Diffusion and Relaxation Dynamics of Supercooled Polymer Melts

Deng Pan Zhao-Yan Sun

Citation:  Deng Pan, Zhao-Yan Sun. Diffusion and Relaxation Dynamics of Supercooled Polymer Melts[J]. Chinese Journal of Polymer Science, 2018, 36(10): 1187-1194. doi: 10.1007/s10118-018-2132-9 shu

Diffusion and Relaxation Dynamics of Supercooled Polymer Melts

English


    1. [1]

      Colmenero, J. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers J. Phys.: Condens. Matter 2015, 27, 103101 doi: 10.1088/0953-8984/27/10/103101

    2. [2]

      Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 1953, 21, 1272−1280 doi: 10.1063/1.1699180

    3. [3]

      de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572−579 doi: 10.1063/1.1675789

    4. [4]

      Doi, M. and Edwards, S. F. " The theory of polymer dynamics”, Oxford University Press, 1986.

    5. [5]

      de Gennes, P. G. " Scaling concepts in polymer physic”, Cornell University Press, 1979.

    6. [6]

      Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000, 88, 3113−3157 doi: 10.1063/1.1286035

    7. [7]

      Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 2009, 476, 51−124 doi: 10.1016/j.physrep.2009.03.003

    8. [8]

      Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 2011, 83, 587−645 doi: 10.1103/RevModPhys.83.587

    9. [9]

      Ediger, M. D.; Harrowell, P. Perspective: Supercooled liquids and glasses. J. Chem. Phys. 2012, 137, 080901 doi: 10.1063/1.4747326

    10. [10]

      Biroli, G.; Garrahan, J. P. Perspective: The glass transition. J. Chem. Phys. 2013, 138, 12A301 doi: 10.1063/1.4795539

    11. [11]

      Cangialosi, D. Dynamics and thermodynamics of polymer glasses. J. Phys.: Condens. Matter 2014, 26, 153101 doi: 10.1088/0953-8984/26/15/153101

    12. [12]

      Götze, W. " Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory”, Oxford University Press 2008.

    13. [13]

      Chong, S. H.; Fuchs, M. Mode-coupling theory for structural and conformational dynamics of polymer melts. Phys. Rev. Lett. 2002, 88, 185702 doi: 10.1103/PhysRevLett.88.185702

    14. [14]

      Chong, S. H.; Aichele, M.; Meyer, H.; Fuchs, M.; Baschnagel, J. Structural and conformational dynamics of supercooled polymer melts: insights from first-principles theory and simulations. Phys. Rev. E 2007, 76, 051806 doi: 10.1103/PhysRevE.76.051806

    15. [15]

      Bennemann, C.; Baschnagela, J.; Paul, W. Molecular-dynamics simulation of a glassy polymer melt: Incoherent scattering function. Eur. Phys. J. B 1999, 10, 323−334 doi: 10.1007/s100510050861

    16. [16]

      Aichele, M.; Baschnagel, J. Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions-Part I: Dynamics in the β-relaxation regime. Eur. Phys. J. E 2001, 5, 229−243 doi: 10.1007/s101890170078

    17. [17]

      Aichele, M.; Baschnagel, J. Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions-Part II: Dynamics in the α-relaxation regime. Eur. Phys. J. E 2001, 5, 245−256 doi: 10.1007/s101890170079

    18. [18]

      Frey, S.; Weysser, F.; Meyer, H.; Farago, J.; Fuchs, M.; Baschnagel, J. Simulated glass-forming polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory analysis. Eur. Phys. J. E 2015, 38, 11 doi: 10.1140/epje/i2015-15011-x

    19. [19]

      Bernabei, M.; Moreno, A. J.; Zaccarelli, E.; Sciortino, F.; Colmenero, J. From caging to Rouse dynamics in polymer melts with intramolecular barriers: A critical test of the mode coupling theory. J. Chem. Phys. 2011, 134, 024523 doi: 10.1063/1.3525147

    20. [20]

      Colmenero, J.; Narros, A.; Alvarez, F.; Arbe, A.; Moreno, A. J. Atomic motions in the αβ-region of glass-forming polymers: molecular versus mode coupling theory approach. J. Phys.: Condens. Matter 2007, 19, 205127 doi: 10.1088/0953-8984/19/20/205127

    21. [21]

      Khairy, Y.; Alvarez, F.; Arbe, A.; Colmenero, J. Applicability of mode-coupling theory to polyisobutylene: A molecular dynamics simulation study. Phys. Rev. E 2013, 88, 042302

