Citation: Yang LU, Xiang CHEN, Chen-Zi ZHAO, Qiang ZHANG. Machine Learning towards Screening Solid-state Lithium Ion Conductors[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 8-10. doi: 10.14102/j.cnki.0254-5861.2011-2710 shu

Machine Learning towards Screening Solid-state Lithium Ion Conductors

  • Corresponding author: Qiang ZHANG, zhang-qiang@mails.tsinghua.edu.cn
  • Received Date: 20 December 2019
    Accepted Date: 26 December 2019

    Fund Project: the National Key Research and Development Program 2016YFA0202500National Natural Science Foundation of China 21825501

Figures(1)

  • Machine learning is an emerging method to discover new materials with specific characteristics. An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds, providing inspirations for the development of solid-state electrolytes and practical batteries.
  • Solid-state chemistry is drawing increasing attention due to the rise of solid-state electrolytes (SSEs). SSEs enable the accelerated migration of multiple anions such as lithium (Li) and sodium at solid-state mode. Compared with routine organic liquid electrolytes in Li batteries, solid Li ionic conductors (SSLCs) can realize high thermal stability, high ionic conductivity, and wide electrochemical windows, which enables the application of Li metal anodes[1]. Consequently, SSLCs have been treated as a promising solution to break through the anxiety of limited energy density of conventional Li-ion batteries. Tremendous efforts have been devoted to this field and have achieved significant progresses[2]. However, the experimentally synthesized solid electrolytes cannot meet the multiple requirements in practical batteries, which is calling for emerging methodology and instructions to explore advanced solid-state electrolytes.

    Figure 1

    Figure 1.  Unsupervised clustering results for Li contained compounds. Most high ionic conductive materials are located in groups V and VI, which possess mild distortion anion structures. The materials in groups V and VI exhibit obvious talents of high ionic conductivity[11], which are concentrated for the subsequent screening

    The known SSLCs exhibit various crystalline structures, including layered patterns (Li3N), garnet (Li7La3Zr2O12), NASICON (Li1.5Al0.5Ti0.5(PO4)3), perovskite (Li0.5La0.5TiO3), anti-perovskite (Li3OX, X = Cl and Br), thio-LISICON (Li10GeP2S12, LGPS) and argyrodite (Li6PS5X, X = Cl, Br, and I)[3-7]. These typical ionic conductors possess disparate crystalline structure, physical/chemical properties, and ionic conductivities, whose internal connection is difficult to be completely analyzed and unraveled. Therefore, designing brand-new Li ionic conductive materials confronts tremendous challenges. Conventional explorations depending on experimental try and errors are not effective. Based on the already known materials, a rapid exploration and screening impel the development of material genome engineering[8]. Mo and co-authors have conducted much beneficial work towards the prediction of (electro)chemical stability against Li metal and the electrochemical window of multiple solid-state electrolytes, affording an accurate guidance for interfacial engineering[9, 10]. The supervised learning methods require abundant data to train the models. A large amount of involved data guarantees the accuracy of the trained model. However, the kinds of known SSLCs are insufficient to conduct supervised machine learning with a high accuracy. Most Li contained compounds do not possess high ionic conductivities, which cannot be treated as training materials. In order to figure out the disadvantages, Mo, Ling, and co-workers creatively conducted an unsupervised machine learning study, which is a new route to unravel the interior differences between SSLCs and thus can predict new potential SSLCs[11]. The unsupervised machine learning model simultaneously divides the data into different groups according to data characteristics.

    In the unsupervised model, the authors designed a protocol as follows: digitalizing Li-contained compounds, clustering the targeted groups, and running ab initio molecular dynamics (AIMD) simulations to verify the predicted objects. The anion framework of Li-contained compounds is firstly digitalized by the modified XRD (mXRD) representation. In order to highlight the structural crystal features, only the anion framework is considered. The mXRD means that the characteristics of the anion frameworks are transformed into a group of lattice parameters shown in XRD patterns. Each compound will be simplified into a vector. Then the mXRD clustering classified compounds by their characteristics of their anion framework structures. The Li ions located in the highly symmetric lattices are constrained at the well-defined sites. The highly disordered framework will also locally trap ions and hinder possible percolations. It is concluded that anion frameworks with a mild distortion, which are located between the highly symmetric lattices and the highly disordered ones, possess high ionic conductivities. This fruitful insight affords a great reference for further screening of ionic conductors. The groups with mild distortion are further screened by AIMD simulation to choose objects with high ionic conductivities. More significantly, the unsupervised method dramatically shrinks the range for screening and increases screening efficiency compared with the conventional high throughput methods. The unsupervised machine learning is appropriate to estimate potential materials with high ionic conductivities. The results for screening also provide targets for experimental attempts. Because the new predicted materials exhibit disparate crystal structures, the results can also help to broaden the thoughts.

