2015 Volume 33 Issue 1
2015, 33(1): 1-13
doi: 10.1007/s10118-015-1569-3
Abstract:
The present work aimed to synthesize a new interesting series of thiazole based polyamides containing diarylidenecyclohexanone moiety 5a-5f using low temperature solution polycondensation technique. The new polymers were synthesized by the reaction of thiazole based monomer namely, bis(2-aminothiazol-4-ylbenzylidene)cyclohexanone 3 with different aliphatic and aromatic diacid chlorides using NMP, and in the presence of anhydrous LiCl as catalyst. Adipoyl, sebacoyl, oxaloyl, terephthaloyl, isophthaloyl dichlorides and biphenyl dicarbonyl dichloride were used as diacid chlorides. The structure of the model compound 4 as well as the new polymers was confirmed by correct elemental and spectral analyses. The thermal properties of those polymers were evaluated by TGA and DTG measurements and correlated to their structural units, beside X-ray diffraction analysis, solubility and viscometry measurements. The inherent viscosities for the synthesized polymers were in the range 0.6-1.03 dL/g. On the other hand the corrosion inhibitive properties of monomer 3 as well as polyamides 5d and 5f as selected examples were carried out on carbon-steel in 0.5 mol/L H2SO4 at 40 ℃. The calculated inhibition efficiency (IE%) for polymer 5d was in the range (82 6)% in all selected concentrations. The best value of IE% was obtained at 1 mg/L to reach 98.24% for polymer 5d and at 0.5 mg/L to reach 87.75% for polymer 5f.
The present work aimed to synthesize a new interesting series of thiazole based polyamides containing diarylidenecyclohexanone moiety 5a-5f using low temperature solution polycondensation technique. The new polymers were synthesized by the reaction of thiazole based monomer namely, bis(2-aminothiazol-4-ylbenzylidene)cyclohexanone 3 with different aliphatic and aromatic diacid chlorides using NMP, and in the presence of anhydrous LiCl as catalyst. Adipoyl, sebacoyl, oxaloyl, terephthaloyl, isophthaloyl dichlorides and biphenyl dicarbonyl dichloride were used as diacid chlorides. The structure of the model compound 4 as well as the new polymers was confirmed by correct elemental and spectral analyses. The thermal properties of those polymers were evaluated by TGA and DTG measurements and correlated to their structural units, beside X-ray diffraction analysis, solubility and viscometry measurements. The inherent viscosities for the synthesized polymers were in the range 0.6-1.03 dL/g. On the other hand the corrosion inhibitive properties of monomer 3 as well as polyamides 5d and 5f as selected examples were carried out on carbon-steel in 0.5 mol/L H2SO4 at 40 ℃. The calculated inhibition efficiency (IE%) for polymer 5d was in the range (82 6)% in all selected concentrations. The best value of IE% was obtained at 1 mg/L to reach 98.24% for polymer 5d and at 0.5 mg/L to reach 87.75% for polymer 5f.
2015, 33(1): 14-22
doi: 10.1007/s10118-015-1570-x
Abstract:
Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride (VDC) with an acrylate, namely methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA) or 2-ethylhexyl acrylate (EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twice-painting technique was that the acidic latex solution was adjusted to pH 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that (1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion; (2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of salt-spray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.
Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride (VDC) with an acrylate, namely methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA) or 2-ethylhexyl acrylate (EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twice-painting technique was that the acidic latex solution was adjusted to pH 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that (1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion; (2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of salt-spray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.
2015, 33(1): 23-35
doi: 10.1007/s10118-015-1571-9
Abstract:
A convenient real-time monitoring of monomer concentration during living cationic ring-opening polymerizations of tetrahydrofuran (THF) initiated with methyl triflate (MeOTf) has been developed for kinetic investigation and determination of equilibrium monomer concentration ([M]e) via in situ FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe. The polymerization rate was first order with respect to monomer concentration and initiator concentration from the linear slope of ln([M]0-[M]e)/([M]-[M]e) versus polymerization time at different temperatures in various solvents. [M]e decreased linearly with initial monomer concentration while increased exponentially with increasing polymerization temperature. The equilibrium also strongly depends on solvent polarity and its interaction with monomer. The equilibrium polymerization time (te) decreased with increasing solvent polarity and decreased linearly with increasing [M]0 in three solvents with different slopes to the same point of bulk polymerization in the absence of solvent. Equation of Mn,e = 72.1/(0.14-0.04[M]e) has been established to provide a simple and effective approach for the prediction for the number-average molecular weight of polyTHFs at equilibrium state (Mn,e) in the equilibrium living cationic ring-opening polymerization of THF at 0 ℃.
