Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography

Yi Huang Xiao-Xia Li Lu Zhang Xiao-Yan Chen Cheng-Bo Liu Jing-Qin Chen Yong Wang Xin-Tao Shuai

Citation:  Yi Huang, Xiao-Xia Li, Lu Zhang, Xiao-Yan Chen, Cheng-Bo Liu, Jing-Qin Chen, Yong Wang, Xin-Tao Shuai. Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography[J]. Chinese Journal of Polymer Science, 2018, 36(10): 1139-1149. doi: 10.1007/s10118-018-2141-8 shu

Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography

English


    1. [1]

      Kelkar, S. S.; Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879−1903 doi: 10.1021/bc200151q

    2. [2]

      Suter, T. M.; Ewer, M. S. Cancer drugs and the heart: importance and management. Eur. Heart J. 2013, 34(15), 1102 doi: 10.1093/eurheartj/ehs181

    3. [3]

      Kerckhove, N.; Colin, A.; Conde, S.; Chaleteix, C.; Pezet, D.; Balayssac, D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front. Pharmacol. 2017, 8, 86 doi: 10.3389/fphar.2017.00086

    4. [4]

      Zahreddine, H.; Borden, K. L. B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28 doi: 10.3389/fphar.2013.00028

    5. [5]

      May, J. P.; Li, S. D. Hyperthermia-induced drug targeting. Expert Opin. Drug Del. 2013, 10(4), 511−527 doi: 10.1517/17425247.2013.758631

    6. [6]

      van Bree, C.; Krooshoop, J. J.; Rietbroek, R. C.; Kipp, J. B. A.; Piet, J. M. Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res. 1996, 56(3), 563−568

    7. [7]

      Goldberg, S. N.; Kmel, I. R.; Kruskal, J. B.; Reynolds, K.; Monsky, W. L.; Stuart, K. E.; Ahmed, M.; Raptopoulos, V. Radiofrequency ablation of hepatic tumors: Increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am. J. Roentgenol. 2002, 179(1), 93−101 doi: 10.2214/ajr.179.1.1790093

    8. [8]

      Kong, G.; Braun, R. D.; Dewhirst, M. W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60(16), 4440−4445

    9. [9]

      Chen, Y. I.; Peng, C. L.; Lee, P. C.; Tsai, M. H.; Lin, C. Y.; Shih, Y. H.; Wei, M. F.; Luo, T. Y.; Shieh, M. J. Traceable self-assembly of laser-triggered cyanine-based micelle for synergistic therapeutic effect. Adv. Healthc. Mater. 2015, 4(6), 892−902 doi: 10.1002/adhm.201400729

    10. [10]

      Luo, H. H.; Wang, Q. L.; Deng, Y. B.; Yang, T.; Ke, H. T.; Yang, H. H.; He, H.; Guo, Z. Q.; Yu, D.; Wu, H.; Chen, H. B. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater. 2017, 27(39), 1702834 doi: 10.1002/adfm.v27.39

    11. [11]

      Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J.; Deng, L.; Liu, Y. N.; Guo, S. J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemo-therapy of cancer. Adv. Mater. 2017, 29(5), 1603864 doi: 10.1002/adma.201603864

    12. [12]

      Feng, L.; Gai, S.; He, F.; Dai, Y.; Zhong, C.; Yang, P.; Lin, J. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 2017, 147, 39−52 doi: 10.1016/j.biomaterials.2017.09.011

    13. [13]

      Yao, X. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13(2), 1602225 doi: 10.1002/smll.v13.2

    14. [14]

      Riley, R. S.; Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIRES Nanomed. Nanotechnol. 2017, 9(4), e1449 doi: 10.1002/wnan.2017.9.issue-4

    15. [15]

      Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 2013, 117(51), 27073−27080 doi: 10.1021/jp409067h

    16. [16]

      Khlebtov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40(3), 1647−1671 doi: 10.1039/C0CS00018C

    17. [17]

      Jain, P. K.; EI-Sayed, I. H.; EI-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2(1), 18−29 doi: 10.1016/S1748-0132(07)70016-6

    18. [18]

      Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliver. Rev. 2013, 65(5), 663−676 doi: 10.1016/j.addr.2012.05.004

    19. [19]

      Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13(8), 639−650 doi: 10.1038/nmeth.3929

    20. [20]

      Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13(8), 627−638 doi: 10.1038/nmeth.3925

    21. [21]

      Upputuri, P. K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J. Biomed. Opt. 2017, 22(4), 041006

    22. [22]

      Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 2009, 131(47), 17042 doi: 10.1021/ja907069u

    23. [23]

      Lohse, S. E.; Murphy, C. J. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 2013, 25(8), 1250−1261 doi: 10.1021/cm303708p

    24. [24]

      Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X. D.; Xia, Y. N. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17(18), 2255−261 doi: 10.1002/(ISSN)1521-4095

    25. [25]

      Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, E. Y. S.; Qu, Z.; Xing, Z. W.; Guo, C. X.; Yue, X. L.; Liu, J. B. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. 2011, 50(13), 3017−3021 doi: 10.1002/anie.201008286

    26. [26]

      Zhang,L.; Xiao, H.; Li, J. G.; Cheng, D.; Shuai, X. T. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy. Nanoscale 2016, 8(25), 12608−12617 doi: 10.1039/C5NR07868G

    27. [27]

      Zhou, G. Y.; Xiao, H.; Li, X. X.; Huang, Y.; Song, W.; Song, L.; Chen, M. W.; Cheng, D.; Shuai, X. T. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater. 2017, 64, 223−236 doi: 10.1016/j.actbio.2017.10.018

    28. [28]

      Lu, L.; Wang, Y.; Cao, M.; Chen, M.; Lin, B.; Duan, X.; Zhang, F.; Mao, J.; Shuai, X.; Shen, J. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv. 2017, 7, 15041−15052 doi: 10.1039/C7RA00345E

    29. [29]

      Lai, J. T.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002, 35(18), 6754−6756 doi: 10.1021/ma020362m

    30. [30]

      Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 2005, 127(51), 17982−17983 doi: 10.1021/ja056514l

    31. [31]

      Pissuwan, D.; Boyer, C.; Gunasekaran, K.; Davis, T. P.; Bulmus, V. In vitro cytotoxicity of RAFT polymers. Biomacromolecules 2010, 11(2), 412−420 doi: 10.1021/bm901129x

    32. [32]

      Chong, Y. K.; Moad, G.; Rizardo, E.; Thang, S. H. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction. Macromolecules 2007, 40(13), 4446−4455 doi: 10.1021/ma062919u

    33. [33]

      Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2017. doi: 10.1007/s12274-017-1939-y

    34. [34]

      Kwon, G. S.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 1995, 12(2), 192−195 doi: 10.1023/A:1016266523505

    35. [35]

      Tan, Y. W.; Li, Y. F.; Zhu, D. B. Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 2002, 18(8), 3392−3395 doi: 10.1021/la011612f

    36. [36]

      Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105(19), 4065−4067 doi: 10.1021/jp0107964

    37. [37]

      Petersen, H.; Fechner, P. M.; Fischer, D. Kissel, T. Synthesis, characterization, and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) block copolymers. Macromolecules 2002, 35(18), 6867−6874

    38. [38]

      Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceut. 2008, 5(4), 505−515 doi: 10.1021/mp800051m

    39. [39]

      Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65(1-2), 271−284 doi: 10.1016/S0168-3659(99)00248-5

    40. [40]

      Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res. 2013, 12(2), 265−273

    41. [41]

      Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126(3), 187−204 doi: 10.1016/j.jconrel.2007.12.017

    42. [42]

      Canton, I.; Battaglia, G. Endocytosis at nanoscale. Chem. Soc. Rev. 2012, 41(7), 2718−2739 doi: 10.1039/c2cs15309b

    43. [43]

      Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004, 98(3), 415−426 doi: 10.1016/j.jconrel.2004.06.003

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1380
  • HTML全文浏览量:  57
文章相关
  • 发布日期:  2018-10-01
  • 收稿日期:  2018-02-27
  • 接受日期:  2018-04-02
  • 修回日期:  2018-03-23
  • 网络出版日期:  2018-05-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章