Theoretical Analysis of Structural Characteristics of Morin Rearrangement for Cephalosporins Prepared from Penicillin Sulfoxide
- Corresponding author: Guo-Hua CHEN, chgh29@163.com
Citation:
Guo-Hua CHEN, Ning JIANG, Hai-Yan XIANG, Hai-Bo DU. Theoretical Analysis of Structural Characteristics of Morin Rearrangement for Cephalosporins Prepared from Penicillin Sulfoxide[J]. Chinese Journal of Structural Chemistry,
;2020, 39(9): 1594-1600.
doi:
10.14102/j.cnki.0254-5861.2011-2641
In 1963, the researchers of Lilly research laboratory[1] found the conversion of penicillin into cephalosporin by treatment of penicillin sulfoxides at high temperature, named Morin rearrangement. Subsequently, a large number of reports described the novel and convenient process for the conversion of penicillin sulfoxides to a variety of cephalosporin derivatives[2, 3]. The researchers suggest that the reaction process may involve the ring-opening reaction for sulfoxide functional group to rearrange into substructure of sulfenic acid (R–SOH), and then form the sulfur positive ion (R–S+) by dehydration[4-8]. Finally, cephalosporin is obtained by the intramolecular cyclization reaction. Based on the speculation of this reaction mechanism, a series of catalysts and scavengers were designed to capture the structure of sulfenic acid. Finally, the best scavenger, 2-mercaptobenzothiazol[9], is screened out to synthetize the active intermediate of GCLE that is used for the preparation of various types of cephalosporins[10-13].
Meanwhile, in 1999, Hart group[14, 15] were inspired by Morin rearrangement on trapping of the putative cationic intermediate in carbon-sulfur bond-forming reactions and designed the sulfoxide into sulfenic acid. Protonation and then electrophilic addition of the sulfenic acid resulting alkenyl would afford an N-acyliminium ion, and loss of a proton would afford the key intermediate for Spiroquinazoline. In 2008, Keerthi et al.[8] described sulfinyl ketone precursors to generate a "Morin type" sulfenic acid intermediate under mild conditions. This approach made it possible to demonstrate that the intramolecular cyclization of an alkene onto a phenyl sulfenic acid moiety to generate an episulfonium ion can occur in neutral aqueous solution at room temperature.
Although there are plenty of researches about penicillin sulfoxides and application of synthesis on morin rearrangement, the theoretical analysis has not been involved. In view of the important application value for Morin reaction, especially in conversion for penicillin into cephalosporin derivatives in the pharmaceutical field, the theoretical researches on its reaction mechanism and influencing factors are carried out in this study.
The Gaussian 09 program package[16] was used to research theoretical properties on Morin rearrangement on the penicillin sulfoxide as a cephalosporin derivative (Scheme 1). All the geometry structures were optimized with m062x method at the 6-311++G (d, p) basis set, and frequency analyses were performed at the same level. All the reactants and intermediates have no negative value, and the transition state structures have only one negative value. IRC computations were carried out to confirm that the transition states connect the right reactants and products. The solvation effects were considered with SMD solvation model[17]. The bonding characteristics were analyzed by means of the atoms in molecules (AIM) theory[18]. For this purpose, we located the most relevant bond critical points (BCPs) and evaluated the electron density characteristics at each of them by means of the Multiwfn 3.5 program[19]. Several recent articles have reported that the reagent, such as TsOH, three fluoroacetic acids and pyridine hydrobromide, is used as catalyst for the conversion of penicillins into cephalosporins by Morin rearrangement. Therefore, the effect of acid catalysis is simulated using hydrobromide (HBr) as standard reference material[20]. The hydrogen bonding interaction energies of the complexes were calculated by using the usual definition[21] where the energies of the isolated molecules EA and EB are subtracted from the total energy EAB of the complex. The hydrogen bond energies include the zero point energy (ZPE) and the basis set superposition energy (BSSE) corrections computed by the counterpoise method[22].
The penicillin sulfoxides were synthesized using peroxyacetic acid to oxidize penicillins. Thus, oxidation production of penicillins at an ice batch furnished in 61% overall yield with a mixture: (R or S)-sulphoxides[23]. There are four isomers for penicillin sulfoxides (S0, S1, S2 and S3), if those isomers of amide-imidol (-COH=N-) are considered (Fig. 1).
