Influence of Ligand with Fine Difference at Donor Site on MMCT Property in Binuclear Mixed Valence Complexes

Su-Hua LI Yu-Ying YANG Yu-Xiao ZHANG Xin-Tao WU Tian-Lu SHENG

Citation:  Su-Hua LI, Yu-Ying YANG, Yu-Xiao ZHANG, Xin-Tao WU, Tian-Lu SHENG. Influence of Ligand with Fine Difference at Donor Site on MMCT Property in Binuclear Mixed Valence Complexes[J]. Chinese Journal of Structural Chemistry, 2021, 40(2): 207-216. doi: 10.14102/j.cnki.0254-5861.2011-2811 shu

Influence of Ligand with Fine Difference at Donor Site on MMCT Property in Binuclear Mixed Valence Complexes

English

  • Mixed-valence (MV) chemistry has attracted much interest of scientists over the past decades due to their distinctive magnetic[16] and electrical properties[712]. To investigate the intramolecular metal-to-metal charge transfer (MMCT) process between metals, a great number of MV complexes including the cyanide-bridged complexes have been synthesized as research models[1319]. At the same time, some theories have made breakthroughs[2024]. Based on the study of various complexes, scientists found that the degree of electronic communications of mixed-valence complexes is influenced by many factors, such as the orientation of cyanide bridges, the intrinsic property of metals or ligands, cis/trans-arrangements of molecular geometrical configuration, the external temperature, solvent or salts and so on[2529]. The promotion of electronic communication of trans-arrangements is much easier than cis-arrangement for binuclear or trinuclear complexes[19]. Also, it has been found that external temperature is one of the important factors affecting electron delocalization[30]. Most recently, our group reported that the first example of tetra-nuclear Ru25+–CN–Ru25+ complex possesses MMCT properties due to the different spin states between the two Ru25+[31]. To deeply understand the relationship between electronic communication or MMCT and molecular structures, it is necessary to further investigate the unsymmetrical binuclear compounds.

    Herein, we report the syntheses, crystal structures and characterization of a series of complexes L1L2M–CN– FeCl3 (L1 = dppe or (PPh3)2, L2 = MeCp or Cp*, M = Ru or Fe) to investigate how the electronic effect of ligand at donor site influences the electronic communication or MMCT properties. The tiny difference between dppe and (pph3)2 ligands is that the former has one ethyl group while the latter contains two phenyl groups. Combined the characterization results and the theoretical calculation, these complexes are classified into the Class Ⅱ system. Besides, it is found that the more rich-electron ligand or stronger electron-donating metal at donor site favors to promote intramolecular electron transfer between metals by comparing all these complexes.

    The elemental analyses (C, H and N) were measured using Vario MICRO elemental analyzer. The Infrared (IR) spectra characterization was carried out on a Vertex 70 FT-IR spectrophotometer with KBr pellets. The electronic absorption spectra were measured in dichloromethane solution with the PerkinElmer Lambda 950 UV-Vis-NIR spectrophotometer. The single-crystal X-ray diffraction data for the complexes were collected on a Saturn724+ CCD diffractometer equipped with graphite monochromatic Mo- (λ = 0.71073 Å) radiation by using an ω-scan model technique at 293 K. All crystallographic structures were solved by direct methods using SHELXL-2014[32, 33] and refined with Olex-2[34] program package.

    2.2.1   Materials

    All operations were conducted under an argon atmosphere using the standard Schlenk techniques unless other statements. The complexes of MeCp(dppe)RuCN[35], (dppe = bis(diphenylphosphino)ehane, MeCp = methyl-cyclopentadienyl, Cp* = pentamethyl-cyclopentadienyl) MeCp(PPh3)2RuCN[35], Cp*Fe(dppe)CN[36], Cp*Ru(dppe)CN[37, 38] and Cp*(PPh3)2RuCN[39] were prepared according to the previous paper.

    2.2.2   Synthesis
    2.2.2.1   General procedure for the synthesis of M–CN–FeCl3

    L1L2M–CN (0.15 g) was mixed with 1.1 equiv. of FeCl3 in 20 mL CH3OH and the reaction was refluxed for 3 h. The resulting solution was concentrated, filtered, and recrystallized by diffusing n-hexane into the CH2Cl2 solution at room temperature, yielding crystal for single-crystal X-ray crystallography.