    22. [22]

      Frick, B.; Zorn, R.; Richter, D.; Farago, B. Investigation of the glass transition in polymers under the aspect of mode coupling predictions. J. Non-cryst. Solids 1991, 131, 169−176

    23. [23]

      Zorn, R.; Richter, D.; Frick, B.; Farago, B. Neutron scattering experiments on the glass transition of polymers. Physica A 1993, 201, 52−66 doi: 10.1016/0378-4371(93)90399-O

    24. [24]

      Bergman, R.; Börjesson, L.; Torell, L. M.; Fontana, A. Dynamics around the liquid-glass transition in poly(propylene-glycol) investigated by wide-frequency-range light-scattering techniques. Phys. Rev. B 1997, 56, 11619−11628 doi: 10.1103/PhysRevB.56.11619

    25. [25]

      Capponi, S.; Arbe, A.; Alvarez, F.; Colmenero, J.; Frick, B.; Embs, J. P. Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. J. Chem. Phys. 2016, 131, 204901

    26. [26]

      Zhang, B.; Li, H.; Li, J.; Chen, K.; Tian, W.; Ma, Y. The unique role of bond length in the glassy dynamics of colloidal polymers. Soft Matter 2016, 12, 8104−8111 doi: 10.1039/C6SM01386D

    27. [27]

      Li, J.; Zhang, B.; Li, H.; Chen, K.; Tian, W.; Tong, P. Glassy dynamics of model colloidal polymers: The effect of " monomer” size. J. Chem. Phys. 2016, 144, 204509 doi: 10.1063/1.4952605

    28. [28]

      Bernabei, M.; Moreno, A. J.; Colmenero, J. Dynamic arrest in polymer melts: competition between packing and intramolecular barriers. Phys. Rev. Lett. 2008, 101, 255701 doi: 10.1103/PhysRevLett.101.255701

    29. [29]

      Yamamoto, R.; Onuki, A. Heterogeneous diffusion in highly supercooled liquids. Phys. Rev. Lett. 1998, 81, 4915−4918 doi: 10.1103/PhysRevLett.81.4915

    30. [30]

      Jung, Y. J.; Garrahan, J. P.; Chandler, D. Excitation lines and the breakdown of Stokes-Einstein relations in supercooled liquids. Phys. Rev. E 2004, 69, 061205 doi: 10.1103/PhysRevE.69.061205

    31. [31]

      Ikeda, A.; Miyazaki, K. Glass transition of the monodisperse gaussian core model. Phys. Rev. Lett. 2011, 106, 015701 doi: 10.1103/PhysRevLett.106.015701

    32. [32]

      Li, Y. W.; Zhu, Y. L.; Sun Z. Y. Decoupling of relaxation and diffusion in random pinning glass-forming liquids. J. Chem. Phys. 2015, 142, 124507 doi: 10.1063/1.4916208

    33. [33]

      Chen, S. H.; Mallamace, F.; Mou, C. Y.; Broccio, M.; Corsaro, C.; Faraone, A.; Liu, L. The violation of the Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 12974−12978 doi: 10.1073/pnas.0603253103

    34. [34]

      Xu, L.; Mallamace, F.; Yan, Z.; Starr, F. W.; Buldyrev, S. V.; Stanley, H. E. Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat. Phys. 2009, 5, 565−569 doi: 10.1038/nphys1328

    35. [35]

      Flenner, E.; Szamel, G. Dynamic heterogeneities above and below the mode-coupling temperature: Evidence of a dynamic crossover. J. Chem. Phys. 2013, 138, 12A523 doi: 10.1063/1.4773321

    36. [36]

      Berthier, L. Time and length scales in supercooled liquids. Phys. Rev. E 2004, 69, 020201 doi: 10.1103/PhysRevE.69.020201

    37. [37]

      Kawasaki, T.; Onuki, A. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: Breakdown of the Stokes-Einstein relation. Phys. Rev. E 2013, 87, 012312

    38. [38]

      Shi, Z.; Debenedetti, P. G.; Stillinger, F. H. Relaxation processes in liquids: Variations on a theme by Stokes and Einstein. J. Chem. Phys. 2013, 138, 12A526 doi: 10.1063/1.4775741

    39. [39]

      Sengupta, S.; Karmakar, S.; Dasgupta, C.; Sastry, S. Breakdown of the Stokes-Einstein relation in two, three, and four dimensions. J. Chem. Phys. 2013, 138, 12A548 doi: 10.1063/1.4792356

