Citation: Ying Meng, Guan Wang, Yue Li, Kuan Hou, Yue Yuan, Li-Juan Zhang, Hong-Rui Song, Wei Shi. Synthesis and biological evaluation of new pyrrolopyrazinone compounds as potential antitumor agents[J]. Chinese Chemical Letters, ;2013, 24(07): 619-621. shu

Synthesis and biological evaluation of new pyrrolopyrazinone compounds as potential antitumor agents

  • Corresponding author: Hong-Rui Song,  Wei Shi, 
  • Received Date: 6 March 2013
    Available Online: 28 March 2013

  • A series of pyrrolo[1,2-a]pyrazinone compounds (5a-9f) were synthesized, and their cytotoxic activity against SKOV-3, A549, HeLa cells in vitro were evaluated by the MTT method. Some of the compounds showed potential antitumor activity against three tumor cell lines. Among them, compounds 9c and 9d showed the most potent cytotoxic activity. The preliminary mechanism of action was discussed.
  • 加载中
    1. [1]

      [1] F. Deng, J.J. Lu, H.Y. Liu, Synthesis and antitumor activity of novel salvicine analogues, Chin. Chem. Lett. 22 (2011) 25-28.

    2. [2]

      [2] E.N. Delphine, M. Peter, L. Thomas, Chiroptical analysis of marine sponge alkaloids sharing the pyrrolopyrazinone core, Chem. Eur. J. 10 (2004) 1141-1148.

    3. [3]

      [3] A. Umeyama, S. Ito, E. Yuasa, et al., A new bromopyrrole alkaloid and the optical resolution of the racemate from the marine sponge Homaxinella sp., J. Nat. Prod. 61 (1998) 1433-1434.

    4. [4]

      [4] G.B. Martin, M.B. Andrew, C.W. Anthony, First syntheses of the pyrroloketopiperazine marine natural products (±)-longamide, (±)-longamide B, (±)-longamide B methyl ester and (±)-hanishin, New J. Chem. 23 (1999) 687-690.

    5. [5]

      [5] R.B. Kinnel, H.P. Gehrken, R. Swali, Palau'amine and its congeners: a family of bioactive bisguanidines from the marine sponge Stylotella aurantium 1, J. Org. Chem. 63 (1998) 3281-3286.

    6. [6]

      [6] L. Thomas, J.E.N. Delphine, Z. Michael, Study on the absolute configuration of ()-palau'amine, Tetrahedron Lett. 51 (2010) 6353-6355.

    7. [7]

