Citation: Javad Safaei-Ghomi, Raheleh Teymuri, Hossein Shahbazi-Alavi, Abolfazl Ziarati. SnCl2/nano SiO2:A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans[J]. Chinese Chemical Letters, ;2013, 24(10): 921-925. shu

SnCl2/nano SiO2:A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans

  • Corresponding author: Javad Safaei-Ghomi, 
  • Received Date: 21 February 2013
    Available Online: 6 June 2013

    Fund Project:

  • A highly efficient and general method for the synthesis of polyfunctionalized 4H-pyrans is established through a one-pot multicomponent cyclocondensation of aromatic aldehydes with CH acids, malononitrile and ethyl acetoacetate using nano silica supported tin (Ⅱ) chloride as a catalyst. In this method SnCl2/nano SiO2 was used as green and reusable catalyst. Excellent yields, short reaction times, simple workup, and inexpensiveness and commercially availability of the catalyst are the advantages of this method.

    1. [1]

      [1] M.H. Elnagdi, H.A. Elfaham, G.E.H. Elgemeie, Utility of α,β-unsaturated nitrirles in heterocyclic synthesis, Heterocycles 20 (1983) 519-550.

    2. [2]

      [2] S. Goldmann, J. Stoltefus, 1,4-Dihydropyridines: effects of chirality and conformation on the calcium antagonist and calcium agonist activities, Angew. Chem. Int. Ed. Engl. 30 (1991) 1559-1578.

    3. [3]

      [3] L.L. Andreani, E. Lapi, Aspects and orientations of modern pharmacognosy, Boll. Chim. Farm. 99 (1960) 583-586.

    4. [4]

      [4] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.

    5. [5]

      [5] G.R. Green, J.M. Evans, A.K. Vong, Pyrans and their benzo derivatives synthesis, in: A.R. Katritsky, C. Rees, E.F.V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry Ⅱ, Pergamon Press, Oxford, 1995, p. 469.

    6. [6]

      [6] A. Sánchez, F. Hernández, P.C. Cruz, et al., Infrared irradiation-assisted multicomponent synthesis of 2-amino-3-cyano-4H-pyran derivatives, J. Mex. Chem. Soc. 56 (2012) 121-127.

    7. [7]

      [7] K. Urbahns, E. Horvath, J.P. Stasch, F. Mauler, 4-Phenyl-4H-pyrans as IKCa channel blockers, Bioorg. Med. Chem. Lett. 13 (2003) 2637-2639.

    8. [8]

      [8] I. Devi, P.J. Bhuyan, Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[ b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions, Tetrahedron Lett. 45 (2004) 8625-8627.

    9. [9]

      [9] A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89.

    10. [10]

      [10] D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.

    11. [11]

      [11] C. Ma, Y. Yang, Thiazolium-mediated multicomponent reactions: a facile synthesis of 3-aminofuran derivatives, Org. Lett. 7 (2005) 1343-1345.

    12. [12]

      [12] E. Soleimani, M.M. Khodaei, N. Batooie, M. Baghbanzadeh, Water-prompted synthesis of alkyl nitrile derivatives via Knoevenagel condensation and Michael addition reaction, Green Chem. 13 (2011) 566-569.

    13. [13]

      [13] G. Evano, N. Blanchard, M. Toumi, New copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis, Chem. Rev. 108 (2008) 3054-3131.

    14. [14]

      [14] N. Martin, C. Pascual, C. Seoane, J.L. Soto, The use of some activated nitriles in heterocyclic syntheses, Heterocycles 26 (1987) 2811-2816.

    15. [15]

      [15] S.E. Zayed, E.I. AbouElmaged, S.A. Metwally, M.H. Elnagdi, Reactions of sixmembered heterocyclic b-enaminonitriles with electrophilic reagents, Collect. Czech. Chem. Commun. 56 (1991) 2175-2182.

    16. [16]

      [16] D. Kumar, R.V. Buchi, S. Sharad, U. Dube, S. Kapur, A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes, Eur. J. Med. Chem. 44 (2009) 3805-3809.

