Quaternary Selenophosphate Cs2ZnP2Se6 Featuring Unique One-dimensional Chains and Exhibiting Remarkable Photo-electrochemical Response

Meng-Yue LI Xiu-Yuan XIE Xin-Tao WU Xiao-Fang LI Hua LIN

Citation:  Meng-Yue LI, Xiu-Yuan XIE, Xin-Tao WU, Xiao-Fang LI, Hua LIN. Quaternary Selenophosphate Cs2ZnP2Se6 Featuring Unique One-dimensional Chains and Exhibiting Remarkable Photo-electrochemical Response[J]. Chinese Journal of Structural Chemistry, 2021, 40(2): 246-255. doi: 10.14102/j.cnki.0254-5861.2011-2822 shu

Quaternary Selenophosphate Cs2ZnP2Se6 Featuring Unique One-dimensional Chains and Exhibiting Remarkable Photo-electrochemical Response

English

  • As an important component of multifunctional materials, metal chalcophosphates have been receiving increasing attention for their potential applications in reversible phase-change transitions[1, 2], ferroelectricity[3, 4], nonlinear optics[58], photoluminescence[9], γ-ray detection[10], thermoelectrics[11], and magnetism[12]. In terms of structure, [PxQy]z anion groups are formed by tetrahedral or pyramidal phosphorus and some have complex structures such as (1D) [P2Q6]2–[7, 9, 12, 15], [PQ6][8, 11, 14], [P3Q4][13], [P5Q10]5–[1618], and zero-dimensional (0D) [PQ4]3–[10, 19, 20], [P2Q6]4–[2123], [P2Q9]4–[24], [P2Q10]4–[25], [P3Q7]3–[26], [P5Q12]5–[5], [P6Q12]4–[5, 27] and [P8Q18]6–[28]. In the case of selenium, the ethane-like [P2Se6]4– units are the most dominant building block[15]. Furthermore, these [P2Se6]4– units coordinate with metal atoms to form structures of different dimensions. Typical examples include 0D M2P2Se6 (M = Ba, Ca, Eu, Pb, Sn, Sr)[2931] and M4IP2Se6 (MI = Ag, K, Na, Tl)[19, 3234]; 1D A2P2Se6 (A = K, Rb)[7], A2M2IP2Se6 (A = K, Cs; MI = Cu, Ag, Au)[20, 22], KInP2Se6[35], K4Sc2(PSe4)2(P2Se6)[36], K4In2(PSe5)2(P2Se6)[37], Rb3Sn(PSe5)(P2Se6)[37], K5In3P6Se19[38], K4In4P6Se20[38] and Rb2MP2Se7 (M = Ce, Gd)[39]; two-dimensional (2D) NaCeP2Se6[40], K2LaP2Se7[41], Rb4Sn5P4Se20[42], Cs4ThP5Se17[43], M2P2Se6 (M = Fe, Hg, Mg, Zn)[23, 44, 45], KMP2Se6 (M = Sb, Bi)[46], and A2ThP3Se9 (A = K, Rb)[43]; and three-dimensional (3D) K10Sn3(P2Se6)4[47] and KREP2Se6 (RE = Y, La, Ce, Pr, Gd)[12].

    To date, most metal chalcophosphates containing alkali metals have been prepared by the traditional solid-state reactions at high temperature using the molten alkali metal polychalcogenide flux techniques[48]. Recently, we have used the alkali metal halide mixtures as reactive fluxes and this synthetic approach appears to be of general utility in preparing new multinary chalcogenides with various alkali metals[4969].

    With the above considerations in mind, we focused our investigations on the quaternary A/M/P/Q system and successfully obtained one Zn-containing chalcophosphate, Cs2ZnP2Se6. Crystal structure of this compound was first characterized by Kanatzidis et al. in 2016, but there were not any physicochemical properties reported[70]. In this paper, the synthesis, optical gap and theoretical calculation are systemically presented. Moreover, photo-responsive under visible-light illumination are discovered in the metal chalcophosphate for the first time.

    All manipulations were performed in a dry Ar-filled glovebox (H2O content < 0.1 ppm, O2 content < 0.1 ppm). Se (99.999%, Aladdin), P (99%, ABCR), Zn (99.95%, Alfa-Aesar) and CsCl (99.99%, Aladdin) were used as received. Cs2ZnP2Se6 was prepared from a mixture of CsCl, Zn, P, and Se in the molar ratio of 1.75:2:4:9. The reactants were loaded into a silica crucible and then transferred into a silica jacket. This jacket was flame sealed under a vacuum of 10−3 Pa, and then heated in a tube furnace from room temperature to 723 K in 20 h and annealed at this temperature for 20 h, and then heated to 1173 K at a rate of 20 K/h, following a hold time of 50 h, finally subsequently cooled to 573 K at 5 K/h before the furnace was turned off. After washing with distilled water and absolute ethanol, the products consisting of yellow rods of the title compound were obtained. Based on the single-crystal X-ray structural analysis and energy dispersive X-ray spectroscope (EDX) elemental results (Fig. 1), the chemical formula "Cs2ZnP2Se6" was given. The homogeneity of samples was obtained as indicated by the powder X-ray diffraction data (PXRD) shown in Fig. 2. The title compound was insoluble in water and stable in air for more than two months.

    Figure 1

    Figure 1.  EDX results of Cs2ZnP2Se6

    Figure 2

    Figure 2.  Experimental (red) and simulated (black) PXRD patterns of Cs2ZnP2Se6

    A yellow rod-shaped crystal was mounted on a glass fiber. The single-crystal X-ray diffraction data were collected on a Rigaku Mercury CCD diffractometer equipped with a graphite-monochromated Mo-Ka radiation source (λ = 0.71073 Å) at 293 K. The data were corrected for Lorentz and polarization factors. Absorption correction was performed by the multi-scan method[71]. The structure was solved by direct methods and refined by full-matrix least-squares fitting on F2 by SHELXL-2014[72]. All atoms were refined with anisotropic thermal parameters. The coordinates were standardized using STRUCTURE TIDY[73]. The structure was solved and refined successfully in the triclinic P$ \overline 1 $ space group with a = 7.66000(10), b = 7.712(2), c = 12.7599(3) Å, α = 96.911(18)º, β = 104.367(14)º, γ = 109.276(13)º, V = 672.16(3) Å3 and Z = 2. The final R = 0.0416 and wR = 0.0998 (w = 1/[σ2(Fo2) + (0.0443P)2 + 8.7453P], where P = (Fo2 + 2Fc2)/3), (Δρ)max = 1.598, (Δρ)min = –1.529 and S = 1.029 for 3045 observed reflections (I > 2σ(I)) with 151 parameters and generated a formula of Cs2ZnP2Se6, which agreed well with the EDX results. The parameters of atomic positions and anisotropic displacement are shown in Table 1. The selected key lengths are listed in Table 2.

