Citation: Jian-Chao Liu, Ying Liang, Hong-Wu He. Synthesis, characterization and herbicidal activity of new thiazoline derivatives[J]. Chinese Chemical Letters, ;2013, 24(3): 233-235. shu

Synthesis, characterization and herbicidal activity of new thiazoline derivatives

  • Corresponding author: Hong-Wu He, 
  • Received Date: 19 November 2012
    Available Online: 6 January 2013

  • A series of new thiazoline derivatives 2-alkyl(aryl) imino-4-amino-5-ethoxycarbonyl-3-phenyl-3Hthiazoline (3) and bis(2-imino-4-amino-5-ethoxycarbonyl-3-phenyl-3H-thiazoline alkylene (4) have been synthesized by reactions of intermediate 4-amino-5-ethoxycarbonyl-2-methylthio-3-phenyl-3H-thiazolinium sulphate (2) with alkylamines or arylamine in 64%-89% yields. The structures of 3 and 4 have been confirmed by 1H NMR, EI-MS, IR spectroscopy and elemental analyses. Some compounds exhibited high or moderate herbicidal activities against the roots of rapeseed and barnyard grass at 100 mg/L.
  • 
    1. [1]

      [1] A.C. Gaumont, M. Gulea, J. Levillain, Overview of the chemistry of 2-thiazolines, J. Chem. Rev. 109 (2009) 1371-1401.

    2. [2]

      [2] K. Gholivand, S. Farshadian, M.F. Erben, C.O.D. Vedova, Synthesis and characterization of the first phosphonic diamide containing thiazolyl gtoups: structural properties and tautomeric equilibrium, J. Mol. Struct. 978 (2010) 67-73.

    3. [3]

      [3] A. Hirashima, A. Rafaeli, C. Gileadi, E. Kuwano, Three-dimensional quantitative structure-activity studies of octopaminergic agonists responsible for the inhibition of sexoheromone production in Hercoverpa armigera, Bioorg. Med. Chem. 7 (1999) 2621-2628.

    4. [4]

      [4] A. Hirashima, M. Morimoto, E. Kuwano, E. Taniguchi, M. Eto, Three-dimensional common-feature hypotheses for octopamine agonist 2-(arylimino)imidazolidines, Bioorg. Med. Chem. 10 (2002) 117-123.

    5. [5]

      [5] R. Caujolle, H. Amarouch, M. Payard, et al., Aminothiazine and aminothiazole open analogs of levamisole: synthesis and anthelminthic activity, Eur. J. Med. Chem. 24 (1989) 287-291.

    6. [6]

      [6] P.E. Bender, D.T. Hill, P.H. Offen, et al., 5,6-Diaryl-2,3-dihydroimidazo[2,1-b]thiazoles: a new class of immunoregulatory antiinflammatory agents, J. Med. Chem. 28 (1985) 1169-1177.

    7. [7]

      [7] X.Y. Xu, X.H. Qian, Z. Li, G.H. Song, W.D. Chen, Synthesis and fungicidal activity of fluorine-containing phenylimino-thiazolidines derivatives, J. Fluor. Chem. 125 (2004) 1159-1162.

    8. [8]

      [8] C.X. Liu, X.Y. Xu, Z. Li, et al., Synthesis and biological activities of hydroxylprotected fluorine-containing 4,4-dihydroxylmethyl-2-aryl-iminothiazolidines, J. Fluor. Chem. 126 (2005) 53-58.

    9. [9]

      [9] K. Takasu, K. Pudhom, M. Kaiser, R. Brun, M. Ihara, Synthesis and antimalarial efficacy of aza-fused rhodacyanines in vitro and in the P. berghei mouse model, J. Med. Chem. 49 (2006) 4795-4798.

    10. [10]

      [10] R.H. Mizzoni, P.C. Eisman, Some thiazolines and thiazolidinones with antituberculous activity, J. Am. Chem. Soc. 80 (1958) 3471-3475.

    11. [11]

      [11] G. Turan-Zitouni, D.M. Sivaci, Z.A. Kaplancikli, A. Ozdemir, Synthesis and antimicrobial activity of some pyridinyliminothiazoline derivatives, Il Farmaco 57 (2002) 569-572.

    12. [12]

      [12] M.W. Ding, S.J. Yang, J. Zhu, New efficient synthesis of 2-substituted 5,6,7,8-tetrahydro-benzo-thieno[2,3-d]pyrimidin-4(3H)-ones, Synthesis 1 (2004) 75-79.

    13. [13]

      [13] J.C. Liu, H.W. He, Synthesis, characterization and fungicidal activity of new thienopyridopyrimidine derivatives, Synth. Commun. 42 (2012) 2075-2082.

