Citation: MA De-Yun, XIAO Jun-Xia, GUO Hai-Fu, LIANG Yun-Qiu, YAN Jing-Jing, LIN Wei-Jie, DING Wan-Qiu. Magnetic Properties in Mononuclear Gadolinium(III) and Terbium(III) Complexes Based on Ethoxylphenyl-substituted Nitronyl Nitroxide Radical and Hexafluoroacetylacetonate Ligand[J]. Chinese Journal of Structural Chemistry, ;2016, 35(3): 361-370. doi: 10.14102/j.cnki.0254-5861.2011-0885 shu

Magnetic Properties in Mononuclear Gadolinium(III) and Terbium(III) Complexes Based on Ethoxylphenyl-substituted Nitronyl Nitroxide Radical and Hexafluoroacetylacetonate Ligand

  • Corresponding author: MA De-Yun, 
  • Received Date: 9 July 2015
    Available Online: 11 November 2015

    Fund Project: the Natural Science Foundation of Guangdong Province (2015A030310407) (pdjh2015a0562) the Natural Science Foundation of Zhaoqing University (201532) (2015A030310407)the Project of Provincial Key Platform of Guangdong Province (2014KTSPT040) (201532)

  • Two new lanthanide complexes with ethoxybenzene-substituted nitronyl nitroxide radical (NIT-C8H9O) and hexafluoroacetylacetonate (hfac) ligand, [Gd(NIT-C8H9O)2(hfac)3]·C7H16 (1) and [Tb(NIT-C8H9O)2(hfac)3]·C7H16 (2), have been successfully synthesized and characterized by IR spectroscopy, elemental analyses, thermogravimetry analyses, and single-crystal X-ray diffraction. Both 1 and 2 exhibit a mononuclear structure in which the nitronyl nitroxide radical and hfac ligand act as monodentate and bidentate chelating modes, respectively. Magnetic studies show that ferromagnetic interactions (between intramolecular Gd and radical) and antiferromagnetic interactions (between the intramolecular radicals) coexist in complex 1. No obvious frequency dependent out-of-phase signals were observed in complex 2.
  • 加载中
    1. [1]

      (1) Troiani, F.; Affronte, M. Molecular spins for quantum information technologies. Chem. Soc. Rev. 2011, 40, 3119-3129.

    2. [2]

      (2) Leuenberger, M. N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789-793.

    3. [3]

      (3) Ganzhorn, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nature Nanotech. 2012, 8, 165-169.

    4. [4]

      (4) Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 2008, 7, 179-186.

    5. [5]

      (5) Lin, S. Y.; Wernsdorfer, W.; Ungur, L.; Powell, A. K.; Guo, Y. N.; Tang, J.; Zhao, L.; Chibotaru, L. F.; Zhang, H. J. Coupling Dy3 triangles to maximize the toroidal moment. Angew. Chem. Int. Ed. 2012, 51, 12939-12943.

    6. [6]

      (6) Ungur, L.; Lin, S. Y.; Tang, J. K.; Chibotaru, L. F. Single-molecule toroics in ising-type lanthanide molecular clusters. Chem. Soc. Rev. 2014, 43, 6894-6905.

    7. [7]

      (7) Mei, X. L.; Liu, R. N.; Wang, C.; Yang, P. P.; Li, L. C.; Liao, D. Z. Modulating spin dynamics of cyclic LnIII-radical complexes (LnIII = Tb, Dy) by using phenyltrifluoroacetylacetonate coligand. Dalton Trans. 2012, 41, 2904-2909.

    8. [8]

      (8) Bernot, K.; Pointillart, F.; Rosa, P.; Etienne, M.; Sessoli, R.; Gatteschi, D. Single molecule magnet behaviour in robust dysprosium-biradical complexes. Chem. Comm. 2010, 46, 6458-6460.

    9. [9]

      (9) Fatila, E. M.; Rouzieres, M.; Jennings, M. C.; Lough, A. J.; Clerac, R.; Preuss, K. E. Fine-tuning the single-molecule magnet properties of a [Dy(III)-radical]2 pair. J. Am. Chem. Soc. 2013, 135, 9596-9599.

    10. [10]

      (10) Demir, S.; Zadrozny, J. M.; Nippe, M.; Long, J. R. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. J. Am. Chem. Soc. 2012, 134, 18546-18549.

    11. [11]

      (11) Escobar, L. B. L.; Gueder, G. P.; Soriano, S.; Speziali, N. L.; Jordao, A. K.; Cunha, A. C.; Ferreira, V. F.; Maxim, C.; Novak, M. A.; Andruh, M.; Vaz, M. G. F. New families of hetero-tri-spin 2p-3d-4f complexes: synthesis, crystal structures, and magnetic properties. Inorg. Chem. 2014, 