Citation: Qiao LI, Zhi-Gang NIU, Yan-Ling LIU, En-Ju WANG. Crystal Structure and Aggregation-induced Emission of an Azine Derivative[J]. Chinese Journal of Structural Chemistry, ;2020, 39(4): 693-697. doi: 10.14102/j.cnki.0254-5861.2011-2464 shu

Crystal Structure and Aggregation-induced Emission of an Azine Derivative

  • Corresponding author: En-Ju WANG, enjuwang@163.com
  • Received Date: 20 May 2019
    Accepted Date: 8 September 2019

    Fund Project: the Natural Science Foundation of Hainan Province 20162028the Program for Innovative Research Team in University IRT-16R19

Figures(5)

  • An AIE-active azine derivative (1) was facilely synthesized by aldehyde-amine condensation of 2-hydroxy-1-naphthaldehyde and 3-methyl-2-benzothiazolinone hydrazone. It crystallizes in the monoclinic space group P21/n with a = 8.2176(5), b = 13.1733(7), c =14.5731(8) Å, β = 90.521(5)º, and Z = 4. Compound 1 exhibits aggregation-induced emission characteristics. In dilute solution, it is non-emissive, while strong emission was observed in the aqueous medium as a result of the molecular aggregation in poor solvent. The powder and crystals of 1 also exhibit strong fluorescence. In its crystal lattice, the molecules stack in a face-to-face style, but there is no π-π stacking interaction due to the long distance between adjacent molecules. It is the loose stacking mode that blocks the nonradiative decay channel resulting in its AIE effect.
  • In 2001 Tang's group firstly reported an unusual silole derivative showing no fluorescence in dilute solution, but showing highly emissive behavior in the aggregated state, which was termed as aggregationinduced emission (AIE)[1]. Since then, the photoluminescent materials with AIE characteristics have become an important research territory and attracted much research interest. To date, some typical examples of AIE systems, including siloles[2], arylenevinylene derivatives[3], distyrylanthracene[4] and diphenylacrylonitrile[5] have been developed. The technological applications of AIE materials in a wide variety of high-tech areas have been achieved, such as biological probes[6], chemical sensing[7], optoelectronic devices[8] and smart materials[9].

    The AIE effect has mainly been attributed to the restricted intramolecular rotations (RIR) and the restricted intramolecular vibrations (RIV) in the aggregate state[10, 11]. The luminogens based on RIR mechanism commonly takes a propeller-like shape, while those based on RIV mechanism commonly show a butterfly-like molecular conformation. The peculiar molecular shapes result in difficulties in the synthesis of AIE-active molecules. In the course of our continuing efforts in fluorescent probes for metal ions[12-15], some Schiff bases of 2-hydroxy-1-naphthaldehyde were discovered exhibiting the aggregation-induced emission. Above all, they are easy to be synthesized. Herein, an AIE-active azine derivative (1) was facilely synthesized by the condensation of 2-hydroxy-1-naphthaldehyde and 3-methyl-2-benzothiazolinone hydrazone (Scheme 1) and its structure was determined by single-crystal X-ray diffraction. The origin of AIE characteristics was speculated by analyzing the molecular conformation and molecular stacking of 1.

    Scheme 1

    Scheme 1.  Synthesis of compound 1

    All chemicals were obtained from commercial suppliers and directly used without further purification. Analytical grade acetonitrile and deionized water were used as solvents for spectral measurements. 1H NMR and 13C NMR spectra were recorded on a Bruker Av400 NMR spectrometer. ESI-MS spectra were performed on a Bruker Esquire HCT mass spectrometer. Fluorescence spectra were taken on a Hitachi F-7000 fluorescence spectrometer. The fluorescent picture of the crystals was taken using a Nikon Eclipse TS100 inverted microscope.