A convenient real-time monitoring of monomer concentration during living cationic ring-opening polymerizations of tetrahydrofuran (THF) initiated with methyl triflate (MeOTf) has been developed for kinetic investigation and determination of equilibrium monomer concentration ([M]e) via in situ FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe. The polymerization rate was first order with respect to monomer concentration and initiator concentration from the linear slope of ln([M]0-[M]e)/([M]-[M]e) versus polymerization time at different temperatures in various solvents. [M]e decreased linearly with initial monomer concentration while increased exponentially with increasing polymerization temperature. The equilibrium also strongly depends on solvent polarity and its interaction with monomer. The equilibrium polymerization time (te) decreased with increasing solvent polarity and decreased linearly with increasing [M]0 in three solvents with different slopes to the same point of bulk polymerization in the absence of solvent. Equation of Mn,e = 72.1/(0.14-0.04[M]e) has been established to provide a simple and effective approach for the prediction for the number-average molecular weight of polyTHFs at equilibrium state (Mn,e) in the equilibrium living cationic ring-opening polymerization of THF at 0 ℃.
2015, 33(1): 36-48
doi: 10.1007/s10118-015-1572-8
Abstract:
In this paper, three different kinds of -CD derivatives were synthesized as atom transfer radical polymerization (ATRP) initiator or reversible addition-fragmentation chain transfer polymerization (RAFT) chain transfers. The degree of substitution for each derivative was carefully characterized through 1H-NMR, 13C-NMR spectroscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The factors influencing the degree of substitution were discussed. Moreover, the comparison between ATRP and RAFT was shown in the polymerization of N-isopropyl acrylamide (NIPAM).
In this paper, three different kinds of -CD derivatives were synthesized as atom transfer radical polymerization (ATRP) initiator or reversible addition-fragmentation chain transfer polymerization (RAFT) chain transfers. The degree of substitution for each derivative was carefully characterized through 1H-NMR, 13C-NMR spectroscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The factors influencing the degree of substitution were discussed. Moreover, the comparison between ATRP and RAFT was shown in the polymerization of N-isopropyl acrylamide (NIPAM).
2015, 33(1): 49-60
doi: 10.1007/s10118-015-1557-7
Abstract:
A novel diamine monomer, pyridine-2, 6-bis((4-aminophenyl)thioureido)carbonyl (PATC) was synthesized efficiently and polymerized with various aromatic dianhydrides. Consequently, poly(pyridine thiourea-imide)s (PPTIs) with good thermal properties and flame retardancy were fabricated. The structures of PATC and PPTIs were characterized by FTIR, 1H-NMR, 13C-NMR spectroscopy along with elemental analysis, crystallinity, organosolubility, inherent viscosity and gel permeation chromatographic measurements. PPTIs containing C=S, CONH and meta substituted pyridine moieties in the polymer backbone showed amorphous nature and were readily soluble in highly polar organic solvents and even in less polar solvents such as tetrahydrofuran (THF). Polymers had inherent viscosities in the range of 0.91-1.16 dL/g and molecular weight was found between 68000-77000 g/mol. The electrical properties of the PPTIs were estimated in terms of dielectric constant over a range of frequencies. Their thermal stability was determined by 10% weight loss temperature found in the range of 519-563 ℃ under inert atmosphere. The glass transition temperature of the polyimides varied between 247 ℃ and 267 ℃. The flame retardant properties of PPTIs were investigated in terms of limiting oxygen index (LOI) which was found in the range of 38.26-39.95. Introduction of thiourea in the polymer backbone is an effective way to improve the thermal stability and flame retardancy. Thus PATC can be considered as an excellent candidate for the synthesis of high performance polymers.