    14. [14]

      [14] B.F. Han, Q.M. Shi, X.F. Wang, et al., Synthesis and bioactivity of novel 3-(1-hydroxyethylidene)-5-substituted-pyrrolidine-2,4-dione derivatives, Chin. Chem. Lett. 23 (2012) 1023-1026.

    1. [1]

      [1] A.C. Gaumont, M. Gulea, J. Levillain, Overview of the chemistry of 2-thiazolines, J. Chem. Rev. 109 (2009) 1371-1401.

    2. [2]

      [2] K. Gholivand, S. Farshadian, M.F. Erben, C.O.D. Vedova, Synthesis and characterization of the first phosphonic diamide containing thiazolyl gtoups: structural properties and tautomeric equilibrium, J. Mol. Struct. 978 (2010) 67-73.

    3. [3]

      [3] A. Hirashima, A. Rafaeli, C. Gileadi, E. Kuwano, Three-dimensional quantitative structure-activity studies of octopaminergic agonists responsible for the inhibition of sexoheromone production in Hercoverpa armigera, Bioorg. Med. Chem. 7 (1999) 2621-2628.

    4. [4]

      [4] A. Hirashima, M. Morimoto, E. Kuwano, E. Taniguchi, M. Eto, Three-dimensional common-feature hypotheses for octopamine agonist 2-(arylimino)imidazolidines, Bioorg. Med. Chem. 10 (2002) 117-123.

    5. [5]

      [5] R. Caujolle, H. Amarouch, M. Payard, et al., Aminothiazine and aminothiazole open analogs of levamisole: synthesis and anthelminthic activity, Eur. J. Med. Chem. 24 (1989) 287-291.

    6. [6]

      [6] P.E. Bender, D.T. Hill, P.H. Offen, et al., 5,6-Diaryl-2,3-dihydroimidazo[2,1-b]thiazoles: a new class of immunoregulatory antiinflammatory agents, J. Med. Chem. 28 (1985) 1169-1177.

    7. [7]

      [7] X.Y. Xu, X.H. Qian, Z. Li, G.H. Song, W.D. Chen, Synthesis and fungicidal activity of fluorine-containing phenylimino-thiazolidines derivatives, J. Fluor. Chem. 125 (2004) 1159-1162.

    8. [8]

      [8] C.X. Liu, X.Y. Xu, Z. Li, et al., Synthesis and biological activities of hydroxylprotected fluorine-containing 4,4-dihydroxylmethyl-2-aryl-iminothiazolidines, J. Fluor. Chem. 126 (2005) 53-58.

    9. [9]

      [9] K. Takasu, K. Pudhom, M. Kaiser, R. Brun, M. Ihara, Synthesis and antimalarial efficacy of aza-fused rhodacyanines in vitro and in the P. berghei mouse model, J. Med. Chem. 49 (2006) 4795-4798.

    10. [10]

      [10] R.H. Mizzoni, P.C. Eisman, Some thiazolines and thiazolidinones with antituberculous activity, J. Am. Chem. Soc. 80 (1958) 3471-3475.

    11. [11]

      [11] G. Turan-Zitouni, D.M. Sivaci, Z.A. Kaplancikli, A. Ozdemir, Synthesis and antimicrobial activity of some pyridinyliminothiazoline derivatives, Il Farmaco 57 (2002) 569-572.

    12. [12]

      [12] M.W. Ding, S.J. Yang, J. Zhu, New efficient synthesis of 2-substituted 5,6,7,8-tetrahydro-benzo-thieno[2,3-d]pyrimidin-4(3H)-ones, Synthesis 1 (2004) 75-79.

    13. [13]

      [13] J.C. Liu, H.W. He, Synthesis, characterization and fungicidal activity of new thienopyridopyrimidine derivatives, Synth. Commun. 42 (2012) 2075-2082.

    14. [14]

      [14] B.F. Han, Q.M. Shi, X.F. Wang, et al., Synthesis and bioactivity of novel 3-(1-hydroxyethylidene)-5-substituted-pyrrolidine-2,4-dione derivatives, Chin. Chem. Lett. 23 (2012) 1023-1026.

  • 加载中
    1. [1]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    2. [2]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    5. [5]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    6. [6]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    7. [7]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    8. [8]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    9. [9]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    10. [10]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    11. [11]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    12. [12]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    13. [13]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    14. [14]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    15. [15]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    16. [16]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    17. [17]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    18. [18]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    19. [19]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    20. [20]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

Metrics
  • PDF Downloads(0)
  • Abstract views(865)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return