      [7] Data for new compounds. 5a: Yield 62%. Mp: 147-150℃; ESI-MS: m/z 163.9[M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 6.95 (s, 1H), 6.63 (d, 1H), 6.19-6.12 (m, 1H), 4.83 (s, 1H), 4.67 (s, 2H), 1.13 (s, 3H). 5b: Yield 67%. Mp: 153-155℃; ESI-MS: m/z 192.2 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 6.99-6.93 (m, 1H), 6.60 (dd, 1H), 6.13 (dd, 1H), 4.24 (d, 1H), 3.89 (d, 1H), 3.51 (dt, 1H), 3.36-3.24 (m, 2H), 3.13 (m, 2H), 1.17 (s, 3H). 6a: Yield 31%. Mp: 144-146℃; ESI-MS: m/z 205.9 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.32 (dd, 1H), 7.24 (s, 1H), 6.83-6.80 (m, 1H), 6.50 (dd, 1H), 5.37 (s, 1H), 2.20 (s, 3H), 1.13 (s, 3H). 6b: Yield 27%. Mp: 182-185℃; ESIMS: m/z 234.2 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.33 (m, 1H), 7.25 (dd, 1H), 6.84 (dd, 1H), 6.50 (s, 1H), 4.06 (m, 2H), 3.50 (m, 2H), 2.24 (s, 3H), 1.23 (s, 3H). 6c: Yield 36%. Mp: 176-178℃; ESI-MS: m/z 261.9 [M+Na]+; 1H NMR (300 MHz, DMSO-d6): δ 7.33 (dd, 1H), 7.24 (s, 1H), 6.84-6.79 (m, 1H), 6.50 (dd, 1H), 5.39 (s, 2H), 2.21 (s, 3H). 6d: Yield 34%. Mp: 200-202℃; ESI-MS: m/z 267.9 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.11-7.05 (m, 1H), 6.66 (dd, 1H), 6.14 (dd, 1H), 4.94 (d, 1H), 4.94 (d, 1H), 4.51-4.29 (m, 1H), 4.07 (dt, 1H), 3.99 (d, 1H), 3.95-3.78 (m, 1H), 3.73 (dd, 1H), 3.45 (dt, 1H), 1.40 (s, 3H). 8a: Yield 73%. Mp: 139-141℃; ESIMS: m/z 240 [M]+; 1H NMR (300 MHz, DMSO-d6): δ 7.44 (d, J=8.2 Hz, 1H), 7.09 (s, 1H), 7.03 (d, J=8.2 Hz, 2H), 6.66 (d, 1H), 6.55 (s, 1H), 5.93-5.88 (m, 1H), 5.50 (s, 2H), 2.20 (s, 3H). 8b: Yield 78%. Mp: 191-193℃; ESI-MS: m/z 268 [M]+, 1H NMR (300 MHz, DMSO-d6): δ 7.11 (d, 2H, J=8.2 Hz), 7.03 (d, 2H, J=8.2 Hz), 6.72-6.67 (m, 1H), 6.56 (dd, 1H), 5.97 (dd, 1H), 4.55 (d, 1H), 4.30 (t, 1H), 4.23 (d, 1H), 3.54 (dt, 1H), 3.47-3.35 (m, 1H), 2.18 (s, 3H), 1.02 (t, 2H). 9a: Yield 29%. Mp: 111-112℃; ESI-MS: m/z 282 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.52 (s, 1H), 7.45 (dd, 1H), 7.37 (s, 1H), 7.27 (d, 2H, J=8.1 Hz), 7.19 (d, 2H, J=8.1 Hz), 6.96 (d, 1H, J=3.9 Hz), 6.57 (dd, 1H, J=3.9, 2.6 Hz), 2.31 (s, 3H), 1.71 (s, 3H). 9b: Yield 31%. Mp: 194-197℃; ESI-MS: m/z 310 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.18 (d, 2H, J=8.3 Hz), 7.13-7.09 (m, 1H), 7.06 (d, 2H, J=8.3 Hz), 6.60 (dd, 1H), 6.09 (dd, 1H), 5.62 (d, 1H, J=13.0 Hz), 4.34 (d, 1H, J=13.0 Hz), 4.22-4.10 (m, 1H), 3.94 (dd, 1H), 3.88-3.77 (m, 1H), 3.62 (dt, 1H), 2.21 (s, 3H), 2.04 (s, 3H). 9c: Yield 23%. Mp: 110-113℃; ESI-MS: m/z 316 [M+H]+; 1H NMR(300 MHz, DMSO-d6): δ 7.90 (d, 2H, J=8.2 Hz), 7.35 (d, 2H, J=8.2 Hz), 7.13-7.08 (m, 1H), 6.87 (dd, 1H), 6.14 (dd, 1H), 5.81 (s, 2H), 3.57 (s, 2H), 2.37 (s, 3H). 9d: Yield 23%. Mp: 191-193℃; ESI-MS: m/z 343.9 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.15 (d, 2H, J=8.3 Hz), 7.12-7.09 (m, 1H), 7.05 (d, 2H, J=8.3 Hz), 6.59 (dd, 1H), 6.07 (dd, 1H), 5.60 (d, 1H), 4.40 (dt, 3H), 4.16 (dt, 1H), 4.03-3.80 (m, 2H), 3.62 (dt, 1H), 2.18 (s, 3H). 9e: Yield 32%. Mp: 123-125℃; ESI-MS: m/z 330 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.71 (s, 1H), 7.49-7.33 (m, 2H), 7.25 (d, 2H, J=7.9 Hz), 7.17 (d, 2H, J=7.9 Hz), 6.97 (s, 1H), 6.57 (s, 1H), 3.57 (t, 2H), 2.70-2.52 (m, 2H), 2.28 (s, 3H). 9f: Yield 27%. Mp: 192-194℃; ESI-MS: m/z 357.5 [M+H]+, 380 [M+Na]+; 1H NMR (300 MHz, DMSOd6): δ 7.18 (d, 2H, J=8.3 Hz), 7.12 (d, 1H), 7.04 (d, 2H, J=8.3 Hz), 6.71-6.51 (m, 2H), 6.26-6.00 (m, 2H), 5.82-5.52 (m, 2H), 4.33 (m, 1H), 4.22-4.09 (m, 1H), 4.04 (m, 1H), 3.99-3.89 (m, 1H), 3.73 (dt, 1H), 3.68-3.54 (m, 1H), 2.18 (s, 3H).

  • 加载中
    1. [1]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    2. [2]

      Li FuZiye SuShuyang WuYanfen ChengChuan HuJinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227

    3. [3]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    4. [4]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    5. [5]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    6. [6]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    7. [7]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    10. [10]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    13. [13]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    14. [14]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    15. [15]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    16. [16]

      Hu WuGe CaoMingyang LiuHainan XuMeng LiHanwei HuangYujie LiuXu ZhaoXifeng QinOnder ErgonulFüsun CanFunan LiuZhiqing PangJiaming Zhu . Tumor cell membrane biomimetic liposomes-coated oncolytic viruses to target the homotypic tumor and augment the antitumor efficacy. Chinese Chemical Letters, 2025, 36(7): 110493-. doi: 10.1016/j.cclet.2024.110493

    17. [17]

      Yixin SunKeke YuXiuchun GuoLanlan ZongZhonggui HeXiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393

    18. [18]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    19. [19]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    20. [20]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

Metrics
  • PDF Downloads(0)
  • Abstract views(867)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return