Citation: Morteza Khalina, Mohammad Hosain Beheshty, Ali Salimi. Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 632-640. doi: 10.1007/s10118-018-2022-1 shu

Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness

  • Corresponding author: Mohammad Hosain Beheshty, M.Beheshty@ippi.ac.ir
  • Received Date: 2 June 2017
    Accepted Date: 21 August 2017
    Available Online: 26 January 2018

  • The physical and mechanical properties of blends composed of two kinds of epoxy resins of different numbers of functional groups and chemical structure were studied. One of the resins was a bifunctional epoxy resin based on diglycidyl ether of bisphenol A and the other resin was a multifunctional epoxy novolac resin. Attempt was made to establish a correlation between the structure and the final properties of cured epoxy samples. The blend samples containing high fraction of multifunctional epoxy resin showed higher solvent resistance and lower flexural modulus compared with the blends containing high fraction of bifunctional epoxy resin. The epoxy blends showed significantly higher ductility under bending test than the neat epoxy samples. The compressive modulus and strength increased with increasing of multifunctional epoxy in the samples, probably due to enhanced cross-link density and molecular weight. Morphological analysis revealed the presence of inhomogeneous sub-micrometer structures in all samples. The epoxy blends exhibited significantly higher fracture toughness (by 23% at most) compared with the neat samples. The improvement of the fracture toughness was attributed to the stick-slip mechanism for crack growth and activation of shear yielding and plastic deformation around the crack growth trajectories for samples with higher content of bifunctional epoxy resin as evidenced by fractography study.
  • 加载中
    1. [1]

      Lee, H. ; Neville. K. "Handbook of epoxy resins", McGraw Hill, New York, 1982, p. 5-1

    2. [2]

      May, C. A. "Epoxy resins chemistry and technology", 2nd edn. Marcel Dekker, New York, 1988, p. 551

    3. [3]

      Hamerton, I. "Recent developments in epoxy resins", Rapra Review Reports, Shawbury, 1996, 8(7), 58-63.

    4. [4]

      Pham, H. A. Q. ; Marks, M. J. Epoxy resins, in, "Encyclopedia of Polymer Science and Technology", Vol. 9, 3rd Edition, John Wiley & Sons. 2010, p. 678.

    5. [5]

      Ratna D., Banthia A.K.. Rubber toughened epoxy[J]. Macromol. Res., 2004,12(1):11-21. doi: 10.1007/BF03218989

    6. [6]

      Ikram S., Munir A.. Mechanical and thermal properties of chemically modified epoxy resin[J]. Open J. Synth. Theory Appl., 2012,1(3):36-43. doi: 10.4236/ojsta.2012.13007

    7. [7]

      Akbari R., Beheshty M. H., Shervin M.. Toughening of dicy-andiamide-cured DGEBA-based epoxy resins by CTBN liquid[J]. Iran. Polym. J., 2013,22(5):313-324. doi: 10.1007/s13726-013-0130-x

    8. [8]

      Jamshidi H., Akbari R., Beheshty M. H.. Toughening of dicyandiamide-cured DGEBA-based epoxy resins using flexible diamine rubber[J]. Iran. Polym. J., 2015,24(5):399-410. doi: 10.1007/s13726-015-0332-5

    9. [9]

      Hwang J. F., Manson J. A., Hertzberg R. W., Miller G. A., Sperling L. H.. Structure-property relationship in rubber-toughened epoxies[J]. Polym. Eng. Sci., 1989,29(20):1466-1476. doi: 10.1002/(ISSN)1548-2634

    10. [10]

      Saadati P., Baharvand H., Rahimi A., Morshedian J.. Effect of modified liquid rubber on increasing toughness of epoxy resins[J]. Iran. Polym. J., 2005,14(7):637-646.  