A novel diamine monomer, pyridine-2, 6-bis((4-aminophenyl)thioureido)carbonyl (PATC) was synthesized efficiently and polymerized with various aromatic dianhydrides. Consequently, poly(pyridine thiourea-imide)s (PPTIs) with good thermal properties and flame retardancy were fabricated. The structures of PATC and PPTIs were characterized by FTIR, 1H-NMR, 13C-NMR spectroscopy along with elemental analysis, crystallinity, organosolubility, inherent viscosity and gel permeation chromatographic measurements. PPTIs containing C=S, CONH and meta substituted pyridine moieties in the polymer backbone showed amorphous nature and were readily soluble in highly polar organic solvents and even in less polar solvents such as tetrahydrofuran (THF). Polymers had inherent viscosities in the range of 0.91-1.16 dL/g and molecular weight was found between 68000-77000 g/mol. The electrical properties of the PPTIs were estimated in terms of dielectric constant over a range of frequencies. Their thermal stability was determined by 10% weight loss temperature found in the range of 519-563 ℃ under inert atmosphere. The glass transition temperature of the polyimides varied between 247 ℃ and 267 ℃. The flame retardant properties of PPTIs were investigated in terms of limiting oxygen index (LOI) which was found in the range of 38.26-39.95. Introduction of thiourea in the polymer backbone is an effective way to improve the thermal stability and flame retardancy. Thus PATC can be considered as an excellent candidate for the synthesis of high performance polymers.
2015, 33(1): 61-69
doi: 10.1007/s10118-015-1558-6
Abstract:
Chitosan/cellulose nanocrystals (CS/CNCs) composites were prepared with different contents of CNCs. Due to the homogeneous dispersion of CNCs and the strong interfacial interactions resulting from hydrogen bonding between CS chains and CNCs, the transparency of CS is well retained and the overall mechanical properties of CS are significantly improved. Furthermore, because both CS and CNCs are biocompatible materials, cell proliferation test shows that the obtained composites are noncytotoxic and can potentially meet safety requirements of biomedical applications. These advantages pave the way of potential applications of CS in the field of commercial plastics and encourage the use of CS as environment-friendly material and biomedical material.
Chitosan/cellulose nanocrystals (CS/CNCs) composites were prepared with different contents of CNCs. Due to the homogeneous dispersion of CNCs and the strong interfacial interactions resulting from hydrogen bonding between CS chains and CNCs, the transparency of CS is well retained and the overall mechanical properties of CS are significantly improved. Furthermore, because both CS and CNCs are biocompatible materials, cell proliferation test shows that the obtained composites are noncytotoxic and can potentially meet safety requirements of biomedical applications. These advantages pave the way of potential applications of CS in the field of commercial plastics and encourage the use of CS as environment-friendly material and biomedical material.
2015, 33(1): 70-83
doi: 10.1007/s10118-015-1559-5
Abstract:
Linear and nonlinear viscoelasticity of gelatin solutions was investigated by rheology. The dynamic mechanical properties during the sol-gel transition of gelatin followed the time-cure superposition. The fractal dimension df of the critical gel was estimated as 1.76, which indicated a loose network. A high sol fraction ws = 0.61 was evaluated from the plateau modulus by semi-empirical models. Strain-stiffening behavior was observed under large amplitude oscillatory shear (LAOS) for the gelatin gel. The strain and frequency dependence of the minimum strain modulus GM, energy dissipation Ed, and nonlinear viscoelastic parameter NE was illustrated in Pipkin diagrams and explained by the strain induced helix formation reported previously by others. The BST model described the strain-stiffening behavior of gelatin gel quite well, whereas the Gent and worm-like chain network models overestimated the strain-stiffening at large strains.
Linear and nonlinear viscoelasticity of gelatin solutions was investigated by rheology. The dynamic mechanical properties during the sol-gel transition of gelatin followed the time-cure superposition. The fractal dimension df of the critical gel was estimated as 1.76, which indicated a loose network. A high sol fraction ws = 0.61 was evaluated from the plateau modulus by semi-empirical models. Strain-stiffening behavior was observed under large amplitude oscillatory shear (LAOS) for the gelatin gel. The strain and frequency dependence of the minimum strain modulus GM, energy dissipation Ed, and nonlinear viscoelastic parameter NE was illustrated in Pipkin diagrams and explained by the strain induced helix formation reported previously by others. The BST model described the strain-stiffening behavior of gelatin gel quite well, whereas the Gent and worm-like chain network models overestimated the strain-stiffening at large strains.
