Citation: Wen-Hui Yuan, Zi-Long Xia, Li Li. Synthesis and photocatalytic properties of core-shell TiO2@ZnIn2S4 photocatalyst[J]. Chinese Chemical Letters, ;2013, 24(11): 984-986. shu

Synthesis and photocatalytic properties of core-shell TiO2@ZnIn2S4 photocatalyst

  • Corresponding author: Wen-Hui Yuan, 
  • Received Date: 26 April 2013
    Available Online: 5 June 2013

  • A novel core-shell TiO2@ZnIn2S4 composite has been synthesized successfully by a simple and flexible hydrothermal route using TiO2 as precursors. The as-synthesized samples were characterized by X-ray diffraction, UV-vis diffuse reflectance spectra and transmission electron microscopy. The photocatalytic properties of samples were tested by degradation of aqueous methylene blue (MB) under visible light irradiation. It was found that the as-synthesized TiO2@ZnIn2S4 photocatalyst was more efficient than TiO2 and ZnIn2S4 in the photocatalytic degradation of MB. Moreover, TEM images confirmed the TiO2@ZnIn2S4 nanoparticles possessed a well-proportioned core-shell morphology.
  • 
    1. [1]

      [1] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photoch. Photobio. C 9 (2008) 1-12.

    2. [2]

      [2] A. Patsoura, D.I. Kondarides, X.E. Verykios, Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen, Catal. Today 124 (2007) 94-102.

    3. [3]

      [3] H.J. Tang, T.T. Han, Z.J. Luo, et al., Magnetite/N-doped carboxylate-rich carbon spheres: synthesis, characterization and visible-light-induced photocatalytic properties, Chin. Chem. Lett. 24 (2013) 63-66.

    4. [4]

      [4] J.H. Bi, L. Wu, J. Li, et al., Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies, Acta Mater. 55 (2007) 4699-4705.

    5. [5]

      [5] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

    6. [6]

      [6] I. Tsuji, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, J. Photoch. Photobio. A 163 (2004) 181-186.

    7. [7]

      [7] Z.B. Lei, W.S. You, M.Y. Liu, et al., Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method, Chem. Commun. 17 (2003) 2142-2143.

    8. [8]

      [8] X.L. Gou, F.Y. Cheng, Y.H. Shi, et al., Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route, J. Am. Chem. Soc. 128 (2006) 7222-7229.

    9. [9]

      [9] W.H. Yuan, X.C. Liu, L. Li, Improving photocatalytic performance for hydrogen generation over Co-doped ZnIn2S4 under visible light, Acta Phys. Chim. Sin. 29 (2013) 151-156.

    10. [10]

      [10] F. Fang, L. Chen, Y.B. Chen, et al., Synthesis and photocatalysis of ZnIn2S4 nano/micropeony, J. Phys. Chem. C 114 (2010) 2393-2397.

    11. [11]

      [11] Z.X. Chen, D.Z. Li, W.J. Zhang, et al., Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation, J. Phys. Chem. C 113 (2009) 4433-4440.

    12. [12]

      [12] S.J. Peng, Y.Z. Wu, P.N. Zhu, et al., Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films, J. Mater. Chem. 21 (2011) 15718-15726.

    13. [13]

      [13] S.H. Shen, L. Zhao, L.J. Guo, et al., Photocatalytic hydrogen evolution over Cudoped ZnIn2S4 under visible light irradiation, J. Phys. Chem. C 112 (2008) 16148-16155.

    14. [14]

      [14] X. Zong, H.J. Yan, G.P. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.

    15. [15]

      [15] Y.X. Li, J.X. Wang, S.Q. Peng, et al., Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation, Int. J. Hydrogen. Energ. 35 (2010) 7116-7126.

    16. [16]

      [16] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278.

    1. [1]

      [1] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photoch. Photobio. C 9 (2008) 1-12.

    2. [2]

      [2] A. Patsoura, D.I. Kondarides, X.E. Verykios, Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen, Catal. Today 124 (2007) 94-102.

    3. [3]

      [3] H.J. Tang, T.T. Han, Z.J. Luo, et al., Magnetite/N-doped carboxylate-rich carbon spheres: synthesis, characterization and visible-light-induced photocatalytic properties, Chin. Chem. Lett. 24 (2013) 63-66.

    4. [4]

      [4] J.H. Bi, L. Wu, J. Li, et al., Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies, Acta Mater. 55 (2007) 4699-4705.

    5. [5]

      [5] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

    6. [6]

      [6] I. Tsuji, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, J. Photoch. Photobio. A 163 (2004) 181-186.

    7. [7]

      [7] Z.B. Lei, W.S. You, M.Y. Liu, et al., Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method, Chem. Commun. 17 (2003) 2142-2143.

    8. [8]

      [8] X.L. Gou, F.Y. Cheng, Y.H. Shi, et al., Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route, J. Am. Chem. Soc. 128 (2006) 7222-7229.

    9. [9]

      [9] W.H. Yuan, X.C. Liu, L. Li, Improving photocatalytic performance for hydrogen generation over Co-doped ZnIn2S4 under visible light, Acta Phys. Chim. Sin. 29 (2013) 151-156.

    10. [10]

      [10] F. Fang, L. Chen, Y.B. Chen, et al., Synthesis and photocatalysis of ZnIn2S4 nano/micropeony, J. Phys. Chem. C 114 (2010) 2393-2397.

    11. [11]

      [11] Z.X. Chen, D.Z. Li, W.J. Zhang, et al., Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation, J. Phys. Chem. C 113 (2009) 4433-4440.

    12. [12]

      [12] S.J. Peng, Y.Z. Wu, P.N. Zhu, et al., Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films, J. Mater. Chem. 21 (2011) 15718-15726.

    13. [13]

      [13] S.H. Shen, L. Zhao, L.J. Guo, et al., Photocatalytic hydrogen evolution over Cudoped ZnIn2S4 under visible light irradiation, J. Phys. Chem. C 112 (2008) 16148-16155.

    14. [14]

      [14] X. Zong, H.J. Yan, G.P. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.

    15. [15]

      [15] Y.X. Li, J.X. Wang, S.Q. Peng, et al., Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation, Int. J. Hydrogen. Energ. 35 (2010) 7116-7126.

    16. [16]

      [16] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278.

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    4. [4]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    5. [5]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    6. [6]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    7. [7]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    10. [10]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    13. [13]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    14. [14]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    15. [15]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    16. [16]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    17. [17]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    18. [18]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

Metrics
  • PDF Downloads(0)
  • Abstract views(989)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return