    2.2.2.2   MeCp(dppe)RuCNFeCl3 (1)

    Yield 0.14 g (74.3%). Elemental analysis calcd. (%): C, 51.69; H, 4.07; N, 1.83. Found: C, 51.71; H, 4.04; N, 1.76. IR (KBr, cm-1): 2000 (C≡N).

    2.2.2.3   MeCp(PPh3)2RuCNFeCl3 (2)

    Yield 0.15 g (84.0 %). Elemental analysis calcd. (%): C,56.99; H, 4.07; N, 1.53. Found: C, 57.05; H, 4.14; N, 1.55. IR (KBr, cm-1): 2007 (C≡N).

    2.2.2.4   Cp*(dppe)FeCNFeCl3 (3)

    Yield 0.13 g (72%). Elemental analysis calcd. (%): C, 57.14; H, 5.05; N, 1.80. Found: C, 56.97; H, 5.01; N, 1.70. IR (KBr, cm-1): 1969 (C≡N).

    2.2.2.5   Cp*(dppe)RuCNFeCl3 (4)

    Yield 0.13 g (70%). Elemental analysis calcd. (%): C, 50.27; H, 4.55; N, 1.54. Found: C, 50.45; H, 4.77; N, 1.63. IR (KBr, cm-1): 1989 (C≡N).

    2.2.2.6   Cp*(PPh3)2RuCNFeCl3 (5)

    Yield 0.12 g (64.6%). Elemental analysis calcd. (%): C, 59.43; H, 4.74; N, 1.48. Found: C, 58.99; H, 4.71; N, 1.42. IR (KBr, cm-1): 1989 (C≡N).

    The crystallographic structures of complexes 1~5 are determined by single-crystal X-ray analysis at room temperature. Because of their similar structures, molecular structure of complex 1 is shown in Fig. 1 and other structures are shown in Fig. S1 in the Supporting Information. The space groups are Cc, P21/n, C2/c, P21/n and P$ \overline 1 $ for complexes 1~5, respectively. All crystal structures are composed of two moieties, FeCl3 and L1L2M–CN (M = Fe or Ru; L1 = Cp* or MeCp; L2 = dppe or (PPh3)2). For complex 1, Ru is coordinated by three C atoms from MeCp, two P atoms from dppe and one C atom of the cyanide group while Fe is connected to three Cl atoms and one N atom of the cyanide group. Table 1 shows the selected bond lengths and angles of all complexes, and the crystal data and structure refinement for complexes 1~5 are given in Tables S1 and S2 in the Supporting Information. The Ru/Fe–CN–Fe of these complexes is linear, and their angle of both Fe(Ru)–C≡N and Fe–N≡C is larger than 165º. The radius of Ru is larger than that of Fe since the bond lengths of Ru–P (2.283~2.349 Å) are longer than those of Fe–P (2.212 Å). With the increasing electron density at donor site, the Ru–P bond length elongates systematically with the sequence of 2.283 Å in 1, 2.307 Å in 4, 2.319 Å in 2 and 2.349 Å in 5, respectively. Besides, the similar trend also occurs in Fe–N bond length. This indicates that the (PPh3)2 ligand has a greater electron-donating ability than the dppe ligand.

    Figure 1

    Figure 1.  Molecular structure of complex 1 (Hydrogen atoms in complex are ignored for clarity). Fe, red; C, gray; P, brown; Cl, green; N, blue

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (º) of these Complexes
    DownLoad: CSV
    Complexes 1 2 3 4 5
    C–N 1.168(7) 1.154(5) 1.176(5) 1.166(3) 1.163(6)
    Fe(Ru)–C 1.930(6) 1.929(3) 1.814(4) 1.926(2) 1.919(4)
    Fe–N 1.897(5) 1.929(3) 1.906(3) 1.922(2) 2.181(2)
    Fe(Ru)–P(av.) 2.283(14) 2.319(9) 2.212(12) 2.307(7) 2.349(11)
    Fe–Cl (av.) 2.155(13) 2.177(17) 2.187(17) 2.174(12) 2.179(4)
    Fe(Ru)–C≡N 176.6(5) 174.4(3) 174.2(4) 172.7(2) 174.1(4)
    Fe–N≡C 166.7(5) 177.1(3) 167.4(4) 170.7(2) 176.5(4)