    Table 1

    Table 1.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters of Cs2ZnP2Se6
    DownLoad: CSV
    Atom Wyckoff x y z Ueq
    Cs(1) 2i 0.59588(8) 0.30056(8) 0.39350(5) 0.03057(18)
    Cs(2) 2i 0.74098(9) 0.40652(8) 0.09823(5) 0.03269(18)
    Zn 2i 0.03063(14) 0.95519(14) 0.25107(7) 0.0227(3)
    P(1) 2i 0.1055(3) 0.1506(3) 0.52976(16) 0.0177(4)
    P(2) 2i 0.1608(3) 0.0846(3) 0.03742(17) 0.0183(4)
    Se(1) 2i 0.03664(13) 0.72401(12) 0.36888(7) 0.0234(2)
    Se(2) 2i 0.09275(13) 0.25693(12) 0.37598(7) 0.0212(2)
    Se(3) 2i 0.22160(14) 0.36214(13) 0.12947(7) 0.0273(2)
    Se(4) 2i 0.25693(13) 0.91426(13) 0.14879(7) 0.0233(2)
    Se(5) 2i 0.38947(13) 0.17818(14) 0.62399(8) 0.0295(2)
    Se(6) 2i 0.27516(12) 0.08627(13) 0.89457(7) 0.0225(2)
    aUeq is defined as one-third of the trace of the orthogonalized Uij tensor

    Table 2

    Table 2.  Selected Bond Lengths (Å) of Cs2ZnP2Se6
    DownLoad: CSV
    Bond Dist. Bond Dist.
    Cs(1)−Se(1) 3.6616(12) Cs(2)−Se(6) 3.7742(10)
    Cs(1)−Se(2) 3.7033(10) Cs(2)−Se(6) 3.9448(10)
    Cs(1)−Se(5) 3.7121(11) Cs(2)−Se(3) 4.0032(11)
    Cs(1)−Se(4) 3.7413(14) Zn−Se(1) 2.4708(13)
    Cs(1)−Se(5) 3.7458(11) Zn−Se(2) 2.4862(14)
    Cs(1)−Se(2) 3.8360(14) Zn−Se(4) 2.4886(12)
    Cs(1)−Se(1) 3.9567(12) Zn−Se(6) 2.4989(14)
    Cs(1)−Se(2) 3.9873(10) P(1)−Se(5) 2.135(2)
    Cs(1)−Se(5) 4.0189(11) P(1)−Se(2) 2.208(2)
    Cs(1)−Se(3) 4.0356(13) P(1)−Se(1) 2.210(2)
    Cs(2)−Se(3) 3.6096(11) P(1)−P(1) 2.252(4)
    Cs(2)−Se(1) 3.6706(14) P(2)−Se(3) 2.155(2)
    Cs(2)−Se(6) 3.6905(14) P(2)−Se(4) 2.203(2)
    Cs(2)−Se(3) 3.7371(11) P(2)−Se(6) 2.209(2)
    Cs(2)−Se(4) 3.7721(12) P(2)−P(2) 2.257(4)

    Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku MiniFlex Ⅱ powder diffractometer by using Cu- radiation at room temperature. The measurement range of 2θ is 10~70° and the scan step width was 0.02°.

    The elemental analysis data were collected on a field emission scanning electron microscope (FESEM, JSM6700F) equipped with an energy dispersive X-ray spectroscope (EDX, Oxford INCA) on clean single crystal surfaces.

    The optical diffuse reflectance spectra of Cs2ZnP2Se6 powdery samples were measured by a Perkin-Elmer Lambda 950 UV-vis spectrometer equipped with an integrating sphere over a 200~2000 nm wavelength range at room temperature and a BaSO4 plate as a reference, on which the finely ground sample powders were coated. The absorption spectrum was calculated using the Kubelka-Munk function: α/S = (1 – R)2/2R (α: absorption coefficient, S: scattering coefficient, R: reflectance)[74].

    To investigate the optical behavior of Cs2ZnP2Se6, a photo-electrochemical cell consisting of three electrodes (A glassy carbon electrode (GCE, 3.00 mm in diameter), saturated Ag/AgCl electrode and Pt wires were served as the working electrode, reference electrode and counter electrode, respectively) was constructed. Then, the reaction was carried out by irradiating the solution using a 300 W Xe lamp (PLS-SXE300CUV, λ > 420 nm). And the result of the transient photocurrent was recorded by a CHI660E electrochemical workstation (Shanghai Chen-Hua Instrument Corporation, China) at 298 K in 1.0 M KOH (aq) electrolyte.

    Utilizing density functional theory (DFT) as implemented in the Vienna ab-initio simulation package (VASP) code[75], we investigate the electronic structures of the title compound. We used projector augmented wave (PAW) method[76] for the ionic cores and the generalized gradient approximation (GGA)[77] for the exchange-correlation potential, in which the Perdew-Burke-Ernzerhof (PBE) type[78] exchange-correlation was adopted. The reciprocal space was sampled with 0.03 Å−1 spacing in the Monkhorst-Pack scheme for structure optimization, while denser k-point grids with 0.01 Å−1 spacing were adopted for property calculation. We used a mesh cutoff energy of 600 eV to determine the self-consistent charge density. All geometries are fully relaxed until the Hellmann-Feynman force on atoms is less than 0.01 eV/Å and the total energy change is lower than 1.0 × 10−5 eV.