    17. [17]

      [17] N. SeshuBabu, N. Pasha, K.T. VenkateswaraRao, P.S. Sai Prasad, N. Lingaiah, A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans, Tetrahedron Lett. 49 (2008) 2730-2733.

    18. [18]

      [18] D. Fang, J.M. Yang, H.B. Zhang, C.M. Jiao, Synthesis of 4H-pyrans catalyzed by thermol-regulated PEG1000-based ionic liquid/EM, J. Ind. Eng. Chem. 17 (2011) 386-388.

    19. [19]

      [19] P. Bhattacharyya, K. Pradhan, S. Paul, A.R. Das, Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media, Tetrahedron Lett. 53 (2012) 4687-4691.

    20. [20]

      [20] J. Wolinsky, H.S. Haue, Substituted γ-pyrans, J. Org. Chem. 34 (1969) 3169.

    21. [21]

      [21] J.C. Wilson, G.S. Mcgrath, S.A. Srinivasan, 4H-pyran charge control agents for electrostatographic toners and developers, US Patent, 6 221 550 (2001).

    22. [22]

      [22] P. Salehi, M. Dabiri, M.A. Zolfigol, M.A. Bodaghi Fard, Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett. 44 (2003) 2889-2891.

    23. [23]

      [23] M. Moghaddas, A. Davoodnia, M. Heravi, N. Tavakoli-Hoseini, Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and-thiones, Chin. J. Catal. 33 (2012) 706-710.

    24. [24]

      [24] D.C. Sherrington, A.P. Kybett, Supported Catalysts and Their Applications, The Royal Society of Chemistry, Cambridge, 2001p. 196.

    25. [25]

      [25] L. Huang, Z. Wang, T.P. Ang, J. Tan, P.K. Wong, A novel SiO2 supported Pd metal catalyst for the Heck reaction, Catal. Lett. 112 (2006) 219-225.

    26. [26]

      [26] V. Siddaiah, G.M. Basha, R. Srinuvasarao, S.K. Yadav, HClO4-SiO2: an efficient reusable catalyst for the synthesis of 3,4,5-trisubstituted 1,2,4-triazoles under solvent-free conditions, Catal. Lett. 141 (2011) 1511-1520.

    27. [27]

      [27] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst, Chin. Chem. Lett. 24 (2013) 195-198.

    28. [28]

      [28] J. Safaei-Ghomi, M.A. Ghasemzadeh, Zinc oxide nanoparticles: a highly efficient and readily recyclable catalyst for the synthesis of xanthenes, Chin. Chem. Lett. 23 (2012) 1225-1229.

    29. [29]

      [29] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Sonochemically synthesis of pyrazolones using reusable catalyst CuI nanoparticles that was prepared by sonication, Ultrason. Sonochem. 20 (2013) 1069-1075.

    30. [30]

      [30] H.R. Darabi, K. Aghapoor, F. Mohsenzadeh, et al., Heterogeneous SnCl2/SiO2 versus homogeneous SnCl2 acid catalysis in the benzo[N,N]-heterocyclic condensation, Bull. Korean Chem. Soc. 32 (2011) 213-218.

    31. [31]

      [31] B.F. Mirjalili, A. Bamoniri, A. Akbari, One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) promoted by nano-BF3 SiO2, J. Iran Chem. Soc. 8 (2011) S135-S140.

    32. [32]

      [32] M.M. Heravi, Y.S. Beheshtiha, Z. Pirnia, S. Sadjadi, M. Adibi, One-pot, threecomponent synthesis of 4H-pyrans using Cu(Ⅱ) oxymetasilicate, Synth. Commun. 39 (2009) 3663-3667.

    33. [33]

      [33] U.R. Pratap, D.V. Jawale, P.D. Netankar, R.A. Mane, Baker's yeast catalyzed one-pot three-component synthesis of polyfunctionalized 4H-pyrans, Tetrahedron Lett. 52 (2011) 5817-5819.

