Machine Learning towards Screening Solid-state Lithium Ion Conductors
- Corresponding author: Qiang ZHANG, zhang-qiang@mails.tsinghua.edu.cn
Citation:
Yang LU, Xiang CHEN, Chen-Zi ZHAO, Qiang ZHANG. Machine Learning towards Screening Solid-state Lithium Ion Conductors[J]. Chinese Journal of Structural Chemistry,
;2020, 39(1): 8-10.
doi:
10.14102/j.cnki.0254-5861.2011-2710
Solid-state chemistry is drawing increasing attention due to the rise of solid-state electrolytes (SSEs). SSEs enable the accelerated migration of multiple anions such as lithium (Li) and sodium at solid-state mode. Compared with routine organic liquid electrolytes in Li batteries, solid Li ionic conductors (SSLCs) can realize high thermal stability, high ionic conductivity, and wide electrochemical windows, which enables the application of Li metal anodes[1]. Consequently, SSLCs have been treated as a promising solution to break through the anxiety of limited energy density of conventional Li-ion batteries. Tremendous efforts have been devoted to this field and have achieved significant progresses[2]. However, the experimentally synthesized solid electrolytes cannot meet the multiple requirements in practical batteries, which is calling for emerging methodology and instructions to explore advanced solid-state electrolytes.
The known SSLCs exhibit various crystalline structures, including layered patterns (Li3N), garnet (Li7La3Zr2O12), NASICON (Li1.5Al0.5Ti0.5(PO4)3), perovskite (Li0.5La0.5TiO3), anti-perovskite (Li3OX, X = Cl and Br), thio-LISICON (Li10GeP2S12, LGPS) and argyrodite (Li6PS5X, X = Cl, Br, and I)[3-7]. These typical ionic conductors possess disparate crystalline structure, physical/chemical properties, and ionic conductivities, whose internal connection is difficult to be completely analyzed and unraveled. Therefore, designing brand-new Li ionic conductive materials confronts tremendous challenges. Conventional explorations depending on experimental try and errors are not effective. Based on the already known materials, a rapid exploration and screening impel the development of material genome engineering[8]. Mo and co-authors have conducted much beneficial work towards the prediction of (electro)chemical stability against Li metal and the electrochemical window of multiple solid-state electrolytes, affording an accurate guidance for interfacial engineering[9, 10]. The supervised learning methods require abundant data to train the models. A large amount of involved data guarantees the accuracy of the trained model. However, the kinds of known SSLCs are insufficient to conduct supervised machine learning with a high accuracy. Most Li contained compounds do not possess high ionic conductivities, which cannot be treated as training materials. In order to figure out the disadvantages, Mo, Ling, and co-workers creatively conducted an unsupervised machine learning study, which is a new route to unravel the interior differences between SSLCs and thus can predict new potential SSLCs[11]. The unsupervised machine learning model simultaneously divides the data into different groups according to data characteristics.
In the unsupervised model, the authors designed a protocol as follows: digitalizing Li-contained compounds, clustering the targeted groups, and running ab initio molecular dynamics (AIMD) simulations to verify the predicted objects. The anion framework of Li-contained compounds is firstly digitalized by the modified XRD (mXRD) representation. In order to highlight the structural crystal features, only the anion framework is considered. The mXRD means that the characteristics of the anion frameworks are transformed into a group of lattice parameters shown in XRD patterns. Each compound will be simplified into a vector. Then the mXRD clustering classified compounds by their characteristics of their anion framework structures. The Li ions located in the highly symmetric lattices are constrained at the well-defined sites. The highly disordered framework will also locally trap ions and hinder possible percolations. It is concluded that anion frameworks with a mild distortion, which are located between the highly symmetric lattices and the highly disordered ones, possess high ionic conductivities. This fruitful insight affords a great reference for further screening of ionic conductors. The groups with mild distortion are further screened by AIMD simulation to choose objects with high ionic conductivities. More significantly, the unsupervised method dramatically shrinks the range for screening and increases screening efficiency compared with the conventional high throughput methods. The unsupervised machine learning is appropriate to estimate potential materials with high ionic conductivities. The results for screening also provide targets for experimental attempts. Because the new predicted materials exhibit disparate crystal structures, the results can also help to broaden the thoughts.