    2-Hydroxy-1-naphthaldehyde (344 mg, 2.0 mmol), 3-methyl-2-benzothiazolinone hydrazone hydrochloride (431 mg, 2.0 mmol) and triethylamine (274 μL, 2.0 mmol) were added into 20 mL absolute ethanol and stirred for 4 h at room temperature. The resulting precipitation was collected by filtration and then washed three times with ethanol. After drying, an azine derivative was obtained in a high yield (533 mg, 80%). 1H NMR (400 MHz, CDCl3) δ(ppm) 12.67 (s, 1H), 9.40 (s, 1H), 8.14 (d, 1H, J = 8.0 Hz), 7.76 (d, 2H, J = 8.0 Hz), 7.50 (t, 1H, J = 8.0 Hz), 7.43 (d, 1H, J = 8.0 Hz), 7.34 (t, 1H, J = 8.0 Hz), 7.28 (t, 1H, J = 8.0 Hz), 7.25 (d, 1H, J = 8.0 Hz), 7.07 (t, 1H, J = 8.0 Hz), 7.01 (d, 1H, J = 8.0 Hz), 3.61 (s, 1H). 13C NMR (100 MHz, CDCl3) δ(ppm) 165.1, 159.0, 152.2, 141.0, 132.3, 132.2, 129.0, 128.2, 127.2, 126.5, 123.5, 123.3, 122.3, 122.0, 120.3, 119.0, 109.5, 109.1, 30.9. ESI-MS m/z calculated for [M+H]+ 334.10, found 334.0 (Fig. S1-4).

    Colorless rod-like crystals of 1 suitable for X-ray analysis were obtained by slowly evaporating the DCM/EtOH (1/3) solution of 1 in a refrigerator. X-ray diffraction data were collected on a Gemini A Ultra diffractometer (Mo, λ = 0.71073 Å) at 123(2) K. A total of 27874 reflections were collected in the range of 4.168°≤2θ≤52.744°, of which 3230 were unique (Rint = 0.0541, Rsigma = 0.0294) and used in all calculations. The final R = 0.0436 (I > 2σ(I)) and wR = 0.1193 (all data). Crystal data were provided in supporting information (Table S1). The structure was solved by direct methods and refined by full-matrix least-squares on F2. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were determined with theoretical calculations and refined isotropically.

    Compound 1 crystallizes in monoclinic P21/n space group. The selected bond lengths and bond angles are listed in Table 1. As shown in Fig. 1, all atoms in the molecule, except for hydrogen atoms in the methyl group, are coplanar and form a conjugated system. The dihedral angle between the naphthalene ring and the benzothiazoline moiety is only 1.433(4)°. An intramolecular six-membered ring hydrogen bond O(1)–H(1)···N(1) links the phenolic hydroxy with the imine nitrogen (d(H⋅⋅⋅N) 1.857, ∠OHN 147°). The molecules stack in a face-to-face style along the a-axis to form a one-dimensional molecular chain (Fig. 2). The distance between adjacent molecular planes is about 3.5 Å, which is in the range of π-π stacking interaction. Nevertheless, the horizontal lateral displacement of adjacent aromatic rings is about 2.1~2.2 Å (Fig. S5), which are too long for π-π stacking interaction (The horizontal lateral displacement should be less than 1.5 Å for effective π-π stacking interaction). As a result, there is no π-π stacking interaction between the adjacent molecules.

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°)
    DownLoad: CSV
    Bond Dist. Bond Dist. Bond Dist.
    S(1)–C(12) 1.762(2) N(3)–C(12) 1.369(2) N(1)–N(2) 1.399(2)
    S(1)–C(18) 1.758(2) N(3)–C(13) 1.396(2) N(1)–C(11) 1.289(3)
    O(1)–C(1) 1.349(2) N(3)–C(19) 1.455(3) N(2)–C(12) 1.294(2)
    Angle (°) Angle (°) Angle (°)
    C(18)–S(1)–C(12) 90.46(10) C(13)–N(3)–C(19) 124.87(17) N(3)–C(12)–S(1) 111.00(14)
    C(12)–N(3)–C(13) 114.53(16) C(11)–N(1)–N(2) 114.69(17) N(2)–C(12)–S(1) 127.28(15)
    C(12)–N(3)–C(19) 120.58(17) C(12)–N(2)–N(1) 110.65(16) N(2)–C(12)–N(3) 121.73(18)

    Figure 1

    Figure 1.  Crystal structure of 1 shown at 50% probability

    Figure 2

    Figure 2.  Crystal packing showing one-dimensional molecular chain along the a-axis

    ESIPT (excited-state intramolecular proton transfer) means a red-shifted emission and a large Stokes shift. Therefore, integrating ESIPT with AIE can improve the photophysical properties of AIE systems. Compound 1 is a typical ESIPT molecule with AIE characteristics. Its fluorescence spectra were measured in MeCN/H2O mixtures with different volume fractions of water. As illustrated in Fig. 3, green luminescence at about 520 nm was observed when the water fraction reaches 80% and goes up with the increase of water under 390 nm excitation. The Stokes shift is up to 130 nm. The fluorescence turn-on should be attributed to the formation of aggregates and consequently the restriction of intramolecular rotation. The fluorescence photos of 1 in its powder state and crystal state are shown in Fig. 4. It can be seen that 1 glows green in the two solid states under UV light excitation, while its natural color is pale yellow.