    11. [11]

      Martinez I., Martin M. D., Eceiza A., Oyanguren P., Mondragon I.. Phase separation in polysulfone-modified epoxy mixtures:relationships between curing conditions, morphology and ultimate behavior[J]. Polymer, 2000,41(3):1027-1035. doi: 10.1016/S0032-3861(99)00238-4

    12. [12]

      Giannotti M. I., Bernal C. R., Oyanguren P. A., Galante M. J.. Morphology and fracture properties relationship of epoxy-diamine systems simultaneously modified with polysulfone and poly(ether imide)[J]. Polym. Eng. Sci., 2005,45(9):1312-1318. doi: 10.1002/(ISSN)1548-2634

    13. [13]

      Li H., Gan W., Zhao L., Li S.. Studies on the phase separation of apolyetherimide modified epoxy resin.Ⅵ. Effect of surface energy on reaction-induced phase separation of epoxy resinmodified with polyetherimide[J]. J. Macromol. Sci., Part A Pure Appl. Chem. A, 2003,40(8):833-846. doi: 10.1081/MA-120022274

    14. [14]

      Andrés M. A., Garmendia J., Valea A., Eceiza A., Mondragon I.. Fracture toughness of epoxy resins modified with poly-ethersulfone:influence of stoichiometry on themorphology ofthe mixtures[J]. J. Appl. Polym. Sci., 1998,69(1):183-191. doi: 10.1002/(ISSN)1097-4628

    15. [15]

      Grishchuk S., Gryshchuk O., Weber M., Karger-Kocsis J.. Structure and toughness of polyethersulfone (PESU)-modifiedanhydride-cured tetrafunctional epoxy resin:effect of PESU molecular mass[J]. J. Appl. Polym. Sci., 2012,123(2):1193-1200. doi: 10.1002/app.34610

    16. [16]

      Ma S. Q., Liu W. Q., Hu C. H., Wang Z. F.. Modification of epoxy resins with polyether-g-polysiloxanes[J]. Iran. Polym. J., 2010,19(3):185-196.  

    17. [17]

      Tong J. D., Bai R. K., Zou Y. F., Pan C. Y., Ichimura S.. Flexibility improvement of epoxy-resin by using polysiloxanes and theirderivatives[J]. J. Appl. Polym. Sci., 1994,52(10):1373-1381. doi: 10.1002/app.1994.070521003

    18. [18]

      Zhao F., Sun Q. C., Fang D. P., Yao K. D.. Preparation and properties of polydimethylsiloxane-modified epoxy resins[J]. J. Appl. Polym. Sci., 2000,76(11):1683-1690. doi: 10.1002/(ISSN)1097-4628

    19. [19]

      Mahnam N., Beheshty M. H., Barmar M., Shervin M.. Modification of dicyandiamide-cured epoxy resin with different molecular weight of polyethylene glycol and its effect on epoxy/glass prepreg characteristic[J]. High Perform. Polym., 2013,25(6):705-713. doi: 10.1177/0954008313483151

    20. [20]

      Sprenger S.. Epoxy resins modified with elastomers and surface-modified silica nanoparticles[J]. Polymer, 2013,54(18):4790-4797. doi: 10.1016/j.polymer.2013.06.011

    21. [21]

      Lee J., Yee A. F.. Fracture of glass bead/epoxy composites:on micro-mechanical deformations[J]. Polymer, 2000,41(23):8363-8373. doi: 10.1016/S0032-3861(00)00187-7

    22. [22]

      Sahoo N. G., Rana S., Cho J. W., Chan S. H., Li L.. Polymer nanocomposites based on functionalized carbon nanotubes[J]. Prog. Polym. Sci., 2010,35(7):837-867. doi: 10.1016/j.progpolymsci.2010.03.002

    23. [23]

      Rahman M. M., Hosur M., Zainuddin S., Jajam K. C., Tippur H. V., Jee-lani. S.. Mechanical characterization of epoxy compositesmodified with reactive polyol diluents and randomly-oriented amino-functionalized MWCNTs[J]. Polym. Test., 2012,31(8):1083-1093. doi: 10.1016/j.polymertesting.2012.08.010

    24. [24]

      Pearson R. A., Yee A. F.. Toughening mechanisms in elastomer-modified epoxies:Part 3:The effect of crosslink density[J]. J. Mater. Sci., 1989,24(7):2571-2580. doi: 10.1007/BF01174528

    25. [25]

      Shaw S. J., Tod D. A.. The effects of cure conditions on a rubber-modified epoxy adhesive[J]. J. Adhesion., 1989,28(4):231-246. doi: 10.1080/00218468908030172