    Single-crystal XRD data reveal that compound Cs2ZnP2Se6 crystallizes in the triclinic space group P$ \overline 1 $ (No. 2) with a = 7.66000(10), b = 7.712(7), c = 12.7599(3) Å, α = 96.911(18)°, β = 104.367(14)°, γ = 109.276(13)°, V = 672.16 Å3 and Z = 2. In a symmetric unit, there are 11 crystallographically unique atoms, including two Cs (Cs(1), Cs(2)) sites, one Zn site, two P (P(1), P(2)) sites and six Se (Se(1), Se(2), Se(3), Se(4), Se(5), Se(6)) sites, respectively, and all of them are at the Wyckoff sites of 2i. The detailed refinement data are listed in Table 1, and the selected bond distances are shown in Table 2.

    The crystal structure is shown in Fig. 3, in which the 1D chain structure is composed of [ZnP2Se2]2– chains extending along the c axis and scattering with Cs cations located in the chains. Two types of ethane-like structures where the [P2Se6]4− group ([(P1)2Se6]4− and [(P2)2Se6]4−) and the [ZnSe4]6− group with four different bond lengths intersect and share Se atoms make this 1D [ZnP2Se2]2– anion chain. The Zn2+ ions form 4-fold tetrahedral [ZnSe4] containing one Se(1), one Se(2), one Se(4) and one Se(6) atoms. As depicted in Fig. 4, the Zn atom shows usual Zn–S interatomic lengths, ranging from 2.4708(13) to 2.4989(14) Å. P(1) atom bridges with P(1) atom to form a P−P bond in 2.252 Å, and each P(1) atom forms a bond with three Se atoms. Similarly, two P(2) atoms form a P–P bond with a bond length of 2.257, and each P(2) atom and the surrounding Se atoms form a tri-coordination environment. The P atom shows the customary P–Se interatomic lengths, ranging from 2.135(2) to 2.210(2) Å. The Cs(1) cation has a coordination environment with ten Se atoms, while Cs(2) cation coordinates with eight Se atoms. For all this, the Cs–Se distances vary from 3.6096(11) to 4.0356(13) Å, which is common in CsSbSe2 (3.570~4.222 Å)[79], Cs8Ga4Se10 (3.379~4.268 Å)[80] and Cs10Ga6Se14 (3.444~4.329 Å)[80].

    Figure 3

    Figure 3.  Structure view of Cs2ZnP2Se6 viewed down the c-direction with the unit cell marked (left). A single 1D chain built of corner sharing [P2Se6] and [ZnSe4] units (right)

    Figure 4

    Figure 4.  Basic building units of [(P(1))2Se6], [ZnSe4], [(P(2))2Se6], [Cs(1)Se10] and [Cs(2)Se10] in Cs2ZnP2Se6 with the atom numbers and bond lengths marked

    The optical absorption spectrum (Fig. 5) shows the band gap (Eg) is 2.67 eV for Cs2ZnP2Se6, which is consistent with its yellow color. Such value is well-consistent with the previously reported result in Cs2ZnP2Se6 (Eg = 2.63 eV) by Kanatzidis et al. in 2016[70]. Moreover, these data are comparable to those of selenophosphates, such as Cs5P5Se12 (Eg = 2.17 eV)[5], K2P2S6 (Eg = 2.08 eV)[7], CsZrPSe6 (Eg = 2.0 eV)[14], and RbPSe6 (Eg = 2.18 eV)][8]. The result of the transient photocurrent in Fig. 6 shows an obvious photocurrent generating when the conductive glass coated with Cs2ZnP2Se6 is subjected to excitation with regular visible light. Moreover, the reproducibility of the transient photocurrent response was confirmed by the on-off cycles of illumination. The photocurrent data are around 100 nA/cm2 that is weaker than those of [(Ba19Cl4)(Ga6Si12O42S8)] (150 nA/cm2)[81] and Lu5GaS9 (150 nA/cm2)[82], but stronger than those of Yb6Ga4S15 (50 nA/cm2)[82], BaCuSbS3 (55 nA/cm2)[83] and BaCuSbSe3 (30 nA/cm2)[83]. As far as we know, this is the first metal chalcophosphate with remarkable photo-electrochemical response.

    Figure 5

    Figure 5.  UV-vis diffuse reflectance of Cs2ZnP2Se6

    Figure 6

    Figure 6.  Transient photocurrent response of Cs2ZnP2Se6 under simulated solar light irradiation

    The electronic band structure of Cs2ZnP2Se6 was calculated and shown in Fig. 7 with the highest occupied state set as EF = 0 eV. The valence band maximum (VBM) resides at the Y point whereas the conduction band minimum (CBM) was found along the Γ point. The electronic band structures (Fig. 7) reveals that Cs2ZnP2Se6 is an indirect band-gap semiconductor with VBM and CBM at different k points. The fundamentally calculated Eg (1.87 eV) is less than the experimental Eg (2.67 eV), which is expected because of the well-known fact that the density functional theory (DFT) underestimates the Eg of bulk solids[8486].

    Figure 7

    Figure 7.  Calculated electronic band structure of Cs2ZnP2Se6. Inset: the first Brillouin zone with symmetry points (red)

    Fig. 8 depicts the calculation of partial density of states (PDOS) by the Perdew-Burke-Ernzerhof (PBE). PDOS of Cs, Zn, P, and Se in the energy range of −6~6 eV were divided into four sub-sections VB-Ⅰ (−6 to −2.5 eV), VB-Ⅱ (−2.5 to 0 eV), CB-Ⅰ (1.5 to 4.5 eV), and CB-Ⅱ (4.5 to 6 eV) according to different orbital features. VB-Ⅰ has a large contribution from the valence electrons of the P-3p and Zn element (4s and 3d states) that mix with the Se-4p states. VB-Ⅱ is dominated by the p orbitals of Zn (4p), P (3p), and Se (4p), indicating that VB-Ⅱ absorption is not only determined by the charge transitions in [ZnSe4]6− tetrahedral units but also [P2Se6]4− units. The bottom of CB, which contains CB-Ⅰ and CB-Ⅱ sections, is primarily derived from Zn element (4s and 4p states) and P-3p and partial P-3s especially in the 1.5~4.5 eV energy part with mixing from the Se-4p states. As the filling atom, the electron states of Cs contribute only to the higher energy region (4 to 6 eV). Because the optical absorption of a material can be mostly ascribed to the change in transitions between the states of VB and CB near Eg, that is VB-Ⅰ and CB-Ⅰ, the [ZnSe4] and [P2Se6] groups should make absolute contributions to the optical properties.