    Figure 3

    Figure 3.  (a) Fluorescence spectra of 1 (10 μM) in CH3CN/H2O mixtures with different water fractions when excited at 390 nm. (b) Dependence of the fluorescence intensity at 520 nm on the water fraction. (c) Fluorescence photos in CH3CN/H2O mixtures with 0~99% water content under 365 nm irradiation

    Figure 4

    Figure 4.  Luminescent pictures of 1 in crystal state (a) powder state (b) under UV light excitation, and picture under natural light (c)

    Aromatic Schiff bases usually show a planar conjugated configuration which is favorable for photoluminescence. Nevertheless, the planar configurations frequently result in the face-to-face intermolecular π-π stacking in their crystal states, which leads to radiationless relaxation and gives rise to the phenomenon of aggregation-caused quenching (ACQ)[16]. Fortunately, many 2-hydroxy-1-naphthaldehyde Schiff base derivatives are AIE-active[17, 18]. The stacking manner of compound 1 may illustrate their AIE effects. X-ray diffraction analysis has indicated that the planar molecules of 1 stack in a face-to-face style with a distance of about 3.5 Å that restricts the intramolecular rotations, while a large horizontal lateral displacement about 2.1~2.2 Å blocks the π-π stacking interaction. It is the unique stacking pattern that results in its AIE effect. As suggested above, the 2-hydroxy-1-naphthaldehyde Schiff base derivatives are an important class of AIE-active molecules with many good properties, such as simplicity in structure, accessibility in synthesis and large Stokes shift.


    1. [1]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740−1741.

    2. [2]

      Chen, B.; Nie, H.; Lu, P.; Zhou, J.; Qin, A.; Qiu, H.; Zhao, Z.; Tang, B. Z. Conjugation versus rotation: good conjugation weakens, the aggregation-induced emission effect of siloles. Chem. Commun. 2014, 50, 4500−4503.  doi: 10.1039/c4cc00653d

    3. [3]

      Shimizu, M.; Tatsumi, H.; Mochida, K.; Shimono, K.; Hiyama, T. Synthesis, crystal structure, and photophysical properties of (1E,3E,5E)-1,3,4,6-tetraarylhexa-1,3,5-trienes: a new class of fluorophores exhibiting aggregation-induced emission. Chem.-Asian J. 2009, 4, 1289−1297.  doi: 10.1002/asia.200900110

    4. [4]

      He, J. T.; Xu, B.; Chen, F. P.; Xia, H. J.; Li, K. P.; Ye, L.; Tian, W. J. Aggregation-induced emission in the crystals of 9,10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. J. Phys. Chem. C 2009, 113, 9892−9899.  doi: 10.1021/jp900205k

    5. [5]

      Zheng, Y. S.; Hu, Y. J.; Li, D. M.; Chen, Y. C. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically, pure aminol groups. Talanta 2010, 80, 1470−1474  doi: 10.1016/j.talanta.2009.09.030

    6. [6]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441−2453.  doi: 10.1021/ar3003464

    7. [7]

      Sanji, T.; Nakamura, M.; Kawamata, S.; Tanaka, M.; Itagaki, S.; Gunji, T. Fluorescence turn-on detection of melamine with aggregation-induced-emission-active tetraphenylethene. Chem.-Eur. J. 2012, 18, 15254−15257.  doi: 10.1002/chem.201203081

    8. [8]

      Huang, J.; Tang, R.; Zhang, T.; Li, Q.; Yu, G.; Xie, S.; Liu, Y.; Ye, S.; Qin, J.; Li, Z. A new approach to prepare efficient blue AIE emitters for undoped OLEDs. Chem.-Eur. J. 2014, 20, 5317−5326.  doi: 10.1002/chem.201303522

    9. [9]