    26. [26]

      Levita G., Petris S. D., Marchetti A., Lazzeri A.. Crosslink density and fracture toughness of epoxy resisn, J[J]. Mater. Sci., 1991,26(9):2348-2352. doi: 10.1007/BF01130180

    27. [27]

      Liu S. H., Nauman E. B.. Effects of crosslinking density on the toughening mechanisms of rubber-modified thermosets[J]. J. Mater. Sci., 1991,26(24):6581-6590. doi: 10.1007/BF02402649

    28. [28]

      Bradley, W. L. ; Schultz, W. ; Corelto, C. ; Komatsu, S. "The synergistic effect of crosslink density and rubber additions on the fracture toughness of polymers, In Toughened Plastics", ed. by Riew C. K. ; Kinloch, A. J., ACS, Washington, 1993, p. 317.

    29. [29]

      Wang H. H., Chen J. C.. Modification and compatibility of epoxy resin with hydroxyl terminated or amine terminated polyuretanes[J]. Polym. Eng. Sci., 1995,35(18):1468-1475. doi: 10.1002/(ISSN)1548-2634

    30. [30]

      Kishi H., Shi Y. B., Huang J., Yee A. F.. Shear ductility and toughenability study of highly cross-linked epoxy/polyethersulphone, J[J]. Mater. Sci., 1998,32(3):3479-3488.  

    31. [31]

      Franco M., Mondragon I., Bucknall C. B.. Blends of epoxy resin with amine-terminated polyoxypropylene elastomer:Morphology and properties[J]. J. Appl. Polym. Sci., 1999,72(3):427-434. doi: 10.1002/(ISSN)1097-4628

    32. [32]

      Aizpurua B., Franco M., Corcuer M. A., Riccardi C. C., Mondragon I.. Chemorheology and ultimate behavior of epoxy-amine mixtures modified with a liquid oligomer[J]. J. Appl. Polym. Sci., 2000,76(8):1269-1279. doi: 10.1002/(ISSN)1097-4628

    33. [33]

      Arias M. L., Frontini P. M., Williams R. J. J.. Analysis of the damage zone around the crack tip for two rubber-modified epoxy matrices exhibiting different toughenability[J]. Polymer, 2003,44(5):1537-1546. doi: 10.1016/S0032-3861(02)00829-7

    34. [34]

      Kang B. U., Jho J. Y., Kim J., Lee S. S., Park , Choe C. R.. Effect of molecular weight between crosslinks on the fracture behavior of rubber-toughened epoxy adhesives[J]. J. Appl. Polym. Sci., 2001,79(1):38-48. doi: 10.1002/(ISSN)1097-4628

    35. [35]

      Kishi H., Naitou T., Matsuda S., Murakami A., Muraji Y., Nakagawa Y.. Mechanical oroperties and inhomogeneous nanostructures of dicyandiamide-cured epoxy resins[J]. J. Polym. Sci., Part B:Polym. Phys., 2007,45(12):1425-1434. doi: 10.1002/(ISSN)1099-0488

    36. [36]

      Zhang D. H., Jia D. M., Huang X. B.. Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin[J]. Front. Chem. Eng. China, 2007,1(4):349-354. doi: 10.1007/s11705-007-0063-z

    37. [37]

      Mc Aninch I. M., Palmese G. R., Len hart J.L., Scala J. J. L.. Epoxy-amine networks with varying epoxy polydispersity[J]. J. Appl. Polym. Sci., 2015,132(8):41503-41512.  

    38. [38]

      Kishi H., Kunimitsu Y., Nakashima Y., Abe T., Imade J., Oshita S., Morishita Y., Asada M.. Control of nanostructures generated in epoxy matrices blended with PMMA-b-PnBA-b-PMMA triblock copolymers[J]. Express Polym. Lett., 2015,9(1):23-35. doi: 10.3144/expresspolymlett.2015.4

    39. [39]

      Acebo C., Alorda M., Ferrando F., Fernández-Francos X., Serra A., Morancho J. M., Salla J. M., Ramis X.. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine) cores of different molecular weight and poly(ε-caprolactone) arms[J]. Express Polym. Lett., 2015,9(9):809-823. doi: 10.3144/expresspolymlett.2015.76