    Figure 8

    Figure 8.  Total and partial density of states (DOSs) of Cs2ZnP2Se6

    In summary, by using a facile high-temperature fluxing method, we successfully obtained a quaternary centrosymmetric compound Cs2ZnP2Se6, which possesses a one-dimensional [ZnP2Se6]2– chain running down the [001] direction separated by isolated Cs+ cations. UV/Vis/NIR diffuse reflectance spectroscopy study shows its semiconducting behavior with an indirect optical gap of around 2.67 eV conformed by the theoretical study. Significantly, Cs2ZnP2Se6 is the first reported metal chalcophosphate with remarkable photo-electrochemical response. These results of this work not only provide a facile approach to prepare alkali metal-containing chalcogenides, but also expand a novel potential application of metal chalcophosphates.


    1. [1]

      Chung, I.; Do, J.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. APSe6 (A = K, Rb, and Cs):   polymeric selenophosphates with reversible phase-change properties. Inorg. Chem. 2004, 43, 2762–2764. doi: 10.1021/ic035448q

    2. [2]

      Morris, C. D.; Chung, I.; Park, S.; Harrison, C. M.; Clark, D. J.; Jang, J. I.; Kanatzidis, M. G. Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation. J. Am. Chem. Soc. 2012, 134, 20733–20744. doi: 10.1021/ja309386e

    3. [3]

      Vysochanskii, Y. Ferroelectricity in complex chalcogenides M΄M΄΄P2X6 (M΄, M΄΄ = Sn, Pb, Cu, In, Cr; X = S, Se). Ferroelectrics 1998, 218, 275–282. doi: 10.1080/00150199808227155

    4. [4]

      Ok, K. M.; Chi, E. O.; Halasyamani, P. S. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710–717. doi: 10.1039/b511119f

    5. [5]

      Chung, I.; Jang, J. I.; Gave, M. A.; Weliky, D. P.; Kanatzidis, M. G. Low valent phosphorus in the molecular anions [P5Se12]5– and β-[P6Se12]4–: phase change behavior and near infrared second harmonic generation. Chem. Commun. 2007, 4998–5000.

    6. [6]

      Xia, H. P.; Ma, Q. Experimental study on nonlinear-optical property of Ag4P2Se6. J. Alloys Compd. 2019, 780, 727–733. doi: 10.1016/j.jallcom.2018.11.403

    7. [7]

      Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. Helical polymer 2[P2Se6]2–:   strong second harmonic generation response and phase-change properties of its K and Rb salts. J. Am. Chem. Soc. 2007, 129, 14996–15006. doi: 10.1021/ja075096c

    8. [8]

      Chung, I.; Kim, M. G.; Jang, J. I.; He, J.; Ketterson, J. B.; Kanatzidis, M. G. Strongly nonlinear optical chalcogenide thin films of APSe6 (A = K, Rb) from spin-coating. Angew. Chem. Int. Ed. 2011, 50, 10867–10870. doi: 10.1002/anie.201103691

    9. [9]

      Breshears, J. D.; Kanatzidis, M. G. β-KMP2Se6 (M = Sb, Bi):   kinetically accessible phases obtained from rapid crystallization of amorphous precursors. J. Am. Chem. Soc. 2000, 122, 7839–7840. doi: 10.1021/ja001270k

    10. [10]

      Wang, P. L.; Liu, Z.; Chen, P.; Peters, J. A.; Tan, G.; Im, J.; Lin, W.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G. Hard radiation detection from the selenophosphate Pb2P2Se6. Adv. Funct. Mater. 2015, 25, 4874–4881. doi: 10.1002/adfm.201501826

    11. [11]

      Weldert, K. S.; Zeier, W. G.; Day, T. W.; Panthöfer, M.; Snyder, G. J.; Tremel, W. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. J. Am. Chem. Soc. 2014, 136, 12035−12040. doi: 10.1021/ja5056092

    12. [12]

      Chen, J. H.; Dorhout, P. K.; Ostenson, J. E. A comparative study of two new structure types. Synthesis and structural and electronic characterization of K(RE)P2Se6 (RE = Y, La, Ce, Pr, Gd). Inorg. Chem. 1996, 35, 5627–5633. doi: 10.1021/ic9516121

    13. [13]

      Chondroudis, K.; Kanatzidis, M. G. 2[P2Se4]: a novel polyanion in K3RuP5Se10 formation of Ru–P bonds in a molten polyselenophosphate flux. Angew. Chem. Int. Ed. 1997, 36, 1324–1326. doi: 10.1002/anie.199713241

    14. [14]

      Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G. 2[ZrPSe6]: a soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. J. Am. Chem. Soc. 2008, 130, 12270–12272. doi: 10.1021/ja804166m

    15. [15]

      Brockner, W.; Becker, R.; Eisenmann, B.; Schäfer, H. Kristallstruktur und schwingungsspektren der caesium-und kalium-hexathiometadiphosphate Cs2P2S6 und K2P2S6. Z. Anorg. Allg. Chem. 1985, 520, 51–58. doi: 10.1002/zaac.19855200107

    16. [16]

      Liao, J. H.; Varotsis, C.; Kanatzidis, M. G. Syntheses, structures, and properties of six novel alkali metal tin sulfides: K2Sn2S8, alpha.-Rb2Sn2S8, beta.-Rb2Sn2S8, K2Sn2S5, Cs2Sn2S6, and Cs2SnS14. Inorg. Chem. 1993, 32, 2453–2462. doi: 10.1021/ic00063a042

    17. [17]

      Kanatzidis, M. G.; Park, Y. Molten salt synthesis of low-dimensional ternary chalcogenides: novel structure types in the K/Hg/Q system (Q = S, Se). Chem. Mater. 1990, 2, 99–101. doi: 10.1021/cm00008a006

    18. [18]

      Liao, J. H.; Varotsis, C.; Kanatzidis, M. G. Quaternary rubidium copper tin sulfides Rb2Cu2SnS4, A2Cu2Sn2S6 (A = Na, K, Rb, Cs), A2Cu2Sn2Se6 (A = K, Rb), potassium gold tin sulfides, K2Au2SnS4, and K2Au2Sn2S6. Syntheses, structures, and properties of new solid-state chalcogenides based on tetrahedral [SnS4]4− units. Chem. Mater. 1993, 5, 1561–1569. doi: 10.1021/cm00034a029