The minimum energy isomer is S0 among the four isomers (Table 1). The intramolecular hydrogen bonding between the side-chain amide proton and the sulfinyl oxygen (-SO) is inferred as the most important influence factor to reduce the molecular Gibbs free energy (G value). The difference between the minimum and maximum of G values among four isomers is up to 85.77 kJ/mol (S3). The thermodynamics calculation also indicated that the amide proton in intramolecular hydrogen transfers to sulfinyl oxygen according to the path: S0- > TS1- > S1. The energy barrier is up to 182.44 kJ/mol, corresponding to a small imaginary frequency of –119.92. The distances between the sulfinyl oxygen and the 2-methylene hydrogen or 8-methyl hydrogen in S0 are 2.777 and 2.629 Å, respectively.
Species | E (RM062X, a.u.) | ∆G (kJ/mol) | Imaginary frequency | Dipole moment (Debye) |
S1 | –1312.468101 | 55.57 | Non | 2.7 |
TS3 | –1312.426138 | 110.17 | –1119.92 | 3.9 |
S0 | –1312.489265 | 0.00 | 6.4 | |
IN2 | –1312.474506 | 38.75 | 4.8 | |
IN1 | –1312.506412 | –45.02 | –9.84 | 9.4 |
TS2 | –1312.460658 | 75.11 | –1090.96 | 10.1 |
TS1 | –1312.419777 | 182.44 | –119.92 | 9.6 |
S2 | –1312.481467 | 20.47 | 4.9 | |
S3 | –1312.456598 | 85.77 | 3.3 | |
S4 | –3887.276949 | –43.42 | 11.3 | |
TS5 | –3887.248729 | 74.09 | –176.83 | 13.2 |
HBr | –2574.771148 | 0.000 | ||
S5 | –3887.269701 | 19.03 | 10.5 | |
TS6 | –3887.228321 | 127.67 | –185.16 | 12.1 |
TS4 | –1312.411621 | 203.85 | ||
IN3 | –3887.280377 | –9.00 | 0 | 11.2 |
IN4 | –3887.255661 | 55.89 | 0 | 5.0 |
These products were fully characterized by means of the analysis of their electron density surface following the AIM theory. AIM analysis on TS1 shows BCP. The value of
Fig. 2 shows that the reaction mechanism of ring cleavage for penicillin sulfoxide has two possible reaction pathways, in which "(I)" and "(II)" are the schematic diagram of energy level in forming IN1 and IN2, respectively. The activation energies are 75.11 kJ/mol for S0- > TS2- > IN1 channel (path I) and 110.17 kJ/mol for S0- > TS1- > S1- > TS3- > IN2 channel (path II), respectively. So, during the course of forming ring-opening products, path I is better.
Reaction paths followed were performed for these reactions. IRC reaction profiles are show in Fig. 3. IRC calculations demonstrated that the transition state structures connect the reactant and corresponding products.
AIM analysis between the sulfenic group (-SOH) and ethylene (CH2=CH-) in IN1 and IN2 shows BCP. The values of
ELF analysis in Fig. 4 shows that the amide proton is a key structure factor affecting ring-opening reaction. The hydrogen bonding effect induces the migration of the one-pair electrons of sulfinyl oxygen to the 8-methyl hydrogen. As a result, the interaction is shifted from the original weak van Der Waals interaction to hydrogen bonding interaction. With the hydrogen-bonding effect strengthening, it is advantageous to form sulfenic acid (R–SOH) for the sulfinyl oxygen to capture the 8-methyl hydrogen. It can also be proved that there is a very high reactive barrier of ring-opening reaction for S1 compound because of the lack of inductive effect between the amide proton and sulfinyl oxygen. The structure characteristics are very favorable for ring cleavage for (S)-penicillin sulfoxide.