    The IR spectroscopy test was conducted to characterize the vibrational frequency of the cyanide group. The data are listed in the experimental section and Table 2, which obviously shows that the stretching frequencies of these complexes are at least 50 cm-1 lower than those of their related precursors. There are two main reasons for the change of ν(CN): one is the strong withdrawing-electron ability of FeCl3 moiety pulling electron into cyanide group from the other fragment, which strengthens π back-bonding and hence makes the stretching of CN red-shift[40, 41]; and the other is the restrictions on cyanide group upon bonding to FeCl3 fragment, which causes ν(CN) blue-shift[42]. For these complexes, the former reason is more important, so the CN stretching presents a red-shift. This change also suggests upon bonding with the strong acceptor unit FeCl3, electron interaction between metals exists through the cyanide-bridged group. Owing to the increasing electron-rich properties from Cp*, MeCp, to Cp, the sequence of ν(CN) from low to high energy is the Cp*Ru series (1989, 1989 cm-1) < the MeCpRu series (2000, 2007 cm-1) < the CpRu series (2003, 2013 cm-1). Besides, Fe possesses a stronger electron-donating ability than Ru, which causes that the frequency of ν(CN) in complex 3 (1969 cm-1) is lower than that of 4 (1989 cm-1)[42]. It is interesting that ν(CN) of complex 1 (Cc) shifts to lower frequencies than that of complex 2 (P21/n), which is not consistent with the previous papers. The same phenomenon occurs in complex Cp(dppe)RuCNFeCl3 (Cc) and Cp(PPh3)2RuCNFeCl3 (P21/n). Except the nature of ligands, the crystal configuration (space group) might be taken account as a major factor affecting the stretching of cyanide group.

    Table 2

    Table 2.  IR Spectra Bands, ν(CN) of Complexes 1~5 and Their Related Precursors (in KBr, cm-1)
    DownLoad: CSV
    Complexes ν(CN) Related precursors ν(CN) ν
    1 2000 MeCp(dppe)RuCN 2071 –71
    2 2007 MeCp(PPh3)2RuCN 2061 –54
    3 1969 Cp*(dppe)FeCN 2054 –85
    4 1989 Cp*(dppe)RuCN 2068 –79
    5 1989 Cp*(PPh3)2RuCN 2066 –77

    The data of maximum absorption band are listed in Table 3, and Fig. 2 exhibits the absorption bands of the mixed valence compounds and their relative precursors, which were conducted in the CH2Cl2 solution at room temperature. These bands of all complexes below 500 nm belong to the dπ(Ru/Fe)→π* metal to ligand charge transfer (MLCT) transitions[4]. The absorption bands, up to 500 nm in the NIR region, are attributed to MMCT (metal to metal charge transfer), where electrons transfer from the CpRu/Fe to FeCl3 moiety[16, 4244]. The MMCT band positions are in line with the results of theoretical calculations (Table 3), with the sequence of 1(500 nm), 4(536 nm), 2(542 nm) and 5(580 nm) from low- to high-wavelength. From Table 3, it can be found that the position of absorption bands is proportional to the spin densities at donor site. As electron density of L1L2M increases, the absorption bands present a red-shift. Specially, the MMCT absorption energy of 4 (536 nm) is larger than that of 3 (760 nm), which is attributed to the stronger electron-donating ability of Fe than Ru. It's worth mentioning that there exist two strong and broad absorption bands of compounds 1 and 4 due to the spin-orbit splitting of excited state configuration of low spin Fe, which generates three MMCT, as shown in Fig. 3[17, 22, 45]. Owing to the small energy difference between spin-orbitals, only two overlapping absorption bands are experimentally observed.

    Table 3

    Table 3.  Comparison of Experimental and Theoretical Values of Electronic Absorption Bands in CH2Cl2 Solution
    DownLoad: CSV
    Complexes λmax (εmax) (nm (M-1·cm-1))
    Exptl. Calcd.
    1 500 (4391) 519.90
    2 542 (4865) 546.86
    3 760 (4378) 863.00
    4 536 (3467) 534.15
    5 580 (4344) 564.76

    Figure 2

    Figure 2.  UV-VIS-NIR absorption spectra of all complexes

    Figure 3

    Figure 3.  MMCT and IC transition of coupled bimetallic dπ6-dπ5 compounds[48]

