Slight Structural Disorder in Bithiophene-based Random Terpolymers with Improved Power Conversion Efficiency for Polymer Solar Cells

Meng-Han Wang Zhong-Yuan Xue Zhi-Wei Wang Wei-Hua Ning Yu Zhong Ya-Nan Liu Chun-Feng Zhang Sven Huettner You-Tian Tao

Citation:  Meng-Han Wang, Zhong-Yuan Xue, Zhi-Wei Wang, Wei-Hua Ning, Yu Zhong, Ya-Nan Liu, Chun-Feng Zhang, Sven Huettner, You-Tian Tao. Slight Structural Disorder in Bithiophene-based Random Terpolymers with Improved Power Conversion Efficiency for Polymer Solar Cells[J]. Chinese Journal of Polymer Science, 2018, 36(10): 1129-1138. doi: 10.1007/s10118-018-2128-5 shu

Slight Structural Disorder in Bithiophene-based Random Terpolymers with Improved Power Conversion Efficiency for Polymer Solar Cells

English


    1. [1]

      Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109(11), 5868−5923 doi: 10.1021/cr900182s

    2. [2]

      Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem. Soc. Rev. 2011, 40(3), 1185−1199 doi: 10.1039/C0CS00045K

    3. [3]

      Wang, S.; Huang W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci. 2017, 35(2), 207−218 doi: 10.1007/s10118-017-1889-6

    4. [4]

      Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. n‑Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138(6), 2004−2013 doi: 10.1021/jacs.5b12664

    5. [5]

      Zheng, Z.; Zhang, S.; Zhang, J.; Qin, Y.; Li, W.; Yu, R.; Wei, Z.; Hou, J. Over 11% efficiency in tandem polymer solar cells featured by a low-band-gap polymer with fine-tuned properties. Adv. Mater. 2016, 28(25), 5133−5138 doi: 10.1002/adma.201600373

    6. [6]

      Cui, Y.; Yao, H.; Yang, C.; Zhang, S.; Hou, J. Organic solar cells with an efficiency approaching 15%. Acta Polymerica Sinica (in Chinese) 2018, (2), 223−230

    7. [7]

      Duan, Y.; Xu, X.; Yan, H.; Wu, W.; Li, Z.; Peng, Q. Pronounced effects of a triazine core on photovoltaic performance-efficient organic solar cells enabled by a PDI trimer-based small molecular acceptor. Adv. Mater. 2017, 29(7), 1605115 doi: 10.1002/adma.201605115

    8. [8]

      Hendriks, K. H.; Heintges, G. H.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. Int. Ed. 2013, 52(32), 8341−8344 doi: 10.1002/anie.v52.32

    9. [9]

      Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115(23), 12666−12731 doi: 10.1021/acs.chemrev.5b00098

    10. [10]

      Lee, J. W.; Ahn, H.; Jo, W. H. Conjugated random copolymers consisting of pyridine- and thiophene-capped diketopyrrolopyrrole as co-electron accepting units to enhance both JSC and VOC of polymer solar cells. Macromolecules 2015, 48(21), 7836−7842 doi: 10.1021/acs.macromol.5b01826

    11. [11]

      Subbiah, J.; Purushothaman, B.; Chen, M.; Qin, T.; Gao, M.; Vak, D.; Scholes, F. H.; Chen, X.; Watkins, S. E.; Wilson, G. J.; Holmes, A. B.; Wong, W. W.; Jones, D. J. Organic solar cells using a high-molecular-weight benzodithiophene- benzothiadiazole copolymer with an efficiency of 9.4%. Adv. Mater. 2015, 27(4), 702−705 doi: 10.1002/adma.201403080

    12. [12]

      Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293 doi: 10.1038/ncomms6293

    13. [13]

      Liu, P.; Zhang, K.; Liu, F.; Jin, Y.; Liu, S.; Russell, T. P; Yip, H. L.; Huang, F.; Cao, Y. Effect of fluorine content in thienothiophene-benzodithiophene copolymers on the morphology and performance of polymer solar cells. Chem. Mater. 2014, 26(9), 3009−3017 doi: 10.1021/cm500953e

    14. [14]

      Ye, L.; Jiao, X.; Zhang, S.; Yao, H.; Qin, Y.; Ade, H.; Hou, J. Control of mesoscale morphology and photovoltaic performance in diketopyrrolopyrrole-based small band gap terpolymers. Adv. Energy Mater. 2017, 7(3), 1601138 doi: 10.1002/aenm.201601138

    15. [15]

      Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J. Am. Chem. Soc. 2015, 137(44), 14149−14157 doi: 10.1021/jacs.5b08556

    16. [16]

      Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A. J.; Sun, Y. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 2015, 27(18), 2938−2944 doi: 10.1002/adma.v27.18

    17. [17]

      Wang, M.; Cai, D.; Xin, J.; Ma, W.; Tu, Q.; Zheng, Q. A ternary conjugated D-A copolymer yields over 9.0% efficiency in organic solar cells. J. Mater. Chem. A 2017, 5(24), 12015−12021 doi: 10.1039/C7TA03316H

    18. [18]

      Ko, S. J.; Hoang, Q. V.; Song, C. E.; Uddin, M. A.; Lim, E.; Park, S. Y.; Lee, B. H.; Song, S.; Moon, S. J.; Hwang, S.; Morin, P.-O.; Leclerc, M.; Su, G. M.; Chabinyc, M. L.; Woo, H. Y.; Shin, W. S.; Kim, J. Y. High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy Environ. Sci. 2017, 10(6), 1443−1455 doi: 10.1039/C6EE03051C