      Wang, M.; Zhang, D. Q.; Zhang, G. X.; Zhu, D. B. Fluorescence enhancement upon gelation and thermally-driven fluorescence switches based on tetraphenylsilole-based organic gelators. Chem. Phys. Lett. 2009, 475, 64−67.  doi: 10.1016/j.cplett.2009.05.029

    10. [10]

      Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Synthesis, light emission, nanoaggregation and restricted intramolecular rotation of 1,1-substituted2,3,4,5-tetraphenylsiloles. Chem. Mater. 2003, 15, 1535−1546.  doi: 10.1021/cm021715z

    11. [11]

      Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi, S. Hybridization of a flexible cyclooctatetraene core and rigid aceneimide wings for multiluminescent flapping π systems. Chem., -Eur. J. 2014, 20, 2193−2200.  doi: 10.1002/chem.201303955

    12. [12]

      Chen, J.; Su, W.; Wang, E.; Liu, Y. 1,8-Naphthalimide-based turn-on fluorescent chemosensor for Cu2+ and its application in bioimaging. J. Lumin. 2016, 180, 301−305.  doi: 10.1016/j.jlumin.2016.08.040

    13. [13]

      Su, W.; Yuan, S.; Wang, E. A rhodamine-based fluorescent chemosensor for the detection of Pb2+, Hg2+ and Cd2+. J. Fluoresc. 2017, 27, 1871−1875.  doi: 10.1007/s10895-017-2124-0

    14. [14]

      Zhang, Z.; Yuan, S.; Wang, E. A dual-target fluorescent probe with response-time dependent selectivity for Cd2+ and Cu2+. J. Fluoresc. 2018, 28, 1115–1119.  doi: 10.1007/s10895-018-2274-8

    15. [15]

      Zhang, Z.; Liu, Y.; Wang, E. A highly selective turn-on fluorescent probe for detecting Cu2+ in two different sensing mechanisms. Dyes Pigments 2019, 163, 533−537.  doi: 10.1016/j.dyepig.2018.12.039

    16. [16]

      Han, T.; Hong, Y.; Xie, N.; Chen, S.; Zhao, N.; Zhao, E.; Lam, J. W. Y.; Sung, H. H. Y.; Dong, Y.; Tong, B.; Tang, B. Z. Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. J. Mater. Chem. C 2013, 1, 7314−7320.  doi: 10.1039/c3tc31562b

    17. [17]

      Cao, X.; Zeng, X.; Mu, L.; Chen, Y.; Wang, R.; Zhang, Y.; Zhang, J.; Wei, G. Characterization of the aggregation-induced enhanced emission, sensing, and logic gate behavior of 2-(1-hydroxy-2-naphthyl)methylene hydrazine. Sens. Actuators B Chem. 2013, 177, 493−499.  doi: 10.1016/j.snb.2012.11.003

    18. [18]

      Xiao, H.; Chen, K.; Cui, D.; Jiang, N.; Yin, G.; Wang, J.; Wang, R. Two novel aggregation-induced emission active coumarin-based Schiff bases and their applications in cell imaging. New J. Chem. 2014, 38, 2386−2393.  doi: 10.1039/C3NJ01557B

    1. [1]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740−1741.

    2. [2]

      Chen, B.; Nie, H.; Lu, P.; Zhou, J.; Qin, A.; Qiu, H.; Zhao, Z.; Tang, B. Z. Conjugation versus rotation: good conjugation weakens, the aggregation-induced emission effect of siloles. Chem. Commun. 2014, 50, 4500−4503.  doi: 10.1039/c4cc00653d

    3. [3]

      Shimizu, M.; Tatsumi, H.; Mochida, K.; Shimono, K.; Hiyama, T. Synthesis, crystal structure, and photophysical properties of (1E,3E,5E)-1,3,4,6-tetraarylhexa-1,3,5-trienes: a new class of fluorophores exhibiting aggregation-induced emission. Chem.-Asian J. 2009, 4, 1289−1297.  doi: 10.1002/asia.200900110

    4. [4]

      He, J. T.; Xu, B.; Chen, F. P.; Xia, H. J.; Li, K. P.; Ye, L.; Tian, W. J. Aggregation-induced emission in the crystals of 9,10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. J. Phys. Chem. C 2009, 113, 9892−9899.  doi: 10.1021/jp900205k

    5. [5]