    The DFT/TDDFT calculations were done at the B3LYP/LANL2DZ level using Gaussian 03 program package[46], and its result can be exploited to study the mechanism of MMCT properties. From Table 4, it is concluded that the major spin densities of all mixed-valence complexes are distributed over the FeCl3 moiety, which confirms these complexes belong to the Class Ⅱ MV compounds. According to spin densities, the redox sites of FeCl3 moiety in all complexes are not much different, while the potential of Fe center on the donor site is larger than that of Ru. It can also explain the phenomenon of the lower ν(CN) of complex 3 than that of complexes 4 and 5. Compared the theoretical calculation of all complexes with experimental results, the calculated electronic transition bands are in good agreement with the experimental transition (Table 3). For complex 1, the calculated absorption band appears at 519.90 nm in the NIR regions, which accords with the experimental result (500 nm). The plot of molecular orbitals displays distinctly that the orientation of some electrons flow is from the MeCpRu fragment to the FeCl3 fragment (Fig. 4) and it proceeds predominately with the molecular orbital HOMO-3 (145B) → LUMO+1 (149B) transition. For the other complexes, the MMCT from Ru or Fe to Fe are predominated with HOMO-2 (178B) → LUMO+1 (182B) for 2, HOMO-1 (162B) → LUMO (164B) for 3, HOMO-1 (162B) → LUMO (164B) and HOMO (163B) → LUMO+1 (165B) for 4, and HOMO-2 (194B) → LUMO+1 (198B) for 5, as shown in Figs. 5~8, respectively. According to the Robin and Day's classification[47], these complexes can be attributed to the typical Class Ⅱ mixed-valence compounds.

    Table 4

    Table 4.  Mulliken Spin Densities of Mixed-valence Species
    DownLoad: CSV
    Complex Ru/Fe Fe
    1 0.048950 3.699288
    2 0.045071 3.709902
    3 0.102101 3.771728
    4 0.053790 3.707974
    5 0.059390 3.686879

    Figure 4

    Figure 4.  Molecular orbital diagrams of HOMO-3 (145B), and LUMO+1 (149B) for 1. The isosurface value is 0.02 au.

    Figure 5

    Figure 5.  Molecular orbital diagrams of HOMO-2 (178B) and LUMO+1 (182B) for 2. The isosurface value is 0.02 au.

    Figure 6

    Figure 6.  Molecular orbital diagrams of HOMO-1 (162B) and LUMO (164B) for 3. The isosurface value is 0.02 au.

    Figure 7

    Figure 7.  Molecular orbital diagrams of HOMO-1 (162B), HOMO (163B), LUMO (164B) and LUMO+1 (165B) for 4. The isosurface value is 0.02 au.

    Figure 8

    Figure 8.  Molecular orbital diagrams of HOMO-2 (194B) and LUMO+1 (198B) for 5. The isosurface value is 0.02 au.

    In summary, a new family of binuclear complexes, L1L2M–CN–FeCl3 (L1 = dppe or (PPh3)2, L2 = Cp or Cp*, M = Ru or Fe) have been synthesized and characterized by single-crystal X-ray diffraction structural analyses, IR spectra, UV-Vis spectroscopy and the DFT/TDDFT calculation thoroughly. The electronic absorptions of these complexes show the presence of MMCT properties between Ru(Fe) and Fe ions, strongly supported by the theoretical calculations. Compared to complex 4, the MMCT absorption band of complex 3 (L1L2Fe–CN–FeCl3) is red-shift. From the electronic spectra, the sequence of the MMCT absorption bands from high-energy to low energy is 1 (500 nm) > 4 (536 nm) > 2 (542 nm) > 5 (580 nm) and 4 (536 nm) > 3 (760 nm). In a word, this work suggests that the stronger electrondonating ligand or metal at donor site is the lower energy the MMCT needs. Furthermore, the investigations indicate that the unsymmetrical MV complexes belong to the Class Ⅱ systems according to the Robin and Day's classification.


    1. [1]

      Miyasaka, H.; Matsumoto, N.; Ōkawa, H.; Re, N.; Gallo, E.; Floriani, C. Complexes derived from the reaction of manganese(Ⅲ) Schiff base complexes and hexacyanoferrate(Ⅲ):   syntheses, multidimensional network structures, and magnetic properties. J. Am. Chem. Soc. 1996, 118, 981−994. doi: 10.1021/ja952706c

    2. [2]

      Ohba, M.; Ōkawa, H.; Ito, T.; Ohto, A. A two-dimensional bimetallic assembly, [Ni(pn)2]2[Fe(CN)6]ClO4⋅2H2O, with a square structure. J. Chem. Soc., Chem. Commun. 1995, 15, 1545−1546.