To further explore the effect of acid on morin rearrangement reaction, S4 and S5 are the complexes of S0 and S1 with HBr, respectively. In S5, HBr is inserted between the proton of amide resonance and sulfinyl oxygen, and the values of
The isomeric (R)-sulphoxides of penicillanic series (S2 and S3) were required to compare with the (S)-sulphoxides. The shortest distances between the sulfinyl oxygen and 9-methyl hydrogen are 2.784 Å for S2 and 2.754 Å for S3. These 9-methyl hydrogens are not in its extension line for one-pair electrons of sulfinyl oxygen. Therefore, there is only a weak van der Waals interaction. Because the 5-methylene hydrogen attaches with (R)-sulfoxide and the sulfinyl oxygen locates on the same side of plane, (R)-sulfoxide derivative would give migration from the 5-methylene hydrogen to the adjacent sulfinyl oxygen as a sulfanol active intermediate similar to Pummerer rearrangement. The thermodynamics calculation also indicates the energy barrier for the transformation that sulfinyl oxygen captures the 8-methyl hydrogen is up to 183.38 kJ/mol (Fig. 2). Moreover, the distances between the sulfinyl sulfur and 3-tertiary carbon are shortened from 1.808 to 1.7821 Å, and its distances with 5-tertiary carbon is increased from 1.782 to 1.933 Å. So, 5-cation activated intermediate unexpected would be synthesized with the cleavage of the carbon-sulfur bond. The result is also proved again that only the penicillin (S)-sulfoxide can be used to converse into cephalosporins by Morin rearrangement[4].
In TS1, the distance between the protons in the process of amide-imidol and sulfinyl oxygen is 0.999 Å, and those between oxygen and nitrogen of the amide are 2.029 and 2.008 Å, respectively. Although the group of -SOH is favorable for the next step of ring-opening reaction, its high energy barrier (182.44 kJ/mol) makes the next reaction impossible. In TS2, the distances between the migrated hydrogen from 8-methyl and the oxygen of -SO and the carbon of =CH2 group are 1.336 and 1.278 Å, respectively. The angle O–H···C from -SO, migrated hydrogen and =CH2 groups is 153.177º, and C···H–O–S from -CH=CH2 and HOS-groups is 3.289º. These structural characteristics show that the C–S and C–H bonds are simultaneously broken to form corresponding alkenyl and sulfenic acid groups. In TS3, the amide-imidol tautomerism does not change the ring-opening motif, and its structural characteristics are similar to that of TS2. In TS4 for the isomer of R-sulfoxide, the bond distance between C(5) and S(4) is extended to 1.933 Å, and the hydrogen from 9-CH3 transfers to the oxygen of -SO and to form -SOH group. The distances between the migrated hydrogen and 9-carbon and the oxygen of -SO are 2.385 and 0.972 Å, respectively. The vibration analysis indicates that the fracture formation is inconsistent with the target structure. In TS5 and TS6, the HBr is inserted between the oxygen of -SO and the hydrogen of 8-CH3 and acts as a bridge for the formation of transition state, with their fracture forms similar to TS2.
Density functional theory with m062x/6-311++G(d, p) and the SMD scheme to account for solvent effects have been used to study the geometries of reactants, intermediates, transition states and products on Morin rearrangement. The energy analysis calculation approves the authenticity of intermediates and transition states. According to our calculations, we found two feasible reaction pathways. The main pathway of reaction is S0- > TS2- > IN1 channel. The intramolecular hydrogen bonding between the amide proton and sulfinyl oxygen is a decisive structural factor for ring-opening reaction. Acid-catalysis mainly affects the dehydration reaction of sulfenic acid to form sulfur cation. These m062x calculations show that the penicillin (S)-sulfoxide is essential stereoscopic structure characteristic, which is in agreement with the experimental results[7].
Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. Chemistry of cephalosporin antibiotics. III. chemical correlation of penicillin and cephalosporin antibiotics. J. Am. Chem. Soc. 1963, 85, 1896–1897.
Spry, D. O. Conversion of penicillin to cephalosporin via a double sulfoxide rearrangement. J. Am. Chem. Soc. 1970, 92, 5006–5008.
doi: 10.1021/ja00719a054
De Koning, J. J.; Kooreman, H. J.; Tan, H. S.; Verweij, J. One-step, high yield conversion of penicillin sulfoxides to deacetoxycephalosporins. J. Org. Chem. 1975, 40, 1346–1347.
doi: 10.1021/jo00897a037
Barton, D. H. R.; Comer, F.; Greig, D. G. T.; Sammes, P. G.; Cooper, C. M.; Hewitt, G.; Underwood, W. G. E. Transformations of penicillin. Part I. Preparation and rearrangements of 6β-phenylacetamidopenicillanic sulphoxides. J. Chem. Soc. C 1971, 3540–3550.
Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. Chemistry of cephalosporin antibiotics. XV. transformations of penicillin sulfoxide. synthesis of cephalosporin compounds. J. Am. Chem. Soc. 1969, 91, 1401–1407.
doi: 10.1021/ja01034a023
Archer, R. A.; Kitchell, B. S. The photochemical rearrangement of a sulfoxide. J. Am. Chem. Soc. 1966, 88, 3462–3463.
doi: 10.1021/ja00966a071
Freed, J. D.; Hart, D. J.; Magomedov, N. A. Trapping of the putative cationic intermediate in the morin rearrangement with carbon nucleophiles. J. Org. Chem. 2001, 66, 839–852.
doi: 10.1021/jo0013406
Keerthi, K.; Sivaramakrishnan, S.; Gates, K. S. Evidence for a morin type intramolecular cyclization of an alkene with a phenylsulfenic acid group in neutral aqueous solution. Chem. Res. Toxicol. 2008, 21, 1368–1374.
doi: 10.1021/tx8000187
Kamiya, T.; Teraji, T.; Saito, Y.; Hashimoto, M.; Nakaguchi, O.; Oku, T. Studies on β-lactam antibiotics. I. A novel conversion of penicillins into cephalosporins. Tetra. Lett. 1973, 14, 3001–3004.
doi: 10.1016/S0040-4039(01)96303-8
Salehpour, P.; Yegani, R.; Hajmohammadi, R. Determination of optimal operation conditions for production of cephalosporin G from penicillin G potassium. Org. Process Res. Dev. 2012, 16, 1507–1512.
doi: 10.1021/op300076q
Hughes, D. L. Patent review of manufacturing routes to fifth-generation cephalosporin drugs. part 1, ceftolozane. Org. Process Res. Dev. 2017, 21, 430–443.
doi: 10.1021/acs.oprd.7b00033
Nudelman, A.; McCaully, R. J. Rearrangements of penicillin sulfoxides. J. Org. Chem. 1977, 42, 2887–2890.
doi: 10.1021/jo00437a022
Nudelman, A. The chemistry of optically active sulfur compounds part III. Phosphorus Sulfur. 1976, 2, 51–94.
Hart, D. J.; Magomedov, N. Spiroquinazoline support studies: new cascade reactions based on the morin rearrangement. J. Org. Chem. 1999, 64, 2990–2991.
doi: 10.1021/jo990147c
Freed, J. D.; Hart, D. J.; Magomedov, N. A. Trapping of the putative cationic intermediate in the morin rearrangement with carbon nucleophiles. J. Org. Chem. 2001, 66, 839–852.
doi: 10.1021/jo0013406
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G. V.; Barone, B.; Mennucci, G. A.; Petersson, H.; Nakatsuji, M.; Caricato, X.; Li, H. P.; Hratchian, A. F.; Izmaylov, J.; Bloino, G.; Zheng, J. L.; Sonnenberg, M.; Hada, M.; Ehara, K.; Toyota, R.; Fukuda, J.; Hasegawa, M.; Ishida, T.; Nakajima, Y.; Honda, O.; Kitao, H.; Nakai, T.; Vreven, J. A.; Montgomery, Jr., J. E.; Peralta, F.; Ogliaro, M.; Bearpark, J. J.; Heyd, E.; Brothers, K. N.; Kudin, V. N.; Staroverov, T.; Keith, R.; Kobayashi, J.; Normand, K.; Raghavachari, A.; Rendell, J. C.; Burant, S. S.; Iyengar, J.; Tomasi, M.; Cossi, N.; Rega, J. M.; Millam, M.; Klene, J. E.; Knox, J. B.; Cross, V.; Bakken, C.; Adamo, J.; Jaramillo, R.; Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin, R.; Cammi, C.; Pomelli, J. W.; Ochterski, R. L.; Martin, K.; Morokuma, V. G.; Zakrzewski, G. A.; Voth, P.; Salvador, J. J.; Dannenberg, S.; Dapprich, A. D.; Daniels, O.; Farkas, J. B.; Foresman, J. V.; Ortiz, J.; Cioslowski; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT 2013.