The solid Li ionic conductor is a complicated system, involving many chemical and physical parameters. This unsupervised machine learning system does not cover sufficient details in solid Li ionic conductors. Therefore, the accuracy of the machine learning model can be further improved. The unsupervised machine learning method is a new brand route for predictions, integrating the high throughput results towards screening solid-state lithium ion conductors for next-generation batteries.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403–10473.
doi: 10.1021/acs.chemrev.7b00115
Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 2018, 394, 74–85.
doi: 10.1016/j.jpowsour.2018.05.003
Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.
doi: 10.1021/acs.chemrev.5b00563
Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 2011, 40, 60–62.
doi: 10.1246/cl.2011.60
Lu, Y.; Huang, X.; Song, Z.; Rui, K.; Wang, Q.; Gu, S.; Yang, J.; Xiu, T.; Badding, M. E.; Wen, Z. Highly stable garnet solid electrolyte based Li–S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 2018, 15, 282–290.
doi: 10.1016/j.ensm.2018.05.018
Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 2019, 19, 379–400.
doi: 10.1016/j.ensm.2018.10.012
Zhao, Y.; Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 2012, 134, 15042–15047.
doi: 10.1021/ja305709z
Zheng, J.; Ye, Y.; Pan, F. 'Structure units' as materials genes in cathode materials for lithium-ion batteries. Natl. Sci. Rev. 2019, DOI: 10.1093/nsr/nwz178/5614552.
doi: 10.1093/nsr/nwz178/5614552
Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266.
doi: 10.1039/C5TA08574H
Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.
doi: 10.1002/aenm.201501590
Zhang, Y.; He, X.; Chen, Z.; Bai, Q.; Nolan, A. M.; Roberts, C. A.; Banerjee, D.; Matsunaga, T.; Mo, Y.; Ling, C. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 2019, 10, 5260.
doi: 10.1038/s41467-019-13214-1
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403–10473.
doi: 10.1021/acs.chemrev.7b00115
Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 2018, 394, 74–85.
doi: 10.1016/j.jpowsour.2018.05.003
Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.
doi: 10.1021/acs.chemrev.5b00563
Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 2011, 40, 60–62.
doi: 10.1246/cl.2011.60
Lu, Y.; Huang, X.; Song, Z.; Rui, K.; Wang, Q.; Gu, S.; Yang, J.; Xiu, T.; Badding, M. E.; Wen, Z. Highly stable garnet solid electrolyte based Li–S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 2018, 15, 282–290.
doi: 10.1016/j.ensm.2018.05.018
Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 2019, 19, 379–400.
doi: 10.1016/j.ensm.2018.10.012
Zhao, Y.; Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 2012, 134, 15042–15047.
doi: 10.1021/ja305709z
Zheng, J.; Ye, Y.; Pan, F. 'Structure units' as materials genes in cathode materials for lithium-ion batteries. Natl. Sci. Rev. 2019, DOI: 10.1093/nsr/nwz178/5614552.
doi: 10.1093/nsr/nwz178/5614552
Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266.
doi: 10.1039/C5TA08574H
Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.
doi: 10.1002/aenm.201501590
Zhang, Y.; He, X.; Chen, Z.; Bai, Q.; Nolan, A. M.; Roberts, C. A.; Banerjee, D.; Matsunaga, T.; Mo, Y.; Ling, C. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 2019, 10, 5260.
doi: 10.1038/s41467-019-13214-1
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006
Sheng Zhao , Junjie Lu , Bifu Sheng , Siying Zhang , Hao Li , Jizhang Chen , Xiang Han . High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte. Chinese Chemical Letters, 2025, 36(6): 110008-. doi: 10.1016/j.cclet.2024.110008
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Zixing Xu , Ruiying Chen , Chuanming Hao , Qionghong Xie , Chunhui Deng , Nianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Jingyu Shi , Xiaofeng Wu , Yutong Chen , Yi Zhang , Xiangyan Hou , Ruike Lv , Junwei Liu , Mengpei Jiang , Keke Huang , Shouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Zhihao HE , Jiafu DING , Yunjie WANG , Xin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Ruofan Qi , Jing Zhang , Wang Sun , Bai Yu , Zhenhua Wang , Kening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104