2015, 33(1): 84-94
doi: 10.1007/s10118-015-1560-z
Abstract:
In this work, a flame-retardant polypropylene (PP)/ramie fiber (RF) composite was prepared. The ramie fibers were wrapped chemically by a phosphorus- and nitrogen-containing flame retardant (FR) produced via in situ condensation reaction so as to suppress their candlewick effect. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) demonstrated that the ramie fibers wrapped chemically by FR (FR-RF) were obtained successfully. Thermogravimatric test showed that the PP/FR-RF composite had more residue and better thermal stability at high temperatures than the PP/RF composite. Cone calorimeter (CC) results indicated that the peak of heat release rate (PHRR) and total heat release (THR) correspondingly decreased by 23.4% and 12.5% compared with the values of neat PP/RF. The PP/FR-RF composite created a continuous and compact char layer after the combustion. Combining FTIR analysis of char residue after CC test with heat conduction coefficient results, it could be concluded that the charring of FR on RF greatly weakened the candlewick effect of RF, and more char residue in the RF domain facilitated the formation of more continuous and compact char layer in the whole combustion zone, consequently protected PP composites during combustion, resulting in the better flame retardancy of PP/FR-RF composite than that of PP/RF composite.
In this work, a flame-retardant polypropylene (PP)/ramie fiber (RF) composite was prepared. The ramie fibers were wrapped chemically by a phosphorus- and nitrogen-containing flame retardant (FR) produced via in situ condensation reaction so as to suppress their candlewick effect. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) demonstrated that the ramie fibers wrapped chemically by FR (FR-RF) were obtained successfully. Thermogravimatric test showed that the PP/FR-RF composite had more residue and better thermal stability at high temperatures than the PP/RF composite. Cone calorimeter (CC) results indicated that the peak of heat release rate (PHRR) and total heat release (THR) correspondingly decreased by 23.4% and 12.5% compared with the values of neat PP/RF. The PP/FR-RF composite created a continuous and compact char layer after the combustion. Combining FTIR analysis of char residue after CC test with heat conduction coefficient results, it could be concluded that the charring of FR on RF greatly weakened the candlewick effect of RF, and more char residue in the RF domain facilitated the formation of more continuous and compact char layer in the whole combustion zone, consequently protected PP composites during combustion, resulting in the better flame retardancy of PP/FR-RF composite than that of PP/RF composite.
2015, 33(1): 95-108
doi: 10.1007/s10118-015-1556-8
Abstract:
A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer (HPP/EPR/EbP) whose microstructures are similar to those of impact polypropylene copolymer (IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content (about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of EbP, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.
A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer (HPP/EPR/EbP) whose microstructures are similar to those of impact polypropylene copolymer (IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content (about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of EbP, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.
2015, 33(1): 109-117
doi: 10.1007/s10118-015-1562-x
Abstract:
In order to synthesize new polyamide (PA) 5 and copolyamides (CoPA) 7a-7d, a new-type of dicarboxylic acid containing triazine ring was successfully synthesized from 2,4-dichloro-6-methoxy-s-triazine 1 and 4-aminobenzoic acid. New polyamide 5 containing triazine moiety was prepared from 4,4'-(6-methoxy-1,3,5-triazine-2,4-diyl)bis(azanediyl)dibenzoic acid 3 and 4,4'-diaminodiphenylether by direct polycondensation reaction. Then new series thermally stable copolyamides 7a-7d with high solubility in common organic solvents were synthesized from the direct polycondensation reaction of diacid 3 as a first monomer, aliphatic-aromatic diacids 6a-6d as second diacids and 4,4'-diaminodiphenylether. All of the above polymers were fully characterized by 1H-NMR and FTIR spectroscopy, elemental analysis (CHN), inherent viscosity, solubility tests, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The resulted CoPAs 7a-7d have shown good inherent viscosities, solubility and thermal properties.