    3. [3]

      Harris, T. D.; Coulon, C.; Clérac, R.; Long, J. R. Record ferromagnetic exchange through cyanide and elucidation of the magnetic phase diagram for a CuRe(CN)2 chain compound. J. Am. Chem. Soc. 2010, 133, 123–130.

    4. [4]

      Bruce, M. I.; Costuas, K.; Davin, T.; Ellis, B. G.; Halet, J. F.; Lapinte, C.; Low, P. J.; Smith, M. E.; Skelton, B. W.; Toupet, L. Iron versus ruthenium: dramatic changes in electronic structure result from replacement of one Fe by Ru in [{Cp*(dppe)Fe}–CC–CC–{Fe(dppe)Cp*}]n+ (n = 0, 1, 2). Organometallics 2005, 24, 3864−3881. doi: 10.1021/om050293a

    5. [5]

      Ma, X.; Hu, S. M.; Tan, C. H.; Zhang, Y. F.; Zhang, X. D.; Sheng, T. L.; Wu, X. T. From antiferromagnetic to ferromagnetic interaction in cyanido-bridged Fe(Ⅲ)–Ru(Ⅱ)–Fe(Ⅲ) complexes by change of the central diamagnetic cyanido-metal geometry. Inorg. Chem. 2013, 52, 11343−11350. doi: 10.1021/ic401604q

    6. [6]

      Wang, X. Y.; Avendaño, C.; Dunbar, K. R. Molecular magnetic materials based on 4d and 5d transition metals. Chem. Soc. Rev. 2011, 40, 3213−3238. doi: 10.1039/c0cs00188k

    7. [7]

      Metz, J.; Hanack, M. Synthesis, characterization, and conductivity of (μ-cyano)(phthalocyaninato) cobalt(Ⅲ). J. Am. Chem. Soc. 1983, 105, 828−830. doi: 10.1021/ja00342a030

    8. [8]

      Bignozzi, C. A.; Argazzi, R.; Garcia, C. G.; Scandola, F.; Schoonover, J. R.; Meyer, T. J. Long-range energy transfer in oligomeric metal complex assemblies. J. Am. Chem. Soc. 1992, 114, 8727−8729. doi: 10.1021/ja00048a071

    9. [9]

      Endicott, J. F.; Chen, Y. J. Electronic coupling between metal ions in cyanide-bridged ground state and excited state mixed valence complexes. Coordin. Chem. Rev. 2013, 257, 1676−1698. doi: 10.1016/j.ccr.2012.10.018

    10. [10]

      Lin, J. L.; Tsai, C. N.; Huang, S. Y.; Endicott, J. F.; Chen, Y. J.; Chen, H. Y. Nearest-and next-nearest-neighbor Ru(Ⅱ)/Ru(Ⅲ) electronic coupling in cyanide-bridged tetra-ruthenium square complexes. Inorg. Chem. 2011, 50, 8274−8280. doi: 10.1021/ic200806a

    11. [11]

      Alborés, P.; Rossi, M. B.; Baraldo, L. M.; Slep, L. D. Donor-acceptor interactions and electron transfer in cyano-bridged trinuclear compounds. Inorg. Chem. 2006, 45, 10595−10604. doi: 10.1021/ic061202k

    12. [12]

      Sheng, T.; Vahrenkamp, H. Long range metal-metal interactions along Fe−NC−Ru−CN−Fe chains. Eur. J. Inorg. Chem. 2004, 1198−1203.

    13. [13]

      Low, P. J. Twists and turns: studies of the complexes and properties of bimetallic complexes featuring phenylene ethynylene and related bridging ligands. Coordin. Chem. Rev. 2013, 257, 1507−1532. doi: 10.1016/j.ccr.2012.08.008

    14. [14]

      Chisholm, M. H. Mixed valency and metal-metal quadruple bonds. Coordin. Chem. Rev. 2013, 257, 1576−1583. doi: 10.1016/j.ccr.2012.10.021

    15. [15]

      Kaim, W.; Lahiri, G. K. Unconventional mixed-valent complexes of ruthenium and osmium. Angew. Chem. Int. Edit. 2007, 46, 1778−1796. doi: 10.1002/anie.200602737

    16. [16]

