Citation: ZHAO Ling-Ling, WANG Hai-Feng, QI Gang. Catalytic Hydrogenation ofNitrobenzene to Aniline by Ag/γ-Fe2O3[J]. Chinese Journal of Structural Chemistry, ;2016, 35(6): 872-878. doi: 10.14102/j.cnki.0254-5861.2011-1158 shu

Catalytic Hydrogenation ofNitrobenzene to Aniline by Ag/γ-Fe2O3

  • Received Date: 29 January 2016
    Available Online: 7 April 2016

    Fund Project:

  • The Ag/γ-Fe2O3 nanocomposite was synthesized by solvothermal reduction method via using ferric nitrate and silver nitrate as raw materials, and ethylene glycol as the reducing agent. The composite was characterized by X-ray powder diffraction, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray. The prepared Ag/γ-Fe2O3 was used for the catalytic hydrogenation of nitrobenzene to aniline by hydrazine hydrate. The factors such as the silver content in the catalyst, reaction time, reaction temperature and the regeneration of catalyst were investigated. The results showed that the yield of aniline reached 100% by utilizing the 1%wt (nitrobenzene) Ag/γ-Fe2O3 for the catalytic hydrogenation of nitrobenzene for 3 h to obtain aniline at 78 ℃, hydrazine hydrate as the hydrogen source, while the silver content in the catalyst was 3%mol.
  • 
    1. [1]

      (1) Jana, S.; Ghosh, S. K.; Nath, S. Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol. Appl. Catal. A- Gen. 2006, 313, 41–48.

    2. [2]

      (2) Sonavane, S. U.; Gawande, M. B.; Deshpande, S. S. Chemoselective transfer hydrogenation reactions over nanosized γ-Fe2O3 catalyst prepared by novel combustion route. Catal. Commun. 2007, 8, 1803–1806.

    3. [3]

      (3) Benza, M.; Kraanb, A. M.; Prins, R. Reduction of aromatic nitrocompounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst II. Activity, X-ray diffraction and Mossbauer study of the iron oxide hydroxide catalyst. Appl. Catal. A-Gen. 1998, 172, 149–157.

    4. [4]

      (4) Liu, X. M.; Li. Y. S. One-step facile fabrication of Ag/γ-Fe2O3 composite microspheres. Mater. Sci. Eng., C 2009, 29, 1128–1132.

    5. [5]

      (5) Tao, S. W.; Liu, X. Q.; Chu, X. F.; Shen, Y. S. Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol-gel process. Sens. Actuators, B 1999, 61, 33–38.

    6. [6]

      (6) Garza-Navarro, M.; Torres-Castro, A.; Ortiz, U. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior. J. Solid State Chem. 2010, 183, 99–104.

    7. [7]

      (7) Fan, G. L.; Wang, J.; Li, F. Synthesis of high-surface-area micro/mesoporous ZnAl2O4 catalyst support and application in selective hydrogenation of o-chloronitrobenzene. Catal. Commun. 2011, 15, 113–117.

    8. [8]

      (8) Choudhary, V. R.; Dumbre, D. K. Supported nano-gold catalysts for epoxidation of styrene and oxidation of benzyl alcohol to benzaldehyde. Top Catal. 2009, 52, 1677–1687. Nie, R. F.; Wang, J. H.; Wang, L. N. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586–596.

    1. [1]

      (1) Jana, S.; Ghosh, S. K.; Nath, S. Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol. Appl. Catal. A- Gen. 2006, 313, 41–48.

    2. [2]

      (2) Sonavane, S. U.; Gawande, M. B.; Deshpande, S. S. Chemoselective transfer hydrogenation reactions over nanosized γ-Fe2O3 catalyst prepared by novel combustion route. Catal. Commun. 2007, 8, 1803–1806.

    3. [3]

      (3) Benza, M.; Kraanb, A. M.; Prins, R. Reduction of aromatic nitrocompounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst II. Activity, X-ray diffraction and Mossbauer study of the iron oxide hydroxide catalyst. Appl. Catal. A-Gen. 1998, 172, 149–157.

    4. [4]

      (4) Liu, X. M.; Li. Y. S. One-step facile fabrication of Ag/γ-Fe2O3 composite microspheres. Mater. Sci. Eng., C 2009, 29, 1128–1132.

    5. [5]

      (5) Tao, S. W.; Liu, X. Q.; Chu, X. F.; Shen, Y. S. Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol-gel process. Sens. Actuators, B 1999, 61, 33–38.

    6. [6]

      (6) Garza-Navarro, M.; Torres-Castro, A.; Ortiz, U. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior. J. Solid State Chem. 2010, 183, 99–104.

    7. [7]

      (7) Fan, G. L.; Wang, J.; Li, F. Synthesis of high-surface-area micro/mesoporous ZnAl2O4 catalyst support and application in selective hydrogenation of o-chloronitrobenzene. Catal. Commun. 2011, 15, 113–117.

    8. [8]

      (8) Choudhary, V. R.; Dumbre, D. K. Supported nano-gold catalysts for epoxidation of styrene and oxidation of benzyl alcohol to benzaldehyde. Top Catal. 2009, 52, 1677–1687. Nie, R. F.; Wang, J. H.; Wang, L. N. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586–596.

  • 加载中
    1. [1]

      Haoyu LuoJinsong ChenMengfei LuoHui MaShengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367

    2. [2]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    7. [7]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    8. [8]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    9. [9]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    10. [10]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    11. [11]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    12. [12]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    15. [15]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    16. [16]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    17. [17]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    18. [18]

      Yanyu JinWenzhe SiXing YuanHongjun ChengBin ZhouLi CaiYu WangQibao WangJunhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260

    19. [19]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    20. [20]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

Metrics
  • PDF Downloads(0)
  • Abstract views(972)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return