In order to synthesize new polyamide (PA) 5 and copolyamides (CoPA) 7a-7d, a new-type of dicarboxylic acid containing triazine ring was successfully synthesized from 2,4-dichloro-6-methoxy-s-triazine 1 and 4-aminobenzoic acid. New polyamide 5 containing triazine moiety was prepared from 4,4'-(6-methoxy-1,3,5-triazine-2,4-diyl)bis(azanediyl)dibenzoic acid 3 and 4,4'-diaminodiphenylether by direct polycondensation reaction. Then new series thermally stable copolyamides 7a-7d with high solubility in common organic solvents were synthesized from the direct polycondensation reaction of diacid 3 as a first monomer, aliphatic-aromatic diacids 6a-6d as second diacids and 4,4'-diaminodiphenylether. All of the above polymers were fully characterized by 1H-NMR and FTIR spectroscopy, elemental analysis (CHN), inherent viscosity, solubility tests, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The resulted CoPAs 7a-7d have shown good inherent viscosities, solubility and thermal properties.
2015, 33(1): 118-127
doi: 10.1007/s10118-015-1567-5
Abstract:
A glutathione-disulfide-ended poly(ethylene glycol) (GSSG-PEG-GSSG) was designed. It is a much more efficient accelerator than glutathione disulfide (GSSG) for the gelation of an 8arm-PEG-SH polymer solution, and the gelation time can be tuned from hours to minutes at the physiological pH and temperature. A mechanism was proposed to explain the different behaviors of the GSSG and GSSG-PEG-GSSG gelation systems. Due to the ever-going thiol-disulfide exchange reaction, the thiol-disulfide hydrogels also showed interesting swelling behavior.
A glutathione-disulfide-ended poly(ethylene glycol) (GSSG-PEG-GSSG) was designed. It is a much more efficient accelerator than glutathione disulfide (GSSG) for the gelation of an 8arm-PEG-SH polymer solution, and the gelation time can be tuned from hours to minutes at the physiological pH and temperature. A mechanism was proposed to explain the different behaviors of the GSSG and GSSG-PEG-GSSG gelation systems. Due to the ever-going thiol-disulfide exchange reaction, the thiol-disulfide hydrogels also showed interesting swelling behavior.
2015, 33(1): 128-136
doi: 10.1007/s10118-014-1507-9
Abstract:
Poly(D,L-lactide-co-glycolide) (PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell (denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin (BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.
Poly(D,L-lactide-co-glycolide) (PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell (denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin (BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.
2015, 33(1): 137-152
doi: 10.1007/s10118-015-1568-4
Abstract:
A novel bioresin, epoxidized soybean oil was synthesized by in situ method and was characterized employing FTIR and NMR. The bioresin was blended with epoxy (DGEBA) at different ratios as reactive diluents for improved processibility and toughened nature. The composition with 20 wt% bioresin exhibited improved impact strength to the tune of 60% as compared to virgin epoxy. Fracture toughness parameters critical stress intensity factor (KIC) and critical strain energy release rate (GIC) were evaluated using single edge notch bending test and demonstrated superior enhancement in toughness. Dynamic mechanical, thermal, thermo mechanical and fracture morphological analyses have been studied for bio-based epoxy blends. Curing kinetics has been evaluated through DSC analysis to investigate the effect of bioresin on cross-linking reaction of neat epoxy with triethylenetetramine as curing agent.
A novel bioresin, epoxidized soybean oil was synthesized by in situ method and was characterized employing FTIR and NMR. The bioresin was blended with epoxy (DGEBA) at different ratios as reactive diluents for improved processibility and toughened nature. The composition with 20 wt% bioresin exhibited improved impact strength to the tune of 60% as compared to virgin epoxy. Fracture toughness parameters critical stress intensity factor (KIC) and critical strain energy release rate (GIC) were evaluated using single edge notch bending test and demonstrated superior enhancement in toughness. Dynamic mechanical, thermal, thermo mechanical and fracture morphological analyses have been studied for bio-based epoxy blends. Curing kinetics has been evaluated through DSC analysis to investigate the effect of bioresin on cross-linking reaction of neat epoxy with triethylenetetramine as curing agent.
