正六棱型MoO3-x微米柱光催化剂的制备及性能

唐飞 杜多勤 谭芸妃 秦莉晓

引用本文: 唐飞, 杜多勤, 谭芸妃, 秦莉晓. 正六棱型MoO3-x微米柱光催化剂的制备及性能[J]. 应用化学, 2021, 38(1): 92-98. doi: 10.19894/j.issn.1000-0518.190335 shu
Citation:  Fei TANG, Duo-Qin DU, Yun-Fei TAN, Li-Xiao QIN. Preparation and Characterization of MoO3-x Hexagonal Microrods as High-Efficiency Photocatalysts[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 92-98. doi: 10.19894/j.issn.1000-0518.190335 shu

正六棱型MoO3-x微米柱光催化剂的制备及性能

    通讯作者: 秦莉晓, E-mail: lxqin@cqu.edu.cn
  • 基金项目:

    国家自然科学基金 21776025

    中央高校基本科研业务费 2018CDKYGL0002

    中央高校基本科研业务费 2018CDKYHG0028

    重庆市基础研究与前沿技术研究计划 CSTC2016JCYJA0474

摘要: 首先采用低温水相合成法制备了正六棱型MoO3微米柱,然后以抗坏血酸为还原剂一步还原法制备了一种表面氧空位可控的MoO3-x光催化材料。MoO3-x具有较窄的禁带宽度和较大的光吸收范围。以罗丹明B为模拟污染物的光催化降解实验表明,随着氧空位的增加,MoO3-x的催化活性明显增加。对于Mo5+摩尔分数为20.1%的MoO2.799样品,降解90%的初始质量浓度为10 mg/L的罗丹明溶液只需要60 min。本研究为高性能半导体光催化材料的制备提供了一种新思路。

English

    1. [1]

      LOW J X, YU J G, JARONIEC M. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20):  1601694.1-1601694.20.

    2. [2]

      FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surf Sci Rep, 2008, 63(12):  515-582. doi: 10.1016/j.surfrep.2008.10.001

    3. [3]

      CHEN X B, LIU L, YU P Y. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018):  746-750. doi: 10.1126/science.1200448

    4. [4]

      XIA Y C, WY C S, ZHAO N Y. Spongy MoO3 hierarchical nanostructures for excellent performance ethanol sensor[J]. Mater Lett, 2016, 171:  117-120. doi: 10.1016/j.matlet.2015.12.159

    5. [5]

      胡媛. 层状化合物三氧化钼的制备及其光电性质研究[D]. 安徽: 安徽大学, 2007.HU Y. Study on synthesis and photoelectricity properties of layered compound-molybdenum trioxide[D]. Anhui: Anhui University, 2007.

    6. [6]

      HEMANT K J, SARKAR S. A Novel in Situ γ-alumina coating method and CO oxidation over MoO3/Cu catalysts[J]. Ind Eng Chem Res, 2001, 40(23):  5543-5546. doi: 10.1021/ie990502p

    7. [7]

      董晓东, 董相廷, 刘俊华. MoO3纳米粒子水溶胶的制备与光致变色性质研究[J]. 稀有金属材料与工程, 2005,34,(3): 421-424. doi: 10.3321/j.issn:1002-185X.2005.03.021DONG X D, DONG X T, LIU J H. Study of preparation and photochromism of MoO3 nanoparticles hydrosol[J]. Rare Met Mater Eng, 2005, 34(3):  421-424. doi: 10.3321/j.issn:1002-185X.2005.03.021

    8. [8]

      梅雪峰, 宋继梅, 王红. 六方相MoO3的制备及其光催化活性[J]. 广州化工, 2011,39,(12): 6-9. doi: 10.3969/j.issn.1001-9677.2011.12.002MEI X F, SONG J M, WANG H. Synthesis and photocatalytic activity of hexagonal phase MoO3[J]. Guangzhou Chem Ind, 2011, 39(12):  6-9. doi: 10.3969/j.issn.1001-9677.2011.12.002

    9. [9]

      GREINER M T, HELANDER M G, TANG W M. Universal energy-level alignment of molecules on metal oxides[J]. Nat Mater, 2012, 11(1):  76-81. doi: 10.1038/nmat3159

