
Citation: Fei TANG, Duo-Qin DU, Yun-Fei TAN, Li-Xiao QIN. Preparation and Characterization of MoO3-x Hexagonal Microrods as High-Efficiency Photocatalysts[J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 92-98. doi: 10.19894/j.issn.1000-0518.190335

正六棱型MoO3-x微米柱光催化剂的制备及性能
-
关键词:
- MoO3-x
- / 正六棱型MoO3微米柱
- / 氧空位
- / 光催化
English
Preparation and Characterization of MoO3-x Hexagonal Microrods as High-Efficiency Photocatalysts
-
Key words:
- MoO3-x
- / Hexagonal MoO3 microrods
- / Surface oxygen vacancies
- / Photocatalysis
-
-
[1]
LOW J X, YU J G, JARONIEC M. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20): 1601694.1-1601694.20.
-
[2]
FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surf Sci Rep, 2008, 63(12): 515-582. doi: 10.1016/j.surfrep.2008.10.001
-
[3]
CHEN X B, LIU L, YU P Y. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. doi: 10.1126/science.1200448
-
[4]
XIA Y C, WY C S, ZHAO N Y. Spongy MoO3 hierarchical nanostructures for excellent performance ethanol sensor[J]. Mater Lett, 2016, 171: 117-120. doi: 10.1016/j.matlet.2015.12.159
-
[5]
胡媛. 层状化合物三氧化钼的制备及其光电性质研究[D]. 安徽: 安徽大学, 2007.HU Y. Study on synthesis and photoelectricity properties of layered compound-molybdenum trioxide[D]. Anhui: Anhui University, 2007.
-
[6]
HEMANT K J, SARKAR S. A Novel in Situ γ-alumina coating method and CO oxidation over MoO3/Cu catalysts[J]. Ind Eng Chem Res, 2001, 40(23): 5543-5546. doi: 10.1021/ie990502p
-
[7]
董晓东, 董相廷, 刘俊华. MoO3纳米粒子水溶胶的制备与光致变色性质研究[J]. 稀有金属材料与工程, 2005,34,(3): 421-424. doi: 10.3321/j.issn:1002-185X.2005.03.021DONG X D, DONG X T, LIU J H. Study of preparation and photochromism of MoO3 nanoparticles hydrosol[J]. Rare Met Mater Eng, 2005, 34(3): 421-424. doi: 10.3321/j.issn:1002-185X.2005.03.021
-
[8]
梅雪峰, 宋继梅, 王红. 六方相MoO3的制备及其光催化活性[J]. 广州化工, 2011,39,(12): 6-9. doi: 10.3969/j.issn.1001-9677.2011.12.002MEI X F, SONG J M, WANG H. Synthesis and photocatalytic activity of hexagonal phase MoO3[J]. Guangzhou Chem Ind, 2011, 39(12): 6-9. doi: 10.3969/j.issn.1001-9677.2011.12.002
-
[9]
GREINER M T, HELANDER M G, TANG W M. Universal energy-level alignment of molecules on metal oxides[J]. Nat Mater, 2012, 11(1): 76-81. doi: 10.1038/nmat3159
-
[10]
ZHENG L, XU Y, JIN D. Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties[J]. Chem Mater, 2009, 21(23): 5681-5690. doi: 10.1021/cm9023887
-
[11]
CHITHAMBARARAJ A, SANJINI N S, BOSE A C. Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation[J]. Catal Sci Tech, 2013, 3(5): 1405-1414. doi: 10.1039/c3cy20764a
-
[12]
WANG W, TADE M O, SHAO Z P. Nitrogen-doped simple and complex oxides for photocatalysis: a review[J]. Prog Mater Sci, 2018, 92: 33-63. doi: 10.1016/j.pmatsci.2017.09.002
-
[13]
PARK H, PARK Y, KIM W. Surface modification of TiO2 photocatalyst for environmental applications[J]. J Photochem Photobiol C, 2013, 15: 1-20. doi: 10.1016/j.jphotochemrev.2012.10.001
-
[14]
LIU Y B, ZHU G Q, GAO J Z. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B-Environ, 2017, 205: 421-432. doi: 10.1016/j.apcatb.2016.12.061
-
[15]
LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011, 10(12): 911-921. doi: 10.1038/nmat3151
-
[16]
CORDERO-LANZAC T, PALOS R, ARANDES J M. Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation[J]. Appl Catal B-Environ, 2017, 203: 389-399. doi: 10.1016/j.apcatb.2016.10.018
-
[17]
WANG Y T, CAI J M, WU M Q. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B-Environ, 2018, 239: 398-407. doi: 10.1016/j.apcatb.2018.08.029
-
[18]
CHENG H F, QIAN X F, KUWAHARA Y. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015, 27(31): 4616-4621. doi: 10.1002/adma.201501172
-
[19]
WANG Y L, LUO Q, WU N. Solution-processed MoO3: PEDOT: PSS hybrid hole transporting layer for inverted polymer solar cells[J]. ACS Appl Mater Interfaces, 2015, 7(13): 7170-7179. doi: 10.1021/am509049t
-
[20]
YANG B, CHEN Y, CUI Y. Over 100 nm thick MoOx films with superior hole collection and transport properties for organic solar cells[J]. Adv Energy Mater, 2018, 8(25): 1800698.1-1800698.9.
-
[21]
QIN P L, FANG G J, CHENG F. Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application[J]. ACS Appl Mater Interfaces, 2014, 6(4): 2963-2973. doi: 10.1021/am405571a
-
[22]
SAKAUSHI K, THOMAS J, KASKEL S. Aqueous solution process for the synthesis and assembly of nanostructured one-dimensional alpha-MoO3 electrode materials[J]. Chem Mater, 2013, 25(12): 2557-2563. doi: 10.1021/cm401697z
-
[1]
-
-
计量
- PDF下载量: 34
- 文章访问数: 3796
- HTML全文浏览量: 783