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.
doi: 10.1021/jp810292n
Bader, R. E. W. Atoms in Molecules: A Quantum Theory. Clarendon Press: Oxford, U. K. 1990, p56–78.
Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33, 580–592.
Kukolja, S.; Jones, N. D.; Chaney, M. O.; Elzey, T. K.; Gleissner, M. R.; Paschal, J. W.; Dorman, D. E. Azetidinone antibiotics. XIII. structure and stereochemistry of isomeric penam and cepham derivatives. J. Org. Chem. 1975, 40, 2388–2391.
doi: 10.1021/jo00904a028
Scheiner, S. Hydrogen Bonding: A Theoretical Perspective. Oxford University Press, NY 1997, p12–20.
Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol. Phyls. 1970, 19, 553–566.
doi: 10.1080/00268977000101561
Cooper, R. D. G.; DeMarco, P. V.; Cheng, J. C.; Jones, N. D. Structural studies on penicillin derivatives. I. configuration of phenoxymethylpenicillin sulfoxide. J. Am. Chem. Soc. 1969, 91, 1408–1415.
doi: 10.1021/ja01034a024
Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. Chemistry of cephalosporin antibiotics. III. chemical correlation of penicillin and cephalosporin antibiotics. J. Am. Chem. Soc. 1963, 85, 1896–1897.
Spry, D. O. Conversion of penicillin to cephalosporin via a double sulfoxide rearrangement. J. Am. Chem. Soc. 1970, 92, 5006–5008.
doi: 10.1021/ja00719a054
De Koning, J. J.; Kooreman, H. J.; Tan, H. S.; Verweij, J. One-step, high yield conversion of penicillin sulfoxides to deacetoxycephalosporins. J. Org. Chem. 1975, 40, 1346–1347.
doi: 10.1021/jo00897a037
Barton, D. H. R.; Comer, F.; Greig, D. G. T.; Sammes, P. G.; Cooper, C. M.; Hewitt, G.; Underwood, W. G. E. Transformations of penicillin. Part I. Preparation and rearrangements of 6β-phenylacetamidopenicillanic sulphoxides. J. Chem. Soc. C 1971, 3540–3550.
Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. Chemistry of cephalosporin antibiotics. XV. transformations of penicillin sulfoxide. synthesis of cephalosporin compounds. J. Am. Chem. Soc. 1969, 91, 1401–1407.
doi: 10.1021/ja01034a023
Archer, R. A.; Kitchell, B. S. The photochemical rearrangement of a sulfoxide. J. Am. Chem. Soc. 1966, 88, 3462–3463.
doi: 10.1021/ja00966a071
Freed, J. D.; Hart, D. J.; Magomedov, N. A. Trapping of the putative cationic intermediate in the morin rearrangement with carbon nucleophiles. J. Org. Chem. 2001, 66, 839–852.
doi: 10.1021/jo0013406
Keerthi, K.; Sivaramakrishnan, S.; Gates, K. S. Evidence for a morin type intramolecular cyclization of an alkene with a phenylsulfenic acid group in neutral aqueous solution. Chem. Res. Toxicol. 2008, 21, 1368–1374.
doi: 10.1021/tx8000187
Kamiya, T.; Teraji, T.; Saito, Y.; Hashimoto, M.; Nakaguchi, O.; Oku, T. Studies on β-lactam antibiotics. I. A novel conversion of penicillins into cephalosporins. Tetra. Lett. 1973, 14, 3001–3004.
doi: 10.1016/S0040-4039(01)96303-8
Salehpour, P.; Yegani, R.; Hajmohammadi, R. Determination of optimal operation conditions for production of cephalosporin G from penicillin G potassium. Org. Process Res. Dev. 2012, 16, 1507–1512.
doi: 10.1021/op300076q
Hughes, D. L. Patent review of manufacturing routes to fifth-generation cephalosporin drugs. part 1, ceftolozane. Org. Process Res. Dev. 2017, 21, 430–443.
doi: 10.1021/acs.oprd.7b00033
Nudelman, A.; McCaully, R. J. Rearrangements of penicillin sulfoxides. J. Org. Chem. 1977, 42, 2887–2890.
doi: 10.1021/jo00437a022
Nudelman, A. The chemistry of optically active sulfur compounds part III. Phosphorus Sulfur. 1976, 2, 51–94.