    40. [40]

      Sengupta, S.; Karmakar, S. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids. J. Chem. Phys. 2014, 140, 224505 doi: 10.1063/1.4882066

    41. [41]

      Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 2000, 51, 99−128 doi: 10.1146/annurev.physchem.51.1.99

    42. [42]

      Baschnagel, J.; Varnik, F. Computer simulations of supercooled polymer melts in the bulk and in-confined geometry. J. Phys.: Condens. Matter 2005, 17, R851−R953 doi: 10.1088/0953-8984/17/32/R02

    43. [43]

      Lang, R. J.; Simmons, D. S. Interfacial dynamic length scales in the glass transition of a model freestanding polymer film and their connection to cooperative motion. Macromolecules 2013, 46, 9818−9825 doi: 10.1021/ma401525q

    44. [44]

      Merling, W. L.; Mileski, J. B.; Douglas, J. F.; Simmons, D. S. The glass transition of a single macromolecule. Macromolecules 2016, 49, 7597−7604 doi: 10.1021/acs.macromol.6b01461

    45. [45]

      Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057−5086 doi: 10.1063/1.458541

    46. [46]

      Liu, Y.; Tuckerman, M. E. Generalized gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble. J. Chem. Phys. 2000, 112, 1685−1700 doi: 10.1063/1.480769

    47. [47]

      Bennemann, C.; Paul, W.; Binder, K.; Dunweg, B. Molecular-dynamics simulations of the thermal glass transition in polymer melts α-relaxation behavior. Phys. Rev. E 1998, 57, 843−851 doi: 10.1103/PhysRevE.57.843

    48. [48]

      Aichele, M.; Gebremichael, Y.; Starr, F. W.; Baschnagel, J.; Glotzer, S. C. Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt. J. Chem. Phys. 2003, 199, 5290−5304

    49. [49]

      Wang, Z.; Likhtman, A. E.; Larson, R. G. Segmental dynamics in entangled linear polymer melts. Macromolecules 2012, 45, 3557−3570 doi: 10.1021/ma202759v

    50. [50]

      Kob, W.; Andersen, H. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys. Rev. E 1995, 52, 4134−4153 doi: 10.1103/PhysRevE.52.4134

    51. [51]

      Bennemann, C.; Paul, W.; Baschnagel, J.; Binder, K. Investigating the influence of different thermodynamic paths on the structural relaxation in a glass-forming polymer melt. J. Phys.: Condens. Matter 1999, 11, 2179−2192 doi: 10.1088/0953-8984/11/10/005

    52. [52]

      Bennemann, C.; Baschnagel, J.; Paul, W.; Binder, K. Molecular-dynamics simulation of a glassy polymer melt Rouse model and cage effect. Comput. Theor. Polym. Sci. 1999, 9, 217−226 doi: 10.1016/S1089-3156(99)00008-2

    53. [53]

      Binder, K. and Kob, W. " Glassy materials and disordered solids: An introduction to their statistical mechanics”, World Scientific, 2005.

    54. [54]

      Toninelli, C.; Wyart, M.; Berthier, L.; Biroli, G.; Bouchaud, J. P. Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios. Phys. Rev. E 2005, 71, 041505 doi: 10.1103/PhysRevE.71.041505

    55. [55]

      Berthier, L.; Biroli, G.; Bouchaud, J. P.; Kob, W.; Miyazaki, K.; Reichman, D. R. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. J. Chem. Phys. 2007, 126, 184503

    56. [56]

      Fox, T. G.; Flory, P. J. The glass temperature and related properties of polystyrene - influence of molecular weight. J. Polym. Sci. 1954, 14, 315−319 doi: 10.1002/pol.1954.120147514

    57. [57]

      Doolittle, A. K. Studies in Newtonian Flow. II. The dependence of the biscosity of liquids on free-space. J. Appl. Phys. 1951, 22, 1471−1475

    58. [58]

      Furukawa, A. Simple picture of supercooled liquid dynamics: Dynamic scaling and phenomenology based on clusters. Phys. Rev. E 2013, 87, 062321

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1424
  • HTML全文浏览量:  65
文章相关
  • 发布日期:  2018-10-01
  • 收稿日期:  2018-01-12
  • 接受日期:  2018-02-26
  • 修回日期:  2018-02-09
  • 网络出版日期:  2018-04-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章