      D'Alessandro, D. M.; Keene, F. R. Intervalence charge transfer (IVCT) in trinuclear and tetranuclear complexes of iron, ruthenium, and osmium. Chem. Rev. 2006, 106, 2270−2298. doi: 10.1021/cr050010o

    17. [17]

      Oviedo, P. S.; Pieslinger, G. E.; Cadranel, A.; Baraldo, L. M. Exploring the localized to delocalized transition in non-symmetric bimetallic ruthenium polypyridines. Dalton Trans. 2017, 46, 15757−15768. doi: 10.1039/C7DT02422C

    18. [18]

      Pieslinger, G. E.; Albores, P.; Slep, L. D.; Coe, B. J.; Timpson, C. J.; Baraldo, L. M. Communication between remote moieties in linear Ru–Ru–Ru trimetallic cyanide-bridged complexes. Inorg. Chem. 2013, 52, 2906−2917. doi: 10.1021/ic302173g

    19. [19]

      Ma, X.; Lin, C. S.; Hu, S. M.; Tan, C. H.; Wen, Y. H.; Sheng, T. L.; Wu, X. T. Influence of central metalloligand geometry on electronic communication between metals: syntheses, crystal structures, MMCT properties of isomeric cyanido-bridged Fe2Ru complexes, and TDDFT calculations. Chem. Eur. J. 2014, 20, 7025−36. doi: 10.1002/chem.201303195

    20. [20]

      Hush, N. S. Intervalence-transfer absorption. Part 2. Theoretical considerations and spectroscopic data. Prog. Inorg. Chem. 1967, 391−444.

    21. [21]

      Brunschwig, B. S.; Creutz, C.; Sutin, N. Optical transitions of symmetrical mixed-valence systems in the Class Ⅱ–Ⅲ transition regime. Chem. Soc. Rev. 2002, 31, 168−184. doi: 10.1039/b008034i

    22. [22]

      Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J. The localized-to-delocalized transition in mixed-valence chemistry. Chem. Rev. 2001, 101, 2655−2686. doi: 10.1021/cr990413m

    23. [23]

      Cave, R. J.; Newton, M. D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett. 1996, 249, 15−19. doi: 10.1016/0009-2614(95)01310-5

    24. [24]

      Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics 1985, 811, 265−322.

    25. [25]

      Adams, C. J.; Connelly, N. G.; Goodwin, N. J.; Hayward, O. D.; Orpen, A. G.; Wood, A. J. Metal-metal charge transfer and solvatochromism in cyanomanganese carbonyl complexes of ruthenium and osmium. Dalton Trans. 2006, 29, 3584−96.

    26. [26]

      Pereztejeda, P.; Neto-Ponce, P.; Sánchez, F. Salt effects on the electron transfer transition within the binuclear complex [(NH3)5Ru(μ-CN)Fe(CN)5]− . J. Chem. Soc., Dalton Trans. 2001, 11, 1686−1691.

    27. [27]

      Sánchez-Burgos, F.; Galán, M.; Domínguez, M.; Pe′rez-Tejeda, P. Medium effects on the electron transfer transition within the binuclear complex [(NH3)5Ru-NC-Ru(CN)5]. New J. Chem. 1998, 22, 907−911. doi: 10.1039/a709270i

    28. [28]

      Rossi, M. B.; Alborés, P.; Baraldo, L. M. Exploring the properties of mixed valence cyanide bridged dinuclear complexes: solvent stabilization of electronic isomers. Inorg. Chim. Acta 2011, 374, 334−340. doi: 10.1016/j.ica.2011.03.032

    29. [29]

      Neto-Ponce, P.; Sánchez, F.; Pérez, F.; García-Santana, A.; Pérez-Tejeda, P. Salt, solvent, and micellar effects on the intervalence transition within the binuclear complex pentaammineruthenium(Ⅲ)(μ-cyano)pentacyanoiron(Ⅱ). An estimation of rate constant from static (optical and electrochemical) data. Langmuir 2001, 17, 980−987. doi: 10.1021/la000215m

    30. [30]

      Ma, X.; Lin, C. S.; Zhu, X. Q.; Hu, S. M.; Sheng, T. L.; Wu, X. T. An unusually delocalized mixed-valence state of a cyanidometal-bridged compound induced by thermal electron transfer. Angew. Chem. Int. Edit. 2017, 56, 1605−1609. doi: 10.1002/anie.201610855