    19. [19]

      Knaust, J. M.; Dorhout, P. K. Synthesis and structures of Na4P2Se6, Cs3PSe4, and Rb4P2Se9. J. Chem. Crystallogr. 2006, 36, 217–223. doi: 10.1007/s10870-005-9050-8

    20. [20]

      Chondroudis, K.; Kanatzidis, M. G.; Sayettat, J.; Jobic, S.; Brec, R. Palladium chemistry in molten alkali metal polychalcophosphate fluxes: synthesis and characterization of K4Pd(PS4)2, Cs4Pd(PSe4)2, Cs10Pd(PSe4)4, KPdPS4, K2PdP2S6, and Cs2PdP2Se6. Inorg. Chem. 1997, 36, 5859–5868. doi: 10.1021/ic970593n

    21. [21]

      Francisco, R. H. P.; Tepe, T.; Eckert, H. A study of the system Li–P–Se. J. Solid State Chem. 1993, 107, 452–459. doi: 10.1006/jssc.1993.1369

    22. [22]

      McCarthy, T. J.; Kanatzidis, M. G. Synthesis in molten alkali metal polyselenophosphate fluxes: a new family of transition metal selenophosphate compounds, A2MP2Se6 (A = K, Rb, Cs; M = Mn, Fe) and A2M΄P2Se6 (A = K, Cs; M΄ = Cu, Ag). Inorg. Chem. 1995, 34, 1257–1267. doi: 10.1021/ic00109a037

    23. [23]

      Jandali, M. Z.; Eulenberger, G.; Hahn, H. Die kristallstrukturen von Hg2P2S6 und Hg2P2Se6. Z. Anorg. Allg. Chem. 1978, 447, 105–118. doi: 10.1002/zaac.19784470110

    24. [24]

      Chondroudis, K.; McCarthy, T. J.; Kanatzidis, M. G. Chemistry in molten alkali metal polyselenophosphate fluxes, influence of flux composition on dimensionality: layers and chains in APbPSe4, A4Pb(PSe4)2 (A = Rb, Cs), and K4Eu(PSe4)2. Inorg. Chem. 1996, 35, 840–844. doi: 10.1021/ic950479+

    25. [25]

      Gave, M. A.; Canlas, C. G.; Chung, I.; Iyer, R. G.; Kanatzidis, M. G.; Weliky, D. P. Cs4P2Se10: a new compound discovered with the application of solid-state and high temperature NMR. J. Solid State Chem. 2007, 180, 2877–2884. doi: 10.1016/j.jssc.2007.08.002

    26. [26]

      Chung, I.; Holmes, D.; Weliky, D. P.; Kanatzidis, M. G. [P3Se7]3−: a phosphorus-rich square-ring selenophosphate. Inorg. Chem. 2010, 49, 3092–3094. doi: 10.1021/ic902561h

    27. [27]

      Chung, I.; Karst, A. L.; Weliky, D. P.; Kanatzidis, M. G. [P6Se12]4–: a phosphorus-rich selenophosphate with low-valent P centers. Inorg. Chem. 2006, 45, 2785–2787. doi: 10.1021/ic0601135

    28. [28]

      Chondroudis, K.; Kanatzidis, M. G. [P8Se18]6–:   a new oligomeric selenophosphate anion with P4+ and P3+ centers and pyramidal [PSe3] fragments. Inorg. Chem. 1998, 37, 2582–2584. doi: 10.1021/ic980024v

    29. [29]

      Becker, R.; Brockner, W.; Schäfer, H. Kristallstruktur und schwingungsspektren des di-blei-hexaselenohypodiphosphates Pb2P2Se6/crystal structure and vibrational spectra of Pb2P2Se6. Z. Naturforsch. 1984, 39, 357–361. doi: 10.1515/zna-1984-0407

    30. [30]

      Israel, R.; De Gelder, R.; Smits, J. M. M.; Beurskens, P. T.; Eijt, S. W. H.; Rasing, T.; Van Kempen, H.; Maior, M. M.; Motrija, S. F. Crystal structures of di-tin-hexa(seleno)hypodiphosphate, Sn2P2Se6, in the ferroelectric and para-electric phase. Z. Kristallogr. 1998, 213, 34–41.

    31. [31]

      Jörgens, S.; Mewis, A.; Hoffmann, R. D.; Poettgen, R.; Mosel, B. D. New hexachalcogeno-hypodiphosphates of alkaline-earth metals and europium. Z. Anorg. Allg. Chem. 2003, 629, 429–433. doi: 10.1002/zaac.200390071

    32. [32]

      Chan, B. C.; Feng, P. L.; Hulvey, Z.; Dorhout, P. K. Crystal structure of tetrapotassium hexaselenidohypodiphosphate, K4P2Se6. Z. Krist-new Cryst. St. 2005, 220, 9–10.

    33. [33]

      Toffoli, P.; Khodadad, P.; Rodier, N. Crystal-structure of silver hexaselenohypodiphosphate, Ag4P2Se6. Acta Crystallogr. B 1978, 34, 1779−1781. doi: 10.1107/S056774087800669X

    34. [34]

      Brockner, W.; Ohse, L.; Pätzmann, U.; Eisenmann, B.; Schäfer, H. Crystal structure of tetrapotassium hexaselenidohypodiphosphate, K4P2Se6. Z. Krist-new Cryst. St. 1985, 40a, 1248–1252.

