Citation: Wei WANG, Jing-Ze BAO, Chuan-Fu SUN. Liquid-phase Exfoliated WS2-Graphene Composite Anodes for Potassium-ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 493-499. doi: 10.14102/j.cnki.0254-5861.2011-2457 shu

Liquid-phase Exfoliated WS2-Graphene Composite Anodes for Potassium-ion Batteries

  • Corresponding author: Chuan-Fu SUN, cfsun@fjirsm.ac.cn
  • Received Date: 15 May 2019
    Accepted Date: 9 July 2019

    Fund Project: the National Natural Science Foundation of China 21771180the National Natural Science Foundation of China 51702318Natural Science Foundation of Fujian Province 2018J01031

Figures(3)

  • Tungsten disulfide (WS2) has been recognized as a promising anode material for rechargeable potassium-ion batteries (PIBs). However, its K-ion intercalation capacity is limited to ~60 mAh·g-1. Here, we report a WS2-graphene composite anode which is fabricated through simple filtration of liquid-phase exfoliated WS2 and graphene nanosheet delivers a significantly improved specific capacity of 137 mAh·g-1 at a current density of 10 mA·g-1. The composite anodes also exhibit remarkable rate capability and long-term cyclability over 500 cycles. These results highlight the WS2-graphene composite structure as a promising anode material for long lifespan rechargeable potassium-ion batteries.
  • 
    1. [1]

      Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911–1602932.  doi: 10.1002/aenm.201602911

    2. [2]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.  doi: 10.1021/cr500192f

    3. [3]

      Matsuura, N.; Umemoto, K.; Takeuchi, Z. Standard potentials of alkali metals, silver, and thallium metal/ion couples in N, N′-dimethylformamide, dimethyl sulfoxide, and propylene carbonate. Bull. Chem. Soc. Jpn 1974, 47, 813–817.  doi: 10.1246/bcsj.47.813

    4. [4]

      komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175.  doi: 10.1016/j.elecom.2015.09.002

    5. [5]

      Luo, W.; Wan, J.; Ozdemir, B.; Bao, W.; Chen, Y.; Dai, J.; Lin, H.; Xu, Y.; Gu, F.; Barone, V.; Hu, L. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.  doi: 10.1021/acs.nanolett.5b03667

    6. [6]

      Shannon, R. D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767.  doi: 10.1107/S0567739476001551

    7. [7]

      Oakes, L.; Carter, R.; Hanken, T.; Cohn, A. P.; Share, K.; Schmidt, B.; Pint, C. L. Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 2016, 7, 11796–11803.  doi: 10.1038/ncomms11796

    8. [8]

      Feng, C.; Huang, L.; Guo, Z.; Liu, H. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochem. Commun 2007, 9, 119–122.  doi: 10.1016/j.elecom.2006.08.048

    9. [9]

      Bhandavat, R.; David, L.; Singh, G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J Phys. Chem. Lett. 2012, 3, 1523–1530.  doi: 10.1021/jz300480w

    10. [10]

      Shi, Z. T.; Kang, W.; Xu, J.; Sun, Y. W.; Jiang, M.; Ng, T. W.; Xue, H. T.; Yu, D. Y. W.; Zhang, W.; Lee, C. S. Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 2016, 22, 27–37.  doi: 10.1016/j.nanoen.2016.02.009

    11. [11]

      Liu, Y.; Zhang, N.; Kang, H.; Shang, M.; Jiao, L.; Chen, J. WS2 nanowires as a high-performance anode for sodium-ion batteries. Chemistry 2015, 21, 11878–11884.  doi: 10.1002/chem.201501759

    12. [12]

      Zhou, J.; Wang, L.; Yang, M.; Wu, J.; Chen, F.; Huang, W.; Han, N.; Ye, H.; Zhao, F.; Li, Y.; Li, Y. Hierarchical VS2 nanosheet sssemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061–1702069.  doi: 10.1002/adma.201702061

    13. [13]

      Gao, H.; Zhou, T.; Zheng, Y.; Zhang, Q.; Liu, Y.; Chen, J.; Liu, H.; Guo, Z. CoS quantum dot nanoclusters for high-energy potassium-Ion batteries. Adv. Funct. Mater. 2017, 27, 1702634–1702643.  doi: 10.1002/adfm.201702634

    14. [14]

      Xie, K.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C.; Vajtai, R.; Ajayan, P.; Wei, B. Superior potassium ion storage via vertical MoS2 "nano-rose" with expanded interlayers on graphene. Small 2017, 13, 1701471–1701479.  doi: 10.1002/smll.201701471

    15. [15]

      Wang, L.; Zou, J.; Chen, S.; Zhou, G.; Bai, J.; Gao, P.; Wang, Y.; Yu, X.; Li, J.; Hu, Y. S.; Li, H. TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Environ. Sci. 2018, 12, 216–222.