      Zheng, Y. S.; Hu, Y. J.; Li, D. M.; Chen, Y. C. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically, pure aminol groups. Talanta 2010, 80, 1470−1474  doi: 10.1016/j.talanta.2009.09.030

    6. [6]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441−2453.  doi: 10.1021/ar3003464

    7. [7]

      Sanji, T.; Nakamura, M.; Kawamata, S.; Tanaka, M.; Itagaki, S.; Gunji, T. Fluorescence turn-on detection of melamine with aggregation-induced-emission-active tetraphenylethene. Chem.-Eur. J. 2012, 18, 15254−15257.  doi: 10.1002/chem.201203081

    8. [8]

      Huang, J.; Tang, R.; Zhang, T.; Li, Q.; Yu, G.; Xie, S.; Liu, Y.; Ye, S.; Qin, J.; Li, Z. A new approach to prepare efficient blue AIE emitters for undoped OLEDs. Chem.-Eur. J. 2014, 20, 5317−5326.  doi: 10.1002/chem.201303522

    9. [9]

      Wang, M.; Zhang, D. Q.; Zhang, G. X.; Zhu, D. B. Fluorescence enhancement upon gelation and thermally-driven fluorescence switches based on tetraphenylsilole-based organic gelators. Chem. Phys. Lett. 2009, 475, 64−67.  doi: 10.1016/j.cplett.2009.05.029

    10. [10]

      Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Synthesis, light emission, nanoaggregation and restricted intramolecular rotation of 1,1-substituted2,3,4,5-tetraphenylsiloles. Chem. Mater. 2003, 15, 1535−1546.  doi: 10.1021/cm021715z

    11. [11]

      Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi, S. Hybridization of a flexible cyclooctatetraene core and rigid aceneimide wings for multiluminescent flapping π systems. Chem., -Eur. J. 2014, 20, 2193−2200.  doi: 10.1002/chem.201303955

    12. [12]

      Chen, J.; Su, W.; Wang, E.; Liu, Y. 1,8-Naphthalimide-based turn-on fluorescent chemosensor for Cu2+ and its application in bioimaging. J. Lumin. 2016, 180, 301−305.  doi: 10.1016/j.jlumin.2016.08.040

    13. [13]

      Su, W.; Yuan, S.; Wang, E. A rhodamine-based fluorescent chemosensor for the detection of Pb2+, Hg2+ and Cd2+. J. Fluoresc. 2017, 27, 1871−1875.  doi: 10.1007/s10895-017-2124-0

    14. [14]

      Zhang, Z.; Yuan, S.; Wang, E. A dual-target fluorescent probe with response-time dependent selectivity for Cd2+ and Cu2+. J. Fluoresc. 2018, 28, 1115–1119.  doi: 10.1007/s10895-018-2274-8

    15. [15]

      Zhang, Z.; Liu, Y.; Wang, E. A highly selective turn-on fluorescent probe for detecting Cu2+ in two different sensing mechanisms. Dyes Pigments 2019, 163, 533−537.  doi: 10.1016/j.dyepig.2018.12.039

    16. [16]

      Han, T.; Hong, Y.; Xie, N.; Chen, S.; Zhao, N.; Zhao, E.; Lam, J. W. Y.; Sung, H. H. Y.; Dong, Y.; Tong, B.; Tang, B. Z. Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. J. Mater. Chem. C 2013, 1, 7314−7320.  doi: 10.1039/c3tc31562b

    17. [17]

      Cao, X.; Zeng, X.; Mu, L.; Chen, Y.; Wang, R.; Zhang, Y.; Zhang, J.; Wei, G. Characterization of the aggregation-induced enhanced emission, sensing, and logic gate behavior of 2-(1-hydroxy-2-naphthyl)methylene hydrazine. Sens. Actuators B Chem. 2013, 177, 493−499.  doi: 10.1016/j.snb.2012.11.003

    18. [18]

      Xiao, H.; Chen, K.; Cui, D.; Jiang, N.; Yin, G.; Wang, J.; Wang, R. Two novel aggregation-induced emission active coumarin-based Schiff bases and their applications in cell imaging. New J. Chem. 2014, 38, 2386−2393.  doi: 10.1039/C3NJ01557B

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    5. [5]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    6. [6]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    14. [14]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    17. [17]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    18. [18]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    19. [19]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    20. [20]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

Metrics
  • PDF Downloads(3)
  • Abstract views(578)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return