Hart, D. J.; Magomedov, N. Spiroquinazoline support studies: new cascade reactions based on the morin rearrangement. J. Org. Chem. 1999, 64, 2990–2991.
doi: 10.1021/jo990147c
Freed, J. D.; Hart, D. J.; Magomedov, N. A. Trapping of the putative cationic intermediate in the morin rearrangement with carbon nucleophiles. J. Org. Chem. 2001, 66, 839–852.
doi: 10.1021/jo0013406
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G. V.; Barone, B.; Mennucci, G. A.; Petersson, H.; Nakatsuji, M.; Caricato, X.; Li, H. P.; Hratchian, A. F.; Izmaylov, J.; Bloino, G.; Zheng, J. L.; Sonnenberg, M.; Hada, M.; Ehara, K.; Toyota, R.; Fukuda, J.; Hasegawa, M.; Ishida, T.; Nakajima, Y.; Honda, O.; Kitao, H.; Nakai, T.; Vreven, J. A.; Montgomery, Jr., J. E.; Peralta, F.; Ogliaro, M.; Bearpark, J. J.; Heyd, E.; Brothers, K. N.; Kudin, V. N.; Staroverov, T.; Keith, R.; Kobayashi, J.; Normand, K.; Raghavachari, A.; Rendell, J. C.; Burant, S. S.; Iyengar, J.; Tomasi, M.; Cossi, N.; Rega, J. M.; Millam, M.; Klene, J. E.; Knox, J. B.; Cross, V.; Bakken, C.; Adamo, J.; Jaramillo, R.; Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin, R.; Cammi, C.; Pomelli, J. W.; Ochterski, R. L.; Martin, K.; Morokuma, V. G.; Zakrzewski, G. A.; Voth, P.; Salvador, J. J.; Dannenberg, S.; Dapprich, A. D.; Daniels, O.; Farkas, J. B.; Foresman, J. V.; Ortiz, J.; Cioslowski; Fox, D. J. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT 2013.
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.
doi: 10.1021/jp810292n
Bader, R. E. W. Atoms in Molecules: A Quantum Theory. Clarendon Press: Oxford, U. K. 1990, p56–78.
Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33, 580–592.
Kukolja, S.; Jones, N. D.; Chaney, M. O.; Elzey, T. K.; Gleissner, M. R.; Paschal, J. W.; Dorman, D. E. Azetidinone antibiotics. XIII. structure and stereochemistry of isomeric penam and cepham derivatives. J. Org. Chem. 1975, 40, 2388–2391.
doi: 10.1021/jo00904a028
Scheiner, S. Hydrogen Bonding: A Theoretical Perspective. Oxford University Press, NY 1997, p12–20.
Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol. Phyls. 1970, 19, 553–566.
doi: 10.1080/00268977000101561
Cooper, R. D. G.; DeMarco, P. V.; Cheng, J. C.; Jones, N. D. Structural studies on penicillin derivatives. I. configuration of phenoxymethylpenicillin sulfoxide. J. Am. Chem. Soc. 1969, 91, 1408–1415.
doi: 10.1021/ja01034a024
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
Haixia Wu , Kailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654
Lanyun Zhang , Weisi Wang , Yu-Qiang Zhao , Rui Huang , Yuxun Lu , Ying Chen , Liping Duan , Ying Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Quan Zhou , Xiao-Min Chen , Xujie Qin , Zhe-Ning Chen , Jun Chen , Wei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Wenling Yuan , Fengli Li , Zhe Chen , Qiaoxin Xu , Zhenhua Guan , Nanyu Yao , Zhengxi Hu , Junjun Liu , Yuan Zhou , Ying Ye , Yonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Huashan Huang , Jingze Chen , Luyun Zhang , Hong Yan , Siqi Li , Fen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056