    16. [16]

      Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Inter 2014, 6, 7084–7089.  doi: 10.1021/am4060222

    17. [17]

      Khan, U.; Porwal, H.; O'Neill, A.; Nawaz, K.; May, P.; Coleman, J. N. Solvent-exfoliated graphene at extremely high concentration. Langmuir 2011, 27, 9077–9082.  doi: 10.1021/la201797h

    18. [18]

      Khan, U.; O'Neill, A.; Lotya, M.; De, S.; Coleman, J. N. High-concentration solvent exfoliation of graphene. Small 2010, 6, 864–871.  doi: 10.1002/smll.200902066

    19. [19]

      Zhang, R.; Bao, J.; Pan, Y.; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604–2612.  doi: 10.1039/C8SC04350G

    20. [20]

      Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.  doi: 10.1021/acsnano.6b05998

    1. [1]

      Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911–1602932.  doi: 10.1002/aenm.201602911

    2. [2]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.  doi: 10.1021/cr500192f

    3. [3]

      Matsuura, N.; Umemoto, K.; Takeuchi, Z. Standard potentials of alkali metals, silver, and thallium metal/ion couples in N, N′-dimethylformamide, dimethyl sulfoxide, and propylene carbonate. Bull. Chem. Soc. Jpn 1974, 47, 813–817.  doi: 10.1246/bcsj.47.813

    4. [4]

      komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175.  doi: 10.1016/j.elecom.2015.09.002

    5. [5]

      Luo, W.; Wan, J.; Ozdemir, B.; Bao, W.; Chen, Y.; Dai, J.; Lin, H.; Xu, Y.; Gu, F.; Barone, V.; Hu, L. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.  doi: 10.1021/acs.nanolett.5b03667

    6. [6]

      Shannon, R. D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767.  doi: 10.1107/S0567739476001551

    7. [7]

      Oakes, L.; Carter, R.; Hanken, T.; Cohn, A. P.; Share, K.; Schmidt, B.; Pint, C. L. Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 2016, 7, 11796–11803.  doi: 10.1038/ncomms11796

    8. [8]

      Feng, C.; Huang, L.; Guo, Z.; Liu, H. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochem. Commun 2007, 9, 119–122.  doi: 10.1016/j.elecom.2006.08.048

    9. [9]

      Bhandavat, R.; David, L.; Singh, G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J Phys. Chem. Lett. 2012, 3, 1523–1530.  doi: 10.1021/jz300480w

    10. [10]

      Shi, Z. T.; Kang, W.; Xu, J.; Sun, Y. W.; Jiang, M.; Ng, T. W.; Xue, H. T.; Yu, D. Y. W.; Zhang, W.; Lee, C. S. Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 2016, 22, 27–37.  doi: 10.1016/j.nanoen.2016.02.009

    11. [11]

      Liu, Y.; Zhang, N.; Kang, H.; Shang, M.; Jiao, L.; Chen, J. WS2 nanowires as a high-performance anode for sodium-ion batteries. Chemistry 2015, 21, 11878–11884.  doi: 10.1002/chem.201501759

    12. [12]

      Zhou, J.; Wang, L.; Yang, M.; Wu, J.; Chen, F.; Huang, W.; Han, N.; Ye, H.; Zhao, F.; Li, Y.; Li, Y. Hierarchical VS2 nanosheet sssemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061–1702069.  doi: 10.1002/adma.201702061

    13. [13]

      Gao, H.; Zhou, T.; Zheng, Y.; Zhang, Q.; Liu, Y.; Chen, J.; Liu, H.; Guo, Z. CoS quantum dot nanoclusters for high-energy potassium-Ion batteries. Adv. Funct. Mater. 2017, 27, 1702634–1702643.  doi: 10.1002/adfm.201702634

    14. [14]

      Xie, K.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C.; Vajtai, R.; Ajayan, P.; Wei, B. Superior potassium ion storage via vertical MoS2 "nano-rose" with expanded interlayers on graphene. Small 2017, 13, 1701471–1701479.  doi: 10.1002/smll.201701471

    15. [15]

      Wang, L.; Zou, J.; Chen, S.; Zhou, G.; Bai, J.; Gao, P.; Wang, Y.; Yu, X.; Li, J.; Hu, Y. S.; Li, H. TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Environ. Sci. 2018, 12, 216–222.

    16. [16]

      Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Inter 2014, 6, 7084–7089.  doi: 10.1021/am4060222

    17. [17]

      Khan, U.; Porwal, H.; O'Neill, A.; Nawaz, K.; May, P.; Coleman, J. N. Solvent-exfoliated graphene at extremely high concentration. Langmuir 2011, 27, 9077–9082.  doi: 10.1021/la201797h

    18. [18]

      Khan, U.; O'Neill, A.; Lotya, M.; De, S.; Coleman, J. N. High-concentration solvent exfoliation of graphene. Small 2010, 6, 864–871.  doi: 10.1002/smll.200902066

    19. [19]

      Zhang, R.; Bao, J.; Pan, Y.; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604–2612.  doi: 10.1039/C8SC04350G

    20. [20]

      Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.  doi: 10.1021/acsnano.6b05998

  • 加载中
    1. [1]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    2. [2]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    3. [3]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    4. [4]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    5. [5]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    6. [6]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    7. [7]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    10. [10]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    11. [11]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    12. [12]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    13. [13]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    14. [14]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    15. [15]

      Mengxiao YangHaicheng HuangShiyi ShenXinxin LiuMengyu LiuJiahua GuoFenghui YangBaoli ZhaJiansheng WuSheng LiFengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988

    16. [16]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    17. [17]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    20. [20]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

Metrics
  • PDF Downloads(3)
  • Abstract views(1048)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return