    10. [10]

      ZHENG L, XU Y, JIN D. Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties[J]. Chem Mater, 2009, 21(23):  5681-5690. doi: 10.1021/cm9023887

    11. [11]

      CHITHAMBARARAJ A, SANJINI N S, BOSE A C. Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation[J]. Catal Sci Tech, 2013, 3(5):  1405-1414. doi: 10.1039/c3cy20764a

    12. [12]

      WANG W, TADE M O, SHAO Z P. Nitrogen-doped simple and complex oxides for photocatalysis: a review[J]. Prog Mater Sci, 2018, 92:  33-63. doi: 10.1016/j.pmatsci.2017.09.002

    13. [13]

      PARK H, PARK Y, KIM W. Surface modification of TiO2 photocatalyst for environmental applications[J]. J Photochem Photobiol C, 2013, 15:  1-20. doi: 10.1016/j.jphotochemrev.2012.10.001

    14. [14]

      LIU Y B, ZHU G Q, GAO J Z. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B-Environ, 2017, 205:  421-432. doi: 10.1016/j.apcatb.2016.12.061

    15. [15]

      LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011, 10(12):  911-921. doi: 10.1038/nmat3151

    16. [16]

      CORDERO-LANZAC T, PALOS R, ARANDES J M. Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation[J]. Appl Catal B-Environ, 2017, 203:  389-399. doi: 10.1016/j.apcatb.2016.10.018

    17. [17]

      WANG Y T, CAI J M, WU M Q. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B-Environ, 2018, 239:  398-407. doi: 10.1016/j.apcatb.2018.08.029

    18. [18]

      CHENG H F, QIAN X F, KUWAHARA Y. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015, 27(31):  4616-4621. doi: 10.1002/adma.201501172

    19. [19]

      WANG Y L, LUO Q, WU N. Solution-processed MoO3: PEDOT: PSS hybrid hole transporting layer for inverted polymer solar cells[J]. ACS Appl Mater Interfaces, 2015, 7(13):  7170-7179. doi: 10.1021/am509049t

    20. [20]

      YANG B, CHEN Y, CUI Y. Over 100 nm thick MoOx films with superior hole collection and transport properties for organic solar cells[J]. Adv Energy Mater, 2018, 8(25):  1800698.1-1800698.9.

    21. [21]

      QIN P L, FANG G J, CHENG F. Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application[J]. ACS Appl Mater Interfaces, 2014, 6(4):  2963-2973. doi: 10.1021/am405571a

    22. [22]

      SAKAUSHI K, THOMAS J, KASKEL S. Aqueous solution process for the synthesis and assembly of nanostructured one-dimensional alpha-MoO3 electrode materials[J]. Chem Mater, 2013, 25(12):  2557-2563. doi: 10.1021/cm401697z

  • 图 1  MoO3 (A)和MoO3-x (B)的SEM照片

    Figure 1  SEM images of MoO3 (A) and MoO3-x(B)

    图 2  MoO3和MoO3-x 的XRD图

    Figure 2  XRD patterns of MoO3-x and MoO3 samples

    图 3  MoO3和不同改性时间下MoO3的XPS图(A-G)和MoO3-x中Mo5+含量随改性时间的变化曲线(H)

    Figure 3  XPS images of MoO3 (A) and the reduced MoO3-x powders modified at 0.5 (B), 1 (C), 2 (D), 4 (E), 8 (F) and 10 h (G), and (H) the effect of reaction time on the Mo5+ content of MoO3-x

    图 4  MoO3和MoO2.799的紫外可见漫反射光谱(A)和(hv)2hv的关系图(B)

    Figure 4  UV-Vis spectra of MoO3 and MoO2.799(A) and the plot of (hv)2 vs hv (B)

    图 5  MoO3及MoO3-x对罗丹明B的降解率

    Figure 5  Catalytic degradation of RB on the MoO3 and MoO3-x powders

  • 加载中
计量
  • PDF下载量:  34
  • 文章访问数:  3796
  • HTML全文浏览量:  783
文章相关
  • 发布日期:  2021-01-10
  • 收稿日期:  2019-12-16
  • 接受日期:  2020-08-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章