    34. [34]

      [34] S. Banerjee, Al Horn, H. Khatri, G. Sereda, A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst, Tetrahedron Lett. 52 (2011) 1878-1881.

    35. [35]

      [35] K. Urbahns, H.G. Heine, B. Junge, et al., Substituted 4H-pyrans with a modulating effect on calcium channels, EP Patents, 0758648 (1997).

    1. [1]

      [1] M.H. Elnagdi, H.A. Elfaham, G.E.H. Elgemeie, Utility of α,β-unsaturated nitrirles in heterocyclic synthesis, Heterocycles 20 (1983) 519-550.

    2. [2]

      [2] S. Goldmann, J. Stoltefus, 1,4-Dihydropyridines: effects of chirality and conformation on the calcium antagonist and calcium agonist activities, Angew. Chem. Int. Ed. Engl. 30 (1991) 1559-1578.

    3. [3]

      [3] L.L. Andreani, E. Lapi, Aspects and orientations of modern pharmacognosy, Boll. Chim. Farm. 99 (1960) 583-586.

    4. [4]

      [4] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.

    5. [5]

      [5] G.R. Green, J.M. Evans, A.K. Vong, Pyrans and their benzo derivatives synthesis, in: A.R. Katritsky, C. Rees, E.F.V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry Ⅱ, Pergamon Press, Oxford, 1995, p. 469.

    6. [6]

      [6] A. Sánchez, F. Hernández, P.C. Cruz, et al., Infrared irradiation-assisted multicomponent synthesis of 2-amino-3-cyano-4H-pyran derivatives, J. Mex. Chem. Soc. 56 (2012) 121-127.

    7. [7]

      [7] K. Urbahns, E. Horvath, J.P. Stasch, F. Mauler, 4-Phenyl-4H-pyrans as IKCa channel blockers, Bioorg. Med. Chem. Lett. 13 (2003) 2637-2639.

    8. [8]

      [8] I. Devi, P.J. Bhuyan, Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[ b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions, Tetrahedron Lett. 45 (2004) 8625-8627.

    9. [9]

      [9] A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89.

    10. [10]

      [10] D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.

    11. [11]

      [11] C. Ma, Y. Yang, Thiazolium-mediated multicomponent reactions: a facile synthesis of 3-aminofuran derivatives, Org. Lett. 7 (2005) 1343-1345.

    12. [12]

      [12] E. Soleimani, M.M. Khodaei, N. Batooie, M. Baghbanzadeh, Water-prompted synthesis of alkyl nitrile derivatives via Knoevenagel condensation and Michael addition reaction, Green Chem. 13 (2011) 566-569.

    13. [13]

      [13] G. Evano, N. Blanchard, M. Toumi, New copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis, Chem. Rev. 108 (2008) 3054-3131.

    14. [14]

      [14] N. Martin, C. Pascual, C. Seoane, J.L. Soto, The use of some activated nitriles in heterocyclic syntheses, Heterocycles 26 (1987) 2811-2816.

    15. [15]

      [15] S.E. Zayed, E.I. AbouElmaged, S.A. Metwally, M.H. Elnagdi, Reactions of sixmembered heterocyclic b-enaminonitriles with electrophilic reagents, Collect. Czech. Chem. Commun. 56 (1991) 2175-2182.

    16. [16]

      [16] D. Kumar, R.V. Buchi, S. Sharad, U. Dube, S. Kapur, A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes, Eur. J. Med. Chem. 44 (2009) 3805-3809.

    17. [17]

      [17] N. SeshuBabu, N. Pasha, K.T. VenkateswaraRao, P.S. Sai Prasad, N. Lingaiah, A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans, Tetrahedron Lett. 49 (2008) 2730-2733.

    18. [18]

      [18] D. Fang, J.M. Yang, H.B. Zhang, C.M. Jiao, Synthesis of 4H-pyrans catalyzed by thermol-regulated PEG1000-based ionic liquid/EM, J. Ind. Eng. Chem. 17 (2011) 386-388.

