Cyclotriphosphazene Fibre Reinforced Poly(benzoxazine-co-e-caprolactam) Nanocomposites for Flame Retardant Applications

M. Selvi S. Devaraju K. Sethuraman R. Revathi M. Alagar

Citation:  M. Selvi, S. Devaraju, K. Sethuraman, R. Revathi, M. Alagar. Cyclotriphosphazene Fibre Reinforced Poly(benzoxazine-co-e-caprolactam) Nanocomposites for Flame Retardant Applications[J]. Chinese Journal of Polymer Science, 2014, 32(8): 1086-1098. doi: 10.1007/s10118-014-1479-9 shu

Cyclotriphosphazene Fibre Reinforced Poly(benzoxazine-co-e-caprolactam) Nanocomposites for Flame Retardant Applications

  • 基金项目:

    This work was financially supported by the BRNS, G. No. 2012/37C/9/BRNS, Mumbai, Govt. of India.

摘要: Cyclophosphazene nanotube (PZT) incorporated poly(benzoxazine-co--caprolactam) (P(BZ-co-CPL)) nano-composites were developed for improving flame retardant properties. The effects of PZT on the flammability properties of P(BZ-co-CPL) matrix were evaluated through UL-94 flammability test and limiting oxygen index (LOI). The UL-94 results of P(BZ-co-CPL)/PZT hybrid nanocomposites showed V-1 rating, whereas neat P(BZ-co-CPL) showed burning rating. The LOI values are increased from 25.4 to 31.4 for 1.5 wt% PZT incorporated P(BZ-co-CPL) nanocomposite systems. SEM was used to study the char morphology of P(BZ-co-CPL)/PZT after being exposed to UL-94 flammability test. Data from thermal studies indicate that the PZT incorporated P(BZ-co-CPL) systems possess better Tg and thermal degradation behavior when compared to the neat P(BZ-co-CPL). The values of dielectric constant are decreased with increasing temperature. From the values, it is ascertained that the P(BZ-co-CPL)/PZT systems exhibit stable dielectric behavior with regard to variation in temperature. The TEM images ascertain the uniform dispersion of PZT in the P(BZ-co-CPL) matrix.

English


    1. [1]

      Beyer, G. and Morgan, A.B., in Flame Retardant Polymer Nanocomposites, ed. by Wilkie, C.A., John Wiley Sons, Inc. Hoboken, NJ, 2007, p. 163

    2. [2]

      Blomqvist, P., Rosell, L. and Simonson, M., Fire Technol., 2004, 40: 39

    3. [3]

      Blomqvist, P., Rosell, L. and Simonson, M., Fire Technol., 2004, 40: 59

    4. [4]

      Zaikov, G.E. and Lomakin, S.M., J. Appl. Polym. Sci., 1998, 68: 715

    5. [5]

      Lu, S.Y. and Hamerton, I., Prog. Polym. Sci., 2002, 27: 1661

    6. [6]

      Sen, A.K., Mukheriee, B., Bhattacharya, A.S., Sanghi, L.K., De, P.P. and Bhowmick, K., J. Appl. Polym. Sci., 1991, 43: 1673

    7. [7]

      Chiu, S.H. and Wang, W.K., Polymer, 1998, 39: 1951

    8. [8]

      Le Bras, M., Bugajny, M., Lefebvre, J. and Bourbigot, S., Polym. Int., 2000, 49: 1115

    9. [9]

      Bourbigot, S. and Flambard, X., Fire Mater., 2002, 26: 155

    10. [10]

      Chen, D., Wang, Y.Z., Hu, X.P., Wang, D.Y., Qu, M.H. and Yang, B., Polym. Degrad. Stab., 2005, 88: 349

    11. [11]

      Choi, J., Yee A.F. and Laine R.M., Macromolecules, 2003, 36: 5666

    12. [12]

      Bourbigot, S., Le Bras, M. and Troitzsch, J., Introduction, in Flammability Handbook, ed. J. Troitzsch, Hanser Verlag Pub., Munich, 2003, p. 3

    13. [13]

      Bourbigot, S. and Duquesne, S., J. Mater. Chem., 2007, 17: 2283

    14. [14]

      Allcock, H.R., in Phosphorus-Nitrogen Compounds, Academic Press, New York, 1972

    15. [15]

      Allen, C.W., Chem. Rev., 1991, 91: 119

    16. [16]

      Allcock, H.R., in Chemistry and Applications of Polyphosphazenes, ed. H.R. Allcock, John Wiley Sons, Inc., Hoboken, New Jersey, 2003, p. 407 and 662

    17. [17]

      Gleria, M. and Jaeger, R.D., in Phosphazenes: A Worldwide Insight, Nova Science Publishers Inc, New York, 2004

    18. [18]

      Miyata, K., Watanabe, Y., Itaya, T., Tanigami, T. and Inoue, K., Macromolecules, 1996, 29: 3694

    19. [19]

      Lu, S.Y. and Hamerton, I., Prog. Polym. Sci., 2002, 27: 1661

    20. [20]

      Ikeda, N., Utsumi, K., Fushimi, T. and Tada, Y., Phosphorus, Sulfur Silicon Relat. Elem., 2010, 185: 1521

    21. [21]

      Allcock, H.R., Chemistry and Applications of Polyphosphazenes; Wiley-Interscience: Hoboken, NJ, 2003, 19

    22. [22]

      Allen, C.W., J.Fire Sci., 1993, 11: 320

    23. [23]

      Bai, Y., Wang, X. and Wu, D., Ind. Eng. Chem. Res., 2012, 51: 15064

    24. [24]

      Lim, H. and Chang, J.Y., J. Mater. Chem., 2010, 20: 749

    25. [25]

      Wu, X., Zhou, Y., Liu, S.Z., Guo, Y.A., Qiu, J.J. and Liu, C.M., Polymer, 2011, 52: 1004

    26. [26]

      Hann, J.H., Chi, Y.L. and Chun, S.W., J. Appl. Polym. Sci., 2008, 110: 2413

    27. [27]

      Takeichi, T., Kawauchi, T. and Agag, T., Polym. J., 2008, 40: 1121

    28. [28]

      Ishida, H. and Allen, D.J., J. Polym. Sci. Part B: Polym. Phys.,1996, 34: 1019

    29. [29]

      Ghosh, N.N., Kiskan, B. and Yagci, Y., Prog. Polym. Sci., 2007, 32: 1344

    30. [30]

      Vengatesan, M. R., Devaraju, S., Dinakaran, K. and Alagar, M., J. Mater. Chem., 2012, 22: 7559

    31. [31]

      Zhang, W., Li, X. and Yang, R., Polym. Degrad. Stab., 2011, 96: 1821

    32. [32]

      Nagendiran, S., Alagar, M. and Hamerton, I., Acta Materialia, 2010, 58: 3345

    33. [33]

      Devaraju, S., Vengatesan, M.R., Selvi. M., Ashok Kumar, A. and Alagar, M., High Perform. Polym., 2012, 24: 85

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  993
  • HTML全文浏览量:  18
文章相关
  • 发布日期:  2014-08-05
  • 收稿日期:  2013-12-07
  • 修回日期:  2014-03-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章