    40. [40]

      Thomas R., Abraham J., Thomas S., Thomas S.. Influence of carboxyl-terminated (butadiene-co-acrylonitrile) loading on the mechanical and thermal properties of cured epoxy blends[J]. J. Polym. Sci., Part B:Polym. Phys., 2004,42(13):2531-2544. doi: 10.1002/(ISSN)1099-0488

    41. [41]

      Yang G., Fu S., Yang J. P.. Preparation and mechanical properties of modified epoxy resins with flexible diamines[J]. Polymer, 2007,48(1):302-310. doi: 10.1016/j.polymer.2006.11.031

    42. [42]

      Yang G., Zheng B., Yang J. P., Xu G. S., Fu S. Y.. Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone)[J]. J. Polym. Sci., Part A:Polym. Chem., 2008,46(2):612-624. doi: 10.1002/(ISSN)1099-0518

    43. [43]

      Yang J. P., Chen Z. K., Yang G., Fu S. Y., Ye L.. Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer[J]. Polymer, 2008,49(13):3168-3175.  

    44. [44]

      Chen Z. K., Yang G., Yang J. P., Fu S. Y., Ye L., Huang Y. G.. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether[J]. Polymer, 2009,50(19):4753-4759. doi: 10.1016/j.polymer.2009.08.001

    45. [45]

      Zhao Y., Chen Z. K., Liu Y., Xiao H. M., Feng Q. P., Fu S. Y.. Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber[J]. Compos:Part A., 2013,55:178-187. doi: 10.1016/j.compositesa.2013.09.005

    46. [46]

      Liu. , Yang G., Xiao H. M., Feng Q. P., Fu S. Y.. Mechanical properties of cryogenic epoxy adhesives:effects of mixed curing agent content[J]. Int. J. Adhes. Adhes., 2013,41:113-118. doi: 10.1016/j.ijadhadh.2012.10.006

    47. [47]

      Feng Q. P., Yang J. P., Liu Y. I., Xiao H., Fu S.. Simultaneously enhanced cryogenic tensile strength, ductility and impact resistance of epoxy resins by polyethylene glycol[J]. J. Mater. Sci. Technol., 2014,30(1):90-96. doi: 10.1016/j.jmst.2013.08.016

    48. [48]

      Halawani N., Augé J. L., Morel H., Gain O., Pruvost S.. Electrical, thermal and mechanical properties of poly-etherimide epoxy-diamine blend[J]. Compos. Part B, 2017,110:530-541. doi: 10.1016/j.compositesb.2016.11.022

    49. [49]

      Cheng X., Wu Q., Morgan S. E., Wiggins J. S.. Morphologies and mechanical properties of polyethersulfone modified epoxy blends through multifunctional epoxy composition[J]. J. Appl. Polym. Sci., 2017,134(18):44775-44785.  

    50. [50]

      Karger-Kocsis J., Friedrich K.. Fatigue crack propagation and related failure in modified, anhydride-cured epoxy resins[J]. Colloid. Polym. Sci., 1992,270(6):549-562. doi: 10.1007/BF00658286

    51. [51]

      Karger-Kocsis J., Friedrich K.. Microstructure-related fracture toughness and fatigue crack growth behavior in toughened, anhydride-cured epoxy resins[J]. Compos. Sci. Technol., 1993,48(1):263-272.  

    52. [52]

      Marks M. J., Snelgrove R. V.. Effect of conversion on the structure-property relationships of amine-cured epoxy thermosets[J]. ACS Appl. Mater. Interfaces, 2009,1(4):921-926. doi: 10.1021/am900030u

    53. [53]

      Pramanik M., Fowler E. W., Rawlins J. W.. Another look at epoxy thermosets correlating structure with mechanical properties[J]. Polym. Eng. Sci., 2014,54(9):1990-2004. doi: 10.1002/pen.v54.9

  • 加载中
    1. [1]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    2. [2]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    3. [3]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    4. [4]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    5. [5]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    6. [6]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    9. [9]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    10. [10]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    11. [11]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    12. [12]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    13. [13]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    14. [14]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    15. [15]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    16. [16]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    17. [17]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

Metrics
  • PDF Downloads(0)
  • Abstract views(840)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return