    35. [35]

      Coste, S.; Kopnin, E.; Evain, M.; Jobic, S.; Brec, R.; Chondroudis, K.; Kanatzidis, M. G. Polychalcogenophosphate flux synthesis of 1D-KInP2Se6 and 1D and 3D-NaCrP2S6. Solid State Sci. 2002, 4, 709–716. doi: 10.1016/S1293-2558(02)01317-1

    36. [36]

      Syrigos, J. C.; Kanatzidis, M. G. Scandium selenophosphates: structure and properties of K4Sc2(PSe4)2(P2Se6). Inorg. Chem. 2016, 55, 4664–4668. doi: 10.1021/acs.inorgchem.6b00535

    37. [37]

      Chondroudis, K.; Kanatzidis, M. G. K4In2(PSe5)2(P2Se6) and Rb3Sn(PSe5)(P2Se6): one-dimensional compounds with mixed selenophosphate anions. J. Solid State Chem. 1998, 136, 79–86. doi: 10.1006/jssc.1997.7659

    38. [38]

      Rothenberger, A.; Wang, H.; Chung, D.; Kanatzidis, M. G. Structural diversity by mixing chalcogen atoms in the chalcophosphate system K/In/P/Q (Q = S, Se). Inorg. Chem. 2010, 49, 1144–1151. doi: 10.1021/ic902105j

    39. [39]

      Chondroudis, K.; Kanatzidis, M. G. New lanthanide selenophosphates. Influence of flux composition on the distribution of [PSe4]3–/[P2Se6]4– units and the stabilization of the low-dimensional compounds A3REP2Se8, and A2(RE)P2Se7 (A = Rb, Cs; RE = Ce, Gd). Inorg. Chem. 1998, 37, 3792–3797. doi: 10.1021/ic980025n

    40. [40]

      Aitken, J. A.; Evain, M.; Iordanidis, L.; Kanatzidis, M. G. NaCeP2Se6, Cu0.4Ce1.2P2Se6, Ce4(P2Se6)3, and the incommensurately modulated AgCeP2Se6:   new selenophosphates featuring the ethane-like [P2Se6]4– anion. Inorg. Chem. 2002, 41, 180–191. doi: 10.1021/ic010618p

    41. [41]

      Evenson IV, C. R.; Dorhout, P. K. Selenophosphate phase diagrams developed in conjunction with the synthesis of the new compounds K2La(P2Se6)1/2(PSe4), K3La(PSe4)2, K4La0.67(PSe4)2, K9-xLa1+x/3(PSe4)4 (x = 0.5), and KEuPSe4. Inorg. Chem. 2001, 40, 2875–2883. doi: 10.1021/ic000595z

    42. [42]

      Chung, I.; Biswas, K.; Song, J. H.; Androulakis, J.; Chondroudis, K.; Paraskevopoulos, K. M.; Freeman, A. J.; Kanatzidis, M. G. Rb4Sn5P4Se20: a semimetallic selenophosphate. Angew. Chem. Int. Ed. 2011, 50, 8834–8838. doi: 10.1002/anie.201104050

    43. [43]

      Briggs Piccoli, P. M.; Abney, K. D.; Schoonover, J. R.; Dorhout, P. K. Synthesis and structural characterization of quaternary thorium selenophosphates:   A2ThP3Se9 (A = K, Rb) and Cs4Th2P5Se17. Inorg. Chem. 2000, 39, 2970–2976. doi: 10.1021/ic990767w

    44. [44]

      Klingen, W.; Eulenberger, G.; Hahn, H. Uber die kristallstrukturen von Fe2P2Se6 und Fe2P2S6. Z. Anorg. Allg. Chem. 1973, 401, 97–112. doi: 10.1002/zaac.19734010113

    45. [45]

      Jörgens, S.; Mewis, A. Die kristallstrukturen von hexachalcogeno-hypodiphosphaten des magnesiums und zinks. Z. Anorg. Allg. Chem. 2004, 630, 51–57. doi: 10.1002/zaac.200300244

    46. [46]

      McCarthy, T. J.; Kanatzidis, M. G. Coordination chemistry of [P2Se6]4– in molten fluxes: isolation of the structurally complex KMP2Se6 (M = Sb, Bi). J. Chem. Soc., Chem. Commun. 1994, 1089–1090.

    47. [47]

      Chung, I.; Kanatzidis, M. G. Stabilization of Sn2+ in K10Sn3(P2Se6)4 and Cs2SnP2Se6 derived from a basic flux. Inorg. Chem. 2011, 50, 412–414. doi: 10.1021/ic101140r

    48. [48]

      Kanatzidis, M. G. New directions in synthetic solid state chemistry: chalcophosphate salt fluxes for discovery of new multinary solids. Curr. Opin. Solid State Mater. Sci. 1997, 2, 139–149. doi: 10.1016/S1359-0286(97)80058-7

    49. [49]

      Lin, H.; Chen, L.; Zhou, L. J.; Wu, L. M. Functionalization based on the substitutional flexibility: strong middle IR nonlinear optical selenides AX4X5Se12. J. Am. Chem. Soc. 2013, 135, 12914–12921. doi: 10.1021/ja4074084

    50. [50]

      Lin, H.; Liu, Y.; Zhou, L. J.; Zhao, H. J.; Chen, L. Strong infrared NLO tellurides with multifunction: CsX4In5Te12 (X = Mn, Zn, Cd). Inorg. Chem. 2016, 55, 4470–4475. doi: 10.1021/acs.inorgchem.6b00254

    51. [51]

      Yu, P.; Zhou, L. J.; Chen, L. Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K). J. Am. Chem. Soc. 2012, 134, 2227–2235. doi: 10.1021/ja209711x

    52. [52]

      Li, Y. Y.; Liu, P. F.; Lin, H.; Wang, M. T.; Chen, L. The effect of indium substitution on the structure and NLO properties of Ba6Cs2Ga10Se20Cl4. Inorg. Chem. Front. 2016, 3, 952–958. doi: 10.1039/C6QI00104A

    53. [53]

      Zheng, Y. J.; Liu, P. F.; Wu, X. T.; Wu, L. M.; Lin, H. Synthesis, crystal structure, physical properties and theoretical studies of new ternary sulfide with closed cavities: CsYb7S11. Chin. J. Struct. Chem. 2017, 36, 1780–1790.