    The solid Li ionic conductor is a complicated system, involving many chemical and physical parameters. This unsupervised machine learning system does not cover sufficient details in solid Li ionic conductors. Therefore, the accuracy of the machine learning model can be further improved. The unsupervised machine learning method is a new brand route for predictions, integrating the high throughput results towards screening solid-state lithium ion conductors for next-generation batteries.


    1. [1]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403–10473.  doi: 10.1021/acs.chemrev.7b00115

    2. [2]

      Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 2018, 394, 74–85.  doi: 10.1016/j.jpowsour.2018.05.003

    3. [3]

      Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.  doi: 10.1021/acs.chemrev.5b00563

    4. [4]

      Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 2011, 40, 60–62.  doi: 10.1246/cl.2011.60

    5. [5]

      Lu, Y.; Huang, X.; Song, Z.; Rui, K.; Wang, Q.; Gu, S.; Yang, J.; Xiu, T.; Badding, M. E.; Wen, Z. Highly stable garnet solid electrolyte based Li–S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 2018, 15, 282–290.  doi: 10.1016/j.ensm.2018.05.018

    6. [6]

      Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 2019, 19, 379–400.  doi: 10.1016/j.ensm.2018.10.012

    7. [7]

      Zhao, Y.; Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 2012, 134, 15042–15047.  doi: 10.1021/ja305709z

    8. [8]

      Zheng, J.; Ye, Y.; Pan, F. 'Structure units' as materials genes in cathode materials for lithium-ion batteries. Natl. Sci. Rev. 2019, DOI: 10.1093/nsr/nwz178/5614552.  doi: 10.1093/nsr/nwz178/5614552

    9. [9]

      Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266.  doi: 10.1039/C5TA08574H

    10. [10]

      Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.  doi: 10.1002/aenm.201501590

    11. [11]

      Zhang, Y.; He, X.; Chen, Z.; Bai, Q.; Nolan, A. M.; Roberts, C. A.; Banerjee, D.; Matsunaga, T.; Mo, Y.; Ling, C. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 2019, 10, 5260.  doi: 10.1038/s41467-019-13214-1

    1. [1]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403–10473.  doi: 10.1021/acs.chemrev.7b00115

    2. [2]

      Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 2018, 394, 74–85.  doi: 10.1016/j.jpowsour.2018.05.003

    3. [3]

      Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.  doi: 10.1021/acs.chemrev.5b00563

    4. [4]

      Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 2011, 40, 60–62.  doi: 10.1246/cl.2011.60

    5. [5]

      Lu, Y.; Huang, X.; Song, Z.; Rui, K.; Wang, Q.; Gu, S.; Yang, J.; Xiu, T.; Badding, M. E.; Wen, Z. Highly stable garnet solid electrolyte based Li–S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 2018, 15, 282–290.  doi: 10.1016/j.ensm.2018.05.018

    6. [6]

      Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 2019, 19, 379–400.  doi: 10.1016/j.ensm.2018.10.012

    7. [7]

      Zhao, Y.; Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 2012, 134, 15042–15047.  doi: 10.1021/ja305709z

    8. [8]

      Zheng, J.; Ye, Y.; Pan, F. 'Structure units' as materials genes in cathode materials for lithium-ion batteries. Natl. Sci. Rev. 2019, DOI: 10.1093/nsr/nwz178/5614552.  doi: 10.1093/nsr/nwz178/5614552

    9. [9]

      Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266.  doi: 10.1039/C5TA08574H

    10. [10]

      Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.  doi: 10.1002/aenm.201501590

    11. [11]

      Zhang, Y.; He, X.; Chen, Z.; Bai, Q.; Nolan, A. M.; Roberts, C. A.; Banerjee, D.; Matsunaga, T.; Mo, Y.; Ling, C. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 2019, 10, 5260.  doi: 10.1038/s41467-019-13214-1

  • 加载中
    1. [1]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    2. [2]

      Qiao WangZiling JiangChuang YuLiping LiGuangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006

    3. [3]

      Sheng ZhaoJunjie LuBifu ShengSiying ZhangHao LiJizhang ChenXiang Han . High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte. Chinese Chemical Letters, 2025, 36(6): 110008-. doi: 10.1016/j.cclet.2024.110008

    4. [4]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    5. [5]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Zixing XuRuiying ChenChuanming HaoQionghong XieChunhui DengNianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975

    8. [8]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    9. [9]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    10. [10]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    11. [11]

      Yao-Hua GuYu ChenQing LiNeng-Bin XieXue XingJun XiongMin HuTian-Zhou LiKe-Yu YuanYu LiuTang TangFan HeBi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627

    12. [12]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    13. [13]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    16. [16]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    17. [17]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    18. [18]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    19. [19]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    20. [20]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

Metrics
  • PDF Downloads(15)
  • Abstract views(751)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return