2015, 33(1): 153-162
doi: 10.1007/s10118-015-1563-9
Abstract:
Polyacrylate-fluorosilicone block copolymers, namely, polyacrylate-b-polydimethylsiloxane and polyacrylate-b-polymethyltrifluoropropylsiloxane were synthesized for fabricating icephobic coatings. The surface morphology and chemical composition of the block copolymers were characterized by atomic force microscopy and X-ray photoelectron spectroscopy, suggesting that the fluorosilicone blocks aggregated on the top of the copolymer surfaces. Results of water contact angles and ice shear strength demonstrated a certain amount adding of methacryloisobutyl polyhedral oligomeric silsesquioxane could lead to the decrease of contact angle hysteresis and increase of surface roughness, consequently resulting in significant reduction of the ice adhesion strength. Therefore, the block copolymers with the combined advantages of silicone and fluoropolymers could be potentially applied as icephobic coatings.
Polyacrylate-fluorosilicone block copolymers, namely, polyacrylate-b-polydimethylsiloxane and polyacrylate-b-polymethyltrifluoropropylsiloxane were synthesized for fabricating icephobic coatings. The surface morphology and chemical composition of the block copolymers were characterized by atomic force microscopy and X-ray photoelectron spectroscopy, suggesting that the fluorosilicone blocks aggregated on the top of the copolymer surfaces. Results of water contact angles and ice shear strength demonstrated a certain amount adding of methacryloisobutyl polyhedral oligomeric silsesquioxane could lead to the decrease of contact angle hysteresis and increase of surface roughness, consequently resulting in significant reduction of the ice adhesion strength. Therefore, the block copolymers with the combined advantages of silicone and fluoropolymers could be potentially applied as icephobic coatings.
2015, 33(1): 163-172
doi: 10.1007/s10118-015-1564-8
Abstract:
We directly monitor the absolute separation profiles that function as film thickness between a single glass disk and the charged polyelectrolyte brushes decorated steel slider in water using a home-made slider-on-disk apparatus, which reflects the structural conformation variations and interactions of polymer brushes under externally applied pressure, in addition to probing the relative variation of friction forces under different applied loads and sliding velocities. We find that the polyelectrolyte brushes modified surfaces can sustain high pressure and have extremely low friction coefficients (around 0.006 at pressures of 0.13 MPa; 0.5-0.6 without brushes). The water-lubrication characteristics are correlated to the structural conformation changes of the polyelectrolyte brushes that are mainly governed by electrostatic interactions and the osmotic pressure of counterions inside the polymer chains, which can be used to support and distribute the normal pressure. The apparent thickness of the brush decreases with the increase of loading forces, an increase in the ionic strength causes the polymer chains collapse, and the friction forces increase. This fundamental research is of great importance to understand the mechanical and structural properties of polyelectrolyte brushes and their influences on the tribological behaviors, and helps to design friction/lubrication-controlled surface/interface by taking advantage of polyelectrolyte brushes.
We directly monitor the absolute separation profiles that function as film thickness between a single glass disk and the charged polyelectrolyte brushes decorated steel slider in water using a home-made slider-on-disk apparatus, which reflects the structural conformation variations and interactions of polymer brushes under externally applied pressure, in addition to probing the relative variation of friction forces under different applied loads and sliding velocities. We find that the polyelectrolyte brushes modified surfaces can sustain high pressure and have extremely low friction coefficients (around 0.006 at pressures of 0.13 MPa; 0.5-0.6 without brushes). The water-lubrication characteristics are correlated to the structural conformation changes of the polyelectrolyte brushes that are mainly governed by electrostatic interactions and the osmotic pressure of counterions inside the polymer chains, which can be used to support and distribute the normal pressure. The apparent thickness of the brush decreases with the increase of loading forces, an increase in the ionic strength causes the polymer chains collapse, and the friction forces increase. This fundamental research is of great importance to understand the mechanical and structural properties of polyelectrolyte brushes and their influences on the tribological behaviors, and helps to design friction/lubrication-controlled surface/interface by taking advantage of polyelectrolyte brushes.