    54. [54]

      Lin, H.; Chen, H.; Liu, P. F.; Yu, J. S.; Zheng, Y. J.; Khan, M. A.; Chen, L.; Wu, L. M. Syntheses, structures, physical and electronic properties of quaternary semiconductors: Cs[RE9Cd4Se18] (RE = Tb-Tm). Dalton Trans. 2016, 45, 5775–5782. doi: 10.1039/C6DT00193A

    55. [55]

      Lin, H.; Chen, H.; Lin, Z. X.; Zhao, H. J.; Liu, P. F.; Yu, J. S.; Chen, L. (Cs6Cl)6Cs3[Ga53Se96]: a unique long period-stacking structure of layers made from Ga2Se6 dimers via cis or trans intralayer linking. Inorg. Chem. 2016, 55, 1014–1016. doi: 10.1021/acs.inorgchem.5b02846

    56. [56]

      Lin, H.; Chen, H.; Zheng, Y. J.; Yu, J. S.; Wu, X. T.; Wu, L. M. Coexistence of strong second harmonic generation response and wide band gap in AZn4Ga5S12 (A = K, Rb, Cs) with 3D diamond-like frameworks. Chem.-Eur. J. 2017, 23, 10407–10412. doi: 10.1002/chem.201701679

    57. [57]

      Lin, H.; Zhou, L. J.; Chen, L. Sulfides with strong nonlinear optical activity and thermochromism: ACd4Ga5S12 (A = K, Rb, Cs). Chem. Mater. 2012, 24, 3406–3414. doi: 10.1021/cm301550a

    58. [58]

      Lin, H.; Chen, H.; Zheng, Y. J.; Yu, J. S.; Wu, L. M. AX4X5Te12 (A = Rb, Cs; X = Mn, Zn, Cd; X = Ga, In): quaternary semiconducting tellurides with very low thermal conductivities. Dalton Trans. 2016, 45, 17606–17609. doi: 10.1039/C6DT03630A

    59. [59]

      Huang-Fu, S. X.; Shen, J. N.; Lin, H.; Chen, L.; Wu, L. M. Supercubooctahedron (Cs6Cl)2Cs5[Ga15Ge9Se48] exhibiting both cation and anion exchange. Chem. Eur. J. 2015, 21, 9809–9815. doi: 10.1002/chem.201405719

    60. [60]

      Lin, H.; Chen, L.; Yu, J. S.; Chen, H.; Wu, L. M. Infrared SHG materials CsM3Se6 (M = Ga/Sn, In/Sn): phase matchability controlled by dipole moment of the asymmetric building unit. Chem. Mater. 2017, 29, 499–503. doi: 10.1021/acs.chemmater.6b05026

    61. [61]

      Lin, H.; Li, L. H.; Chen, L. Diverse closed cavities in condensed rare earth metal-chalcogenide matrixes: Cs[Lu7Q11] and (ClCs6)[RE21Q34] (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588–4596. doi: 10.1021/ic202494w

    62. [62]

      Lin, H.; Zheng, Y. J.; Chen, H.; Hu, X. N.; Yu, J. S.; Wu, L. M. Non-centrosymmetric selenides AZn4In5Se12 (A = Rb, Cs): synthesis, characterization and nonlinear optical properties. Chem.-Asian J. 2017, 12, 453–458. doi: 10.1002/asia.201601548

    63. [63]

      Lin, H.; Shen, J. N.; Chen, L.; Wu, L. M. Quaternary supertetrahedra-layered telluride CsMnInTe3: why does this type of chalcogenide tilt? Inorg. Chem. 2013, 52, 10726–10728. doi: 10.1021/ic4018618

    64. [64]

      Lin, H.; Shen, J. N.; Shi, Y. F.; Li, L. H.; Chen, L. Quaternary rare-earth selenides with closed cavities: Cs[RE9Mn4Se18] (RE = Ho-Lu). Inorg. Chem. Front. 2015, 2, 298–305. doi: 10.1039/C4QI00202D

    65. [65]

      Lin, H.; Chen, H.; Yu, J. S.; Zheng, Y. J.; Liu, P. F.; Muhammad, A. K.; Wu, L. M. CsBi4Te6: a new facile synthetic method and mid-temperature thermoelectric performance. Dalton Trans. 2016, 45, 11931–11934. doi: 10.1039/C6DT02109C

    66. [66]

      Lin, H.; Chen, H.; Zheng, Y. J.; Yu, J. S.; Wu, X. T.; Wu, L. M. Two excellent phase-matchable infrared nonlinear-optical materials based on the 3D diamond-like frameworks: RbGaSn2Se6 and RbInSn2Se6. Dalton Trans. 2017, 46, 7714–7721. doi: 10.1039/C7DT01384A

    67. [67]

      Zheng, Y. J.; Shi, Y. F.; Tian, C. B.; Lin, H.; Wu, L. M.; Wu, X. T.; Zhu, Q. L. An unprecedented pentanary chalcohalide with the Mn atoms in two chemical environments: unique bonding characteristics and magnetic properties. Chem. Commun. 2019, 55, 79–82. doi: 10.1039/C8CC08380K

    68. [68]

      Chen, H.; Liu, P. F.; Lin, H.; Wu, L. M.; Wu, X. T. Solid-state preparation, structural characterization, physical properties and theoretical studies of a series of novel rare-earth metal-chalcogenides with unprecedented closed cavities. Cryst. Growth Des. 2019, 19, 444–452. doi: 10.1021/acs.cgd.8b01541

    69. [69]

      Wang, P.; Lin, H. Synthesis, structure, and property of a three-dimensional channel quaternary compound: Cs0.75(6)Er4.43(5)In3.32(6)S12. Chin. J. Struct. Chem. 2013, 32, 1873–1879.

    70. [70]

      Haynes, A. S.; Lee, K.; Kanatzidis, M. G. One-dimensional zinc selenophosphates: A2ZnP2Se6 (A = K, Rb, Cs). Z. Anorg. Allg. Chem. 2016, 642, 1120−1125. doi: 10.1002/zaac.201600231

    71. [71]

      Crystal Clear, Version 1. 3. 5; Rigaku Corp., Woodlands, TX 1999.

    72. [72]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112−122. doi: 10.1107/S0108767307043930

    73. [73]

      Gelato, L. M.; Parthe, E. STRUCTURE TIDY - a computer program to standardize crystal structure data. J. Appl. Crystallogr. 1987, 20, 139–143. doi: 10.1107/S0021889887086965

    74. [74]

      Kortüm, G. Reflectance Spectroscopy, Springer-Verlag, New York 1969.

    75. [75]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169−11186. doi: 10.1103/PhysRevB.54.11169

    76. [76]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758−1775. doi: 10.1103/PhysRevB.59.1758

    77. [77]

      Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244−13249. doi: 10.1103/PhysRevB.45.13244

    78. [78]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. doi: 10.1103/PhysRevLett.77.3865

    79. [79]

      Kanichtschewa, A. S.; Mikhajlov, J. N.; Lazarev, V. B.; Moschchalkova, N. A. Crystal-structure of CsSbSe2. Dokl. Akad. Nauk. 1980, 252, 872−875.