    19. [19]

      [19] P. Bhattacharyya, K. Pradhan, S. Paul, A.R. Das, Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media, Tetrahedron Lett. 53 (2012) 4687-4691.

    20. [20]

      [20] J. Wolinsky, H.S. Haue, Substituted γ-pyrans, J. Org. Chem. 34 (1969) 3169.

    21. [21]

      [21] J.C. Wilson, G.S. Mcgrath, S.A. Srinivasan, 4H-pyran charge control agents for electrostatographic toners and developers, US Patent, 6 221 550 (2001).

    22. [22]

      [22] P. Salehi, M. Dabiri, M.A. Zolfigol, M.A. Bodaghi Fard, Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett. 44 (2003) 2889-2891.

    23. [23]

      [23] M. Moghaddas, A. Davoodnia, M. Heravi, N. Tavakoli-Hoseini, Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and-thiones, Chin. J. Catal. 33 (2012) 706-710.

    24. [24]

      [24] D.C. Sherrington, A.P. Kybett, Supported Catalysts and Their Applications, The Royal Society of Chemistry, Cambridge, 2001p. 196.

    25. [25]

      [25] L. Huang, Z. Wang, T.P. Ang, J. Tan, P.K. Wong, A novel SiO2 supported Pd metal catalyst for the Heck reaction, Catal. Lett. 112 (2006) 219-225.

    26. [26]

      [26] V. Siddaiah, G.M. Basha, R. Srinuvasarao, S.K. Yadav, HClO4-SiO2: an efficient reusable catalyst for the synthesis of 3,4,5-trisubstituted 1,2,4-triazoles under solvent-free conditions, Catal. Lett. 141 (2011) 1511-1520.

    27. [27]

      [27] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst, Chin. Chem. Lett. 24 (2013) 195-198.

    28. [28]

      [28] J. Safaei-Ghomi, M.A. Ghasemzadeh, Zinc oxide nanoparticles: a highly efficient and readily recyclable catalyst for the synthesis of xanthenes, Chin. Chem. Lett. 23 (2012) 1225-1229.

    29. [29]

      [29] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Sonochemically synthesis of pyrazolones using reusable catalyst CuI nanoparticles that was prepared by sonication, Ultrason. Sonochem. 20 (2013) 1069-1075.

    30. [30]

      [30] H.R. Darabi, K. Aghapoor, F. Mohsenzadeh, et al., Heterogeneous SnCl2/SiO2 versus homogeneous SnCl2 acid catalysis in the benzo[N,N]-heterocyclic condensation, Bull. Korean Chem. Soc. 32 (2011) 213-218.

    31. [31]

      [31] B.F. Mirjalili, A. Bamoniri, A. Akbari, One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) promoted by nano-BF3 SiO2, J. Iran Chem. Soc. 8 (2011) S135-S140.

    32. [32]

      [32] M.M. Heravi, Y.S. Beheshtiha, Z. Pirnia, S. Sadjadi, M. Adibi, One-pot, threecomponent synthesis of 4H-pyrans using Cu(Ⅱ) oxymetasilicate, Synth. Commun. 39 (2009) 3663-3667.

    33. [33]

      [33] U.R. Pratap, D.V. Jawale, P.D. Netankar, R.A. Mane, Baker's yeast catalyzed one-pot three-component synthesis of polyfunctionalized 4H-pyrans, Tetrahedron Lett. 52 (2011) 5817-5819.

    34. [34]

      [34] S. Banerjee, Al Horn, H. Khatri, G. Sereda, A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst, Tetrahedron Lett. 52 (2011) 1878-1881.

    35. [35]

      [35] K. Urbahns, H.G. Heine, B. Junge, et al., Substituted 4H-pyrans with a modulating effect on calcium channels, EP Patents, 0758648 (1997).

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    3. [3]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    7. [7]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    8. [8]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    11. [11]

      Haoyu LuoJinsong ChenMengfei LuoHui MaShengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367

    12. [12]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    13. [13]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    14. [14]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    15. [15]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    16. [16]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    17. [17]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    18. [18]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    19. [19]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(1034)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return