    31. [31]

      Su, S. D.; Zhu, X. Q.; Wen, Y. H.; Zhang, L. T.; Yang, Y. Y.; Lin, C. S.; Wu, X. T.; Sheng, T. L. A diruthenium-based mixed spin complex Ru25+ (S = 1/2)−CN−Ru25+ (S = 3/2). Angew. Chem. Int. Edit. 2019, 58, 15344−15348. doi: 10.1002/anie.201909097

    32. [32]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallog. C Struct. Chem. 2015, 71, 3−8. doi: 10.1107/S2053229614024218

    33. [33]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112−122. doi: 10.1107/S0108767307043930

    34. [34]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339−341. doi: 10.1107/S0021889808042726

    35. [35]

      Li, S. H.; Liu, Y.; Yang, Y. Y.; Zhang, Y. X.; Xu, Q. D.; Hu, S. M.; Wu, X. T.; Sheng, T. L. Syntheses, crystal structures and MMCT properties of cyanide-bridged binuclear Ru−Fe complexes. Polyhedron 2019, 114109−114109.

    36. [36]

      Roger, C.; Hamon, P.; Toupet, L.; Rabaa, H.; Saillard, J. Y.; Hamon, J. R.; Lapinte, C. Halo and alkyl (pentamethylcyclopentadienyl)(1,2-bis(diphenylphosphino)ethane)iron(Ⅲ) 17-electron complexes: synthesis, NMR and magnetic-properties, and EHMO calculations. Organometallics 1991, 10, 1045−1054. doi: 10.1021/om00050a041

    37. [37]

      Bruce, M. I.; Ellis, B. G.; Low, P. J.; Skelton, B. W.; White, A. H. Syntheses, structures, and spectro-electrochemistry of {Cp*(PP)Ru}C≡CC≡C{Ru(PP)Cp*} (PP = dppm, dppe) and their mono-and dications. Organometallics 2003, 22, 3184−3198. doi: 10.1021/om030015g

    38. [38]

      Yang, Y. Y.; Zhu, X. Q.; Hu, S. M.; Su, S. D.; Zhang, L. T.; Wen, Y. H.; Wu, X. T.; Sheng, T. L. Different degrees of electron delocalization in mixed valence Ru-Ru-Ru compounds by cyanido-/isocyanido-bridge isomerism. Angew. Chem. Int. Edit. 2018, 57, 14046−14050. doi: 10.1002/anie.201806157

    39. [39]

      Morandini, F.; Dondana, A.; Munari, I.; Pilloni, G.; Consiglio, G.; Sironi, A.; Moret, M. Pentamethylcyclopentadienyl ruthenium(Ⅱ) complexes containing chiral diphospines: synthesis, characterisation and electrochemical behaviour. X-ray structure of (η5-C5Me5)Ru{(S, S)-Ph2PCH(CH3)CH(CH3)PPh2}Cl. Inorg. Chim. Acta 1998, 282, 163−172. doi: 10.1016/S0020-1693(98)00219-9

    40. [40]

      Zhang, L. T.; Zhu, X. Q.; Su, S. D.; Yang, Y. Y.; Hu, S. M.; Wen, Y. H.; Wu, X. T.; Sheng, T. L. Influence of the substitution of the ligand on MM′CT properties of mixed valence heterometallic cyanido-bridged Ru–Fe complexes. Cryst. Growth Des. 2018, 18, 3674−3682. doi: 10.1021/acs.cgd.8b00469

    41. [41]

      Zhang, L. T.; Zhu, X. Q.; Hu, S. M.; Zhang, Y. X.; Su, S. D.; Yang, Y. Y.; Wu, X. T.; Sheng, T. L. Influence of ligand substitution at the donor and acceptor center on MMCT in a cyanide-bridged mixed-valence system. Dalton Trans. 2019, 48, 7809−7816. doi: 10.1039/C9DT01303B

    42. [42]

      Sheng, T.; Vahrenkamp, H. In metal-metal charge transfer in LnM-CN-FeCl3 complexes. An. Asoc. Quím. Argent. 2004, 17−27.