    80. [80]

      Deiseroth, H. J. Ungewö hnliche lineare, oligomere anionen (GanSe2n+2)(n+4)− (n = 2, 4, 6) in festen selenogallaten des casiums. Z. Kristallogr. 1984, 166, 283−295.

    81. [81]

      Shi, Y. F.; Li, X. F.; Zhang, Y. X.; Lin, H.; Ma, Z. J.; Wu, L. M.; Wu, X. T.; Zhu, Q. L. [(Ba19Cl4)(Ga6Si12O42S8)]: a two-dimensional wide-band-gap layered oxysulfide with mixed-anion chemical bonding and photocurrent response. Inorg. Chem. 2019, 58, 6588−6592. doi: 10.1021/acs.inorgchem.9b00653

    82. [82]

      Lin, H.; Shen, J. N.; Zhu, W. W.; Liu, Y.; Wu, X. T.; Zhu, Q. L.; Wu, L. M. Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties. Dalton Trans. 2017, 46, 13731−13738. doi: 10.1039/C7DT02545A

    83. [83]

      Liu, C.; Hou, P.; Chai, W.; Tian, J.; Zheng, X.; Shen, Y.; Zhi, M.; Zhou, C.; Liu, Y. Hydrazine-hydrothermal syntheses, characterizations and photo-electrochemical properties of two quaternary chalcogenido antimonates (Ⅲ) BaCuSbQ3 (Q = S, Se). J. Alloys Compd. 2016, 679, 420−425. doi: 10.1016/j.jallcom.2016.04.096

    84. [84]

      Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 150901−9. doi: 10.1063/1.4704546

    85. [85]

      Christensen, N. E.; Svane, A.; Peltzer, E. L.; Blancá, Y. Electronic and structural properties of SnO under pressure. Phys. Rev. B: Condens. Matter. Mater. Phys. 2005, 72, 014109−7. doi: 10.1103/PhysRevB.72.014109

    86. [86]

      Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D. van der Waals bonding and the quasiparticle band structure of SnO from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 235210−9. doi: 10.1103/PhysRevB.87.235210

  • Figure 1  EDX results of Cs2ZnP2Se6

    Figure 2  Experimental (red) and simulated (black) PXRD patterns of Cs2ZnP2Se6

    Figure 3  Structure view of Cs2ZnP2Se6 viewed down the c-direction with the unit cell marked (left). A single 1D chain built of corner sharing [P2Se6] and [ZnSe4] units (right)

    Figure 4  Basic building units of [(P(1))2Se6], [ZnSe4], [(P(2))2Se6], [Cs(1)Se10] and [Cs(2)Se10] in Cs2ZnP2Se6 with the atom numbers and bond lengths marked

    Figure 5  UV-vis diffuse reflectance of Cs2ZnP2Se6

    Figure 6  Transient photocurrent response of Cs2ZnP2Se6 under simulated solar light irradiation

    Figure 7  Calculated electronic band structure of Cs2ZnP2Se6. Inset: the first Brillouin zone with symmetry points (red)

    Figure 8  Total and partial density of states (DOSs) of Cs2ZnP2Se6

    Table 1.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters of Cs2ZnP2Se6

    Atom Wyckoff x y z Ueq
    Cs(1) 2i 0.59588(8) 0.30056(8) 0.39350(5) 0.03057(18)
    Cs(2) 2i 0.74098(9) 0.40652(8) 0.09823(5) 0.03269(18)
    Zn 2i 0.03063(14) 0.95519(14) 0.25107(7) 0.0227(3)
    P(1) 2i 0.1055(3) 0.1506(3) 0.52976(16) 0.0177(4)
    P(2) 2i 0.1608(3) 0.0846(3) 0.03742(17) 0.0183(4)
    Se(1) 2i 0.03664(13) 0.72401(12) 0.36888(7) 0.0234(2)
    Se(2) 2i 0.09275(13) 0.25693(12) 0.37598(7) 0.0212(2)
    Se(3) 2i 0.22160(14) 0.36214(13) 0.12947(7) 0.0273(2)
    Se(4) 2i 0.25693(13) 0.91426(13) 0.14879(7) 0.0233(2)
    Se(5) 2i 0.38947(13) 0.17818(14) 0.62399(8) 0.0295(2)
    Se(6) 2i 0.27516(12) 0.08627(13) 0.89457(7) 0.0225(2)
    aUeq is defined as one-third of the trace of the orthogonalized Uij tensor
    下载: 导出CSV

    Table 2.  Selected Bond Lengths (Å) of Cs2ZnP2Se6

    Bond Dist. Bond Dist.
    Cs(1)−Se(1) 3.6616(12) Cs(2)−Se(6) 3.7742(10)
    Cs(1)−Se(2) 3.7033(10) Cs(2)−Se(6) 3.9448(10)
    Cs(1)−Se(5) 3.7121(11) Cs(2)−Se(3) 4.0032(11)
    Cs(1)−Se(4) 3.7413(14) Zn−Se(1) 2.4708(13)
    Cs(1)−Se(5) 3.7458(11) Zn−Se(2) 2.4862(14)
    Cs(1)−Se(2) 3.8360(14) Zn−Se(4) 2.4886(12)
    Cs(1)−Se(1) 3.9567(12) Zn−Se(6) 2.4989(14)
    Cs(1)−Se(2) 3.9873(10) P(1)−Se(5) 2.135(2)
    Cs(1)−Se(5) 4.0189(11) P(1)−Se(2) 2.208(2)
    Cs(1)−Se(3) 4.0356(13) P(1)−Se(1) 2.210(2)
    Cs(2)−Se(3) 3.6096(11) P(1)−P(1) 2.252(4)
    Cs(2)−Se(1) 3.6706(14) P(2)−Se(3) 2.155(2)
    Cs(2)−Se(6) 3.6905(14) P(2)−Se(4) 2.203(2)
    Cs(2)−Se(3) 3.7371(11) P(2)−Se(6) 2.209(2)
    Cs(2)−Se(4) 3.7721(12) P(2)−P(2) 2.257(4)
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  459
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2021-02-01
  • 收稿日期:  2020-03-25
  • 接受日期:  2020-04-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章