., Olugebefola S. C., Moore J. S., Sottos N. R., White S. R.. Self-healing polymers and composites[J]. Annu. Rev. Mater. Res., 2010,40:179-211. doi: 10.1146/annurev-matsci-070909-104532

    2. [2]

      Hager M. D., Greil P., Leyens C., Zwaag S. V. D.. Self-healing materials[J]. Adv. Mater., 2010,22(47):5424-5430. doi: 10.1002/adma.201003036

    3. [3]

      Wojtecki R. J., Meador M. A., Rowan S. J.. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers[J]. Nat. Mater., 2011,10(1):14-27. doi: 10.1038/nmat2891

    4. [4]

      Chen X., Dam M. A., Ono K., Mal A., Shen H., Nutt S. R., Sheran K., Wudl F.. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002,295(5560):1698-1702. doi: 10.1126/science.1065879

    5. [5]

      Burattini S., Greenland B. W., Merino D. H., Weng W., Seppala J., Colquhoun H. M., Hayes W., Mackay M. E., Hamley L. W., Rowan S. J.. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions[J]. J. Am. Chem. Soc., 2010,132(34):12051-12058. doi: 10.1021/ja104446r

    6. [6]

      Klukovich H. M., Kean Z. S., Iacono S. T., Craig S. L.. Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers[J]. J. Am. Chem. Soc., 2011,133(44):17882-17888. doi: 10.1021/ja2074517

    7. [7]

      Zheng P., Mccarthy T. J.. A surprise from, 1954:siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism[J]. J. Am. Chem. Soc., 2012,134(4):2024-2027. doi: 10.1021/ja2113257

    8. [8]

      Chen X., Wudl F., Mal A. K., Shen H., Nuut S. R.. New thermally remendable highly cross-linked polymeric materials[J]. Macromolecules, 2003,36(6):1802-1807. doi: 10.1021/ma0210675

    9. [9]

      Liu F., Li F., Deng G., Chen Y., Zhang B., Zhang J., Liu C. Y.. Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and self-healing properties[J]. Macromolecules, 2012,45(3):1636-1645. doi: 10.1021/ma202461e

    10. [10]

      Ghosh B., Urban M. W.. Self-repairing oxetane-substituted chitosan polyurethane networks[J]. Science, 2009,323(5920):1458-1460. doi: 10.1126/science.1167391

    11. [11]

      Burnworth M., Tang L., Kumpfer J. R., Duncan A. J., Beyer F. L., Fiore G. L., Rowan S. J., Weder C.. Optically healable supramolecular polymers[J]. Nature, 2011,472(7343):334-338. doi: 10.1038/nature09963

    12. [12]

      Ling J., Rong M. Z., Zhang M. Q.. Effect of molecular weight of PEG soft segments on photo-stimulated self-healing performance of coumarin functionalized polyurethanes[J]. Chinese J. Polym. Sci., 2014,32(10):1286-1297. doi: 10.1007/s10118-014-1522-x

    13. [13]

      Lehn J. M.. Dynamers:dynamic molecular and supramolecular polymers[J]. Prog. Polym. Sci., 2005,30:814-831. doi: 10.1016/j.progpolymsci.2005.06.002

    14. [14]

      Herbst F., Döhler D., Michael P., Binder W. H.. Self-healing polymers via supramolecular forces[J]. Macromol. Rapid Commun., 2013,34(3):203-220. doi: 10.1002/marc.v34.3

    15. [15]

      Cuthbert T. J., Jadischke J. J., Bruyn J. R. D., Ragogna P. J., Gillies E. R.. Self-healing polyphosphonium ionic networks[J]. Macromolecules, 2017,50:5253-5260. doi: 10.1021/acs.macromol.7b00955

    16. [16]

      Li Y., Li J., Chen B., Chen Q., Zhang G., Liu S., Ge Z.. Polyplex micelles with thermoresponsive heterogeneous coronasn for prolonged blood retention and promoted gene transfection[J]. Biomacromolecules, 2014,15(8):2914-2923. doi: 10.1021/bm500532x

    17. [17]

      Wang C., Zhang G., Liu G., Hu J., Liu S.. Photo-and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin[J]. J. Control. Release, 2017,259:149-159. doi: 10.1016/j.jconrel.2016.11.007

    18. [18]

