Citation: Yong-Sen Sun, Ai-Ling Li, Fu-Jian Xu, Dong Qiu. A low-temperature sol-gel route for the synthesis of bioactive calcium silicates[J]. Chinese Chemical Letters, ;2013, 24(2): 170-172. shu

A low-temperature sol-gel route for the synthesis of bioactive calcium silicates

  • Corresponding author: Dong Qiu, 
  • Received Date: 14 August 2012
    Available Online: 28 November 2012

    Fund Project: The authors are grateful to the financial support from National Natural Science Foundation of China (No. 51173193) (No. 51173193) State Key Development Program of Basic Research of China (No. 2012CB933200) (No. 2012CB933200)Chinese Academy of Sciences (No. KJCX2-YW-H19). (No. KJCX2-YW-H19)

  • Sol-gel-derived bioactive calcium silicates, synthesized from calcium nitrate tetrahydrate and calcium 2-methoxyethoxide as calcium precursor respectively, were calcified under different temperatures. A series of techniques including SEM, TGA, solid 29Si NMR, nitrogen adsorption, and simulated body fluids (SBF) soaking were employed to study their textural features and in vitro bioactivity. It was confirmed that calcium 2-methoxyethoxide is a promising candidate of calcium precursor for bioactive calcium silicates stabilized under low temperatures. This has implications in fabrication of organic-inorganic hybrid composites.
    1. [1]

      [1] P. Saravanapavan, J.R. Jones, S. Verrier, et al., Binary CaO-SiO2 gel-glasses for biomedical applications, Biomed. Mater. Eng. 14 (2004) 467-486.

    2. [2]

      [2] J.R. Jones, L.M. Ehrenfried, L.L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 27 (2006) 964-973.

    3. [3]

      [3] M.M. Pereira, J.R. Jones, R.L. Orefice, et al., Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method, J. Mater. Sci. Mater. Med. 16 (2005) 1045-1050.

    4. [4]

      [4] G. Poologasundarampillai, C. Ionescu, O. Tsigkou, et al., Synthesis of bioactive class Ⅱ poly(gamma-glutamic acid)/silica hybrids for bone regeneration, J. Mater. Chem. 20 (2010) 8952-8961.

    5. [5]

      [5] M.M. Pereira, J.R. Jones, L.L. Hench, Bioactive glass and hybrid scaffolds prepared by sol-gel method for bone tissue engineering, Adv. Appl. Ceram. 104 (2005) 35-42.

    6. [6]

      [6] L.C. Bandeira, K.J. Ciuffi, P.S. Calefi, et al., Silica matrix doped with calcium and phosphate by sol-gel, Adv. Biosci. Biotechnol. 1 (2010) 200-207.

    7. [7]

      [7] T. Hayashi, H. Saito, Preparation of CaO-SiO2 glasses by the gel method, J. Mater. Sci. 15 (1980) 1971-1977.

    8. [8]

      [8] A. Mori, C. Ohtsuki, T. Miyazaki, et al., Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltrimethoxysilane and calcium acetate, J. Mater. Sci. Mater. Med. 16 (2005) 713-718.

    9. [9]

      [9] E.M. Valliant, C.A. Turdean-Ionescu, J.V. Hanna, et al., Role of pH and temperature on silica network formation and calcium incorporation into sol-gel derived bioactive glasses, J. Mater. Chem. 22 (2012) 1613-1619.

    10. [10]

      [10] S. Lin, C. Ionescu, K.J. Pike, et al., Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass, J. Mater. Chem. 19 (2009) 1276-1282.

    11. [11]

      [11] A. Ramila, F. Balas, M. Vallet-Regi, Synthesis routes for bioactive sol-gel glasses: alkoxides versus nitrates, Chem. Mater. 14 (2002) 542-548.

    12. [12]

      [12] T. Kokubo, H. Kushitani, S. Sakka, et al., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721-734.

    1. [1]

      [1] P. Saravanapavan, J.R. Jones, S. Verrier, et al., Binary CaO-SiO2 gel-glasses for biomedical applications, Biomed. Mater. Eng. 14 (2004) 467-486.

    2. [2]

      [2] J.R. Jones, L.M. Ehrenfried, L.L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 27 (2006) 964-973.

    3. [3]

      [3] M.M. Pereira, J.R. Jones, R.L. Orefice, et al., Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method, J. Mater. Sci. Mater. Med. 16 (2005) 1045-1050.

    4. [4]

      [4] G. Poologasundarampillai, C. Ionescu, O. Tsigkou, et al., Synthesis of bioactive class Ⅱ poly(gamma-glutamic acid)/silica hybrids for bone regeneration, J. Mater. Chem. 20 (2010) 8952-8961.

    5. [5]

      [5] M.M. Pereira, J.R. Jones, L.L. Hench, Bioactive glass and hybrid scaffolds prepared by sol-gel method for bone tissue engineering, Adv. Appl. Ceram. 104 (2005) 35-42.

    6. [6]

      [6] L.C. Bandeira, K.J. Ciuffi, P.S. Calefi, et al., Silica matrix doped with calcium and phosphate by sol-gel, Adv. Biosci. Biotechnol. 1 (2010) 200-207.

    7. [7]

      [7] T. Hayashi, H. Saito, Preparation of CaO-SiO2 glasses by the gel method, J. Mater. Sci. 15 (1980) 1971-1977.

    8. [8]

      [8] A. Mori, C. Ohtsuki, T. Miyazaki, et al., Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltrimethoxysilane and calcium acetate, J. Mater. Sci. Mater. Med. 16 (2005) 713-718.

    9. [9]

      [9] E.M. Valliant, C.A. Turdean-Ionescu, J.V. Hanna, et al., Role of pH and temperature on silica network formation and calcium incorporation into sol-gel derived bioactive glasses, J. Mater. Chem. 22 (2012) 1613-1619.

    10. [10]

      [10] S. Lin, C. Ionescu, K.J. Pike, et al., Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass, J. Mater. Chem. 19 (2009) 1276-1282.

    11. [11]

      [11] A. Ramila, F. Balas, M. Vallet-Regi, Synthesis routes for bioactive sol-gel glasses: alkoxides versus nitrates, Chem. Mater. 14 (2002) 542-548.

    12. [12]

      [12] T. Kokubo, H. Kushitani, S. Sakka, et al., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721-734.

  • 加载中
    1. [1]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    4. [4]

      Haoyu LuoJinsong ChenMengfei LuoHui MaShengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367

    5. [5]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    6. [6]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    7. [7]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    8. [8]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    9. [9]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    10. [10]

      Mengxiao YangHaicheng HuangShiyi ShenXinxin LiuMengyu LiuJiahua GuoFenghui YangBaoli ZhaJiansheng WuSheng LiFengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988

    11. [11]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    14. [14]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    15. [15]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    16. [16]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    17. [17]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    18. [18]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

Metrics
  • PDF Downloads(0)
  • Abstract views(946)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return