2015, 33(1): 173-183
doi: 10.1007/s10118-015-1565-7
Abstract:
A series of multicomponent hydrogels were prepared by the copolymerization of hydrophobic silicon-containing monomer 3-bis(trimethylsilyloxy) methylsilylpropyl glycerol methacrylate (SiMA) with the solvent-responsive monomers 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP) and thermosensitive monomer N,N-dimethyl acrylamide (DMA). 2-Hydroxy-2-methyl phenyl acetone (D-1173) was chosen as UV initiator and five different dienes/triene monomers were selected as crosslinking agent in order to select the best crosslinker. The ethanol extraction experiments as well as the FTIR, DSC and TG results showed that the copolymerization was effective. The optical, permeability, and mechanical analysis results demonstrated that the obtained hydrogels were highly transparent with good oxygen permeability and mechanical properties. And the impact of crosslinker on the mechanical properties of the hydrogels was also discussed in detail. The basic results demonstrated that the obtained hydrogels had good stimuli-responsive effects to both pH value and solvent.
A series of multicomponent hydrogels were prepared by the copolymerization of hydrophobic silicon-containing monomer 3-bis(trimethylsilyloxy) methylsilylpropyl glycerol methacrylate (SiMA) with the solvent-responsive monomers 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP) and thermosensitive monomer N,N-dimethyl acrylamide (DMA). 2-Hydroxy-2-methyl phenyl acetone (D-1173) was chosen as UV initiator and five different dienes/triene monomers were selected as crosslinking agent in order to select the best crosslinker. The ethanol extraction experiments as well as the FTIR, DSC and TG results showed that the copolymerization was effective. The optical, permeability, and mechanical analysis results demonstrated that the obtained hydrogels were highly transparent with good oxygen permeability and mechanical properties. And the impact of crosslinker on the mechanical properties of the hydrogels was also discussed in detail. The basic results demonstrated that the obtained hydrogels had good stimuli-responsive effects to both pH value and solvent.
2015, 33(1): 184-191
doi: 10.1007/s10118-015-1566-6
Abstract:
Several new enediynes with long chain alkyl groups were synthesized through Sonogashira coupling reactions between long chain alkynes and (Z)-1,2-dichloroethene. These enediynes (1) were then subjected to thermal Bergman cyclization in a refluxing diphenyl ether bath under vacuum to obtain conjugated polyphenylenes with the weight-average molecular weights up to 4.9 103 gmol-1. The occurrence of Bergman cyclization was confirmed by 1H-NMR, 13C-NMR, and IR spectroscopic analysis. These polyphenylenes are fully soluble in common organic solvents and exhibit good thermal stability. The optical properties of the polyphenylenes were investigated by UV-Vis absorption and photoluminescence (PL) spectroscopies. A blue emission was observed for all these polyphenylenes.
Several new enediynes with long chain alkyl groups were synthesized through Sonogashira coupling reactions between long chain alkynes and (Z)-1,2-dichloroethene. These enediynes (1) were then subjected to thermal Bergman cyclization in a refluxing diphenyl ether bath under vacuum to obtain conjugated polyphenylenes with the weight-average molecular weights up to 4.9 103 gmol-1. The occurrence of Bergman cyclization was confirmed by 1H-NMR, 13C-NMR, and IR spectroscopic analysis. These polyphenylenes are fully soluble in common organic solvents and exhibit good thermal stability. The optical properties of the polyphenylenes were investigated by UV-Vis absorption and photoluminescence (PL) spectroscopies. A blue emission was observed for all these polyphenylenes.
2015, 33(1): 192-202
doi: 10.1007/s10118-015-1561-y
Abstract:
A Novel thermosensitive dendritic copolymer based on polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAm) with a cloud point (CP) around 36 ℃ was successfully synthesized by preparation of a dendritic polyol and followed by atom transfer radical polymerization (ATRP) of N-isopropylacrylamide. The dendritic copolymer was characterized using gel-permeation chromatography (GPC), FTIR and 1H-NMR spectroscopy. The self-association behavior of the copolymer in aqueous medium was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). These investigations confirmed that the dendritic copolymer showed different association behaviors at various temperatures.
A Novel thermosensitive dendritic copolymer based on polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAm) with a cloud point (CP) around 36 ℃ was successfully synthesized by preparation of a dendritic polyol and followed by atom transfer radical polymerization (ATRP) of N-isopropylacrylamide. The dendritic copolymer was characterized using gel-permeation chromatography (GPC), FTIR and 1H-NMR spectroscopy. The self-association behavior of the copolymer in aqueous medium was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). These investigations confirmed that the dendritic copolymer showed different association behaviors at various temperatures.