      Zeng Q., Desai M. S., Jin H. E., Lee J. H., Chang J., Lee S. W.. Self-healing elastin-bioglass hydrogels[J]. Biomacromolecules, 2016,17(8):2619-2625. doi: 10.1021/acs.biomac.6b00621

    19. [19]

      Brocorens P., Linares M., Guyardduhayon C., Guillot R., Andrioletti B., Suhr D., Benjiamin I., Lazzaroni R., Bouteiller L.. Conformational plasticity of hydrogen bonded bis-urea supramolecular polymers[J]. J. Phys. Chem. B, 2013,117(17):5379-5386. doi: 10.1021/jp401915y

    20. [20]

      van Gemert G. M. L., Peeters J. W., Söntjens S. H. M., Janssen H. M., Bosman A. W.. Self-healing supramolecular polymers in action[J]. Macromol. Chem. Phys., 2012,213:234-242. doi: 10.1002/macp.201100559

    21. [21]

      Cordier P., Tournilhac F., Soulie-Ziakovi C., Leibler L.. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008,451(7181):977-980.  

    22. [22]

      Wang C., Wu H., Chen Z., McDowell M. T., Cui Y., Bao Z.. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nat. Chem., 2013,5:1042-1048. doi: 10.1038/nchem.1802

    23. [23]

      Lopez J., Chen Z., Wang C., Andrews S. C., Cui Y., Bao Z.. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes[J]. ACS Appl. Mater. Interfaces, 2016,8:2318-2324. doi: 10.1021/acsami.5b11363

    24. [24]

      Tee B. C., Wang C., Allen R., Bao Z.. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications[J]. Nat. Nanotechnol., 2012,7(12):825-832. doi: 10.1038/nnano.2012.192

    25. [25]

      Wang G., Yang J., Park J., Gou X., Wang B., Liu H., Yao J.. Facile synthesis and characterization of graphene nanosheets[J]. J. Phys. Chem. C, 2008,112:8192-8195. doi: 10.1021/jp710931h

    26. [26]

      Wang G., Shen X., Yao J., Park J.. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009,47:2049-2053. doi: 10.1016/j.carbon.2009.03.053

    27. [27]

      Pei S., Cheng H. M.. The reduction of graphene oxide[J]. Carbon, 2012,50(9):3210-3228. doi: 10.1016/j.carbon.2011.11.010

    28. [28]

      Wang C., Liu N., Allen R., Tok J. B. H., Wu Y., Zhang F., Chen Y., Bao Z.. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide[J]. Adv. Mater., 2013,25:5785-5790. doi: 10.1002/adma.v25.40

    29. [29]

      Li J., Zhang G., Deng L., Zhao S., Gao Y., Jiang K., Sun R., Wong C.. In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry[J]. J. Mater. Chem. A, 2014,2(48):20642-20649. doi: 10.1039/C4TA04941A

    30. [30]

      Xu C., Wu X., Zhu J., Wang X.. Synthesis of amphiphilic graphite oxide[J]. Carbon, 2008,46(2):386-389. doi: 10.1016/j.carbon.2007.11.045

    31. [31]

      Zhang A., Yang L., Lin Y., Yan L., Lu H., Wang L.. Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes:synthesis and characterization[J]. J. Appl. Polym. Sci., 2013,129(5):2435-2442. doi: 10.1002/app.38832

  • 加载中
    1. [1]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    2. [2]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    3. [3]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    4. [4]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    5. [5]

      Salim UllahJianliang ShenHong-Tao Xu . Innovative self-healing conductive organogel: Pioneering the future of electronics. Chinese Chemical Letters, 2025, 36(3): 110553-. doi: 10.1016/j.cclet.2024.110553

    6. [6]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    7. [7]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    8. [8]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    9. [9]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    12. [12]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    13. [13]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    17. [17]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    18. [18]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    19. [19]

      Yan GaoZi-Lin SongShuang YuXiu-Li ZhaoDa-Wei ChenMing-Xi Qiao . Enhanced ferroptosis by a nanoparticle mimicking hemoglobin coordinate pattern with self-supplying hydrogen peroxide. Chinese Chemical Letters, 2025, 36(5): 110097-. doi: 10.1016/j.cclet.2024.110097

    20. [20]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

Metrics
  • PDF Downloads(0)
  • Abstract views(1009)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return