    19. [19]

      Fan, B.; Xue, X.; Meng, X.; Sun, X.; Huo, L.; Ma, W.; Sun, Y. High-performance conjugated terpolymer-based organic bulk heterojunction solar cells. J. Mater. Chem. A 2016, 4(36), 13930−13937 doi: 10.1039/C6TA05886H

    20. [20]

      Wan, Z.; Yang, J.; Liu, Y.; Wang, S.; Zhong, Y.; Li, C.; Zhang, Z.; Xing, G.; Huettner, S.; Tao, Y.; Li, Y.; Huang, W. Cyclometalated Pt complex-based random terpolymers for efficient polymer solar cells. Polym. Chem. 2017, 8(32), 4729−4737 doi: 10.1039/C7PY00924K

    21. [21]

      Park, G. E.; Kim, H. J.; Lee, D. H.; Cho, M. J.; Choi, D. H. Regular terpolymers with fluorinated bithiophene units for high-performing photovoltaic cells. Polym. Chem. 2016, 7(31), 5069−5978 doi: 10.1039/C6PY00901H

    22. [22]

      Jiang, T.; Yang, J.; Tao, Y.; Fan, C.; Xue, L.; Zhang, Z.; Li, H.; Li, Y.; Huang, W. Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulk-heterojunction polymer solar cells. Polym. Chem. 2016, 7(4), 926−932 doi: 10.1039/C5PY01771H

    23. [23]

      Qian, M.; Zhang, R.; Hao, J.; Zhang, W.; Zhang, Q.; Wang, J.; Tao, Y.; Chen, S.; Fang, J.; Huang, W. Dramatic enhancement of power conversion efficiency in polymer solar cells by conjugating very low ratio of triplet iridium complexes to PTB7. Adv. Mater. 2015, 27(23), 3546−3552 doi: 10.1002/adma.v27.23

    24. [24]

      Keshtov, M. L.; Khokhlov, A. R.; Kuklin, S. A.; Chen, F. C.; Nikolaev, A. Y.; Koukaras, E. N.; Sharma, G. D. Synthesis of alternating D-A1-D-A2 terpolymers comprising two electron-deficient moieties, quinoxaline and benzothiadiazole units for photovoltaic applications. Polym. Chem. 2016, 7(24), 4025−4035 doi: 10.1039/C6PY00652C

    25. [25]

      Duan, C.; Gao, K.; van Franeker J. J.; Liu, F.; Wienk, M. M.; Janssen, R. A. Toward practical useful polymers for highly efficient solar cells via a random copolymer approach. J. Am. Chem. Soc. 2016, 138(34), 10782−10785 doi: 10.1021/jacs.6b06418

    26. [26]

      Wang, W. Development of spiro [cyclopenta [1,2-b:5,4-b′] dithiophene-4,9′-fluorene] -based A-π-D-π-A small molecules with different acceptor units for efficient organic solar cells. ACS Appl. Mater. Interfaces 2017, 9(5), 4614−4625 doi: 10.1021/acsami.6b14114

    27. [27]

      Xu, X.; Zhang, G.; Zhao, Y.; Liu, J.; Li, Y.; Peng, Q. Highly efficient random terpolymers for photovoltaic applications with enhanced absorption and molecular aggregation. Chinese J. Polym. Sci. 2017, 35(2), 249−260 doi: 10.1007/s10118-017-1877-x

    28. [28]

      Tan, Z.; Li, S.; Wang, F.; Qian, D.; Lin, J.; Hou, J.; Li, Y. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Sci. Rep. 2014, 4, 4691

    29. [29]

      Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 2011, 23(14), 1679−1683 doi: 10.1002/adma.201004301

    30. [30]

      Xue, Z.; Wang, S.; Yang, J.; Zhong, Y.; Qian, M.; Li, C.; Zhang, Z.; Xing, G.; Huettner, S.; Tao, Y.; Li, Y.; Huang, W. Enhanced power conversion efficiency in iridium complex based terpolymers for polymer solar cells. npj Flex. Electron. 2018, 2, 1 doi: s41528-017-0014-9

    31. [31]

      Wan, Q.; Guo, X.; Wang, Z.; Li, W.; Guo, B.; Ma, W.; Zhang, M.; Li, Y. 10.8% Efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment. Adv. Funct. Mater. 2016, 26(36), 6635−6640 doi: 10.1002/adfm.v26.36

    32. [32]

      Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. Conjugated polymer-small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 2015, 137(25), 8176−8183 doi: 10.1021/jacs.5b03449

    33. [33]

      Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22(20), E135−E138 doi: 10.1002/adma.200903528

    34. [34]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138(13), 4657−4664 doi: 10.1021/jacs.6b01744

    35. [35]

      Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45(5), 723−733 doi: 10.1021/ar2002446

    36. [36]

      Prasad, S. K. K.; Gallaher, J. K.; Barker, A. J.; Woo, H. Y.; Abbas, M.; Hirsch, L.; Hodgkiss, J. M. Prof. SPIE 9926, 99231, 99231F-1

    37. [37]

      Zusan, A.; Gieseking, B.; Zerson, M.; Dyakonov, V.; Magerle, R.; Deibel, C. The effect of diiodooctane on the charge carrier generation in organic solar cells based on the copolymer PBDTTT-C. Sci. Rep. 2015, 5, 8286 doi: 10.1038/srep08286

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1439
  • HTML全文浏览量:  62
文章相关
  • 发布日期:  2018-10-01
  • 收稿日期:  2018-01-17
  • 接受日期:  2018-02-14
  • 网络出版日期:  2018-03-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章