    43. [43]

      Zhu, N.; Vahrenkamp, H. Synthesis, redox chemistry, and mixed-valence phenomena of cyanide-bridged dinuclear organometallic complexes. Chem. Ber. 1997, 130, 1241−1252. doi: 10.1002/cber.19971300912

    44. [44]

      Bignozzi, C. A.; Roffia, S.; Scandola, F. Intervalence transfer in cyano-bridged bi- and trinuclear ruthenium complexes. J. Am. Chem. Soc. 1985, 107, 1644−1651. doi: 10.1021/ja00292a030

    45. [45]

      Richardson, D. E. T. H. Electronic interactions in mixed-valence molecules as mediated by organic bridging groups. J. Am. Chem. Soc. 1983, 105, 40−51. doi: 10.1021/ja00339a009

    46. [46]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT 2013.

    47. [47]

      Robin, M. B.; Day, P. Mixed valence chemistry-a survey and classification. Advances in Inorganic Chemistry and Radiochemistry 1968, 10, 247−422.

    48. [48]

      Ma, X. Designed Synthesis, MMCT and Magnetic Properties of a Series of Cyanide-bridged Organometallic Complexes. Doctor Thesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 2012, p71−72.

  • Figure 1  Molecular structure of complex 1 (Hydrogen atoms in complex are ignored for clarity). Fe, red; C, gray; P, brown; Cl, green; N, blue

    Figure 2  UV-VIS-NIR absorption spectra of all complexes

    Figure 3  MMCT and IC transition of coupled bimetallic dπ6-dπ5 compounds[48]

    Figure 4  Molecular orbital diagrams of HOMO-3 (145B), and LUMO+1 (149B) for 1. The isosurface value is 0.02 au.

    Figure 5  Molecular orbital diagrams of HOMO-2 (178B) and LUMO+1 (182B) for 2. The isosurface value is 0.02 au.

    Figure 6  Molecular orbital diagrams of HOMO-1 (162B) and LUMO (164B) for 3. The isosurface value is 0.02 au.

    Figure 7  Molecular orbital diagrams of HOMO-1 (162B), HOMO (163B), LUMO (164B) and LUMO+1 (165B) for 4. The isosurface value is 0.02 au.

    Figure 8  Molecular orbital diagrams of HOMO-2 (194B) and LUMO+1 (198B) for 5. The isosurface value is 0.02 au.

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (º) of these Complexes

    Complexes 1 2 3 4 5
    C–N 1.168(7) 1.154(5) 1.176(5) 1.166(3) 1.163(6)
    Fe(Ru)–C 1.930(6) 1.929(3) 1.814(4) 1.926(2) 1.919(4)
    Fe–N 1.897(5) 1.929(3) 1.906(3) 1.922(2) 2.181(2)
    Fe(Ru)–P(av.) 2.283(14) 2.319(9) 2.212(12) 2.307(7) 2.349(11)
    Fe–Cl (av.) 2.155(13) 2.177(17) 2.187(17) 2.174(12) 2.179(4)
    Fe(Ru)–C≡N 176.6(5) 174.4(3) 174.2(4) 172.7(2) 174.1(4)
    Fe–N≡C 166.7(5) 177.1(3) 167.4(4) 170.7(2) 176.5(4)
    下载: 导出CSV

    Table 2.  IR Spectra Bands, ν(CN) of Complexes 1~5 and Their Related Precursors (in KBr, cm-1)

    Complexes ν(CN) Related precursors ν(CN) ν
    1 2000 MeCp(dppe)RuCN 2071 –71
    2 2007 MeCp(PPh3)2RuCN 2061 –54
    3 1969 Cp*(dppe)FeCN 2054 –85
    4 1989 Cp*(dppe)RuCN 2068 –79
    5 1989 Cp*(PPh3)2RuCN 2066 –77
    下载: 导出CSV

    Table 3.  Comparison of Experimental and Theoretical Values of Electronic Absorption Bands in CH2Cl2 Solution

    Complexes λmax (εmax) (nm (M-1·cm-1))
    Exptl. Calcd.
    1 500 (4391) 519.90
    2 542 (4865) 546.86
    3 760 (4378) 863.00
    4 536 (3467) 534.15
    5 580 (4344) 564.76
    下载: 导出CSV

    Table 4.  Mulliken Spin Densities of Mixed-valence Species

    Complex Ru/Fe Fe
    1 0.048950 3.699288
    2 0.045071 3.709902
    3 0.102101 3.771728
    4 0.053790 3.707974
    5 0.059390 3.686879
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  412
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2021-02-01
  • 收稿日期:  2020-03-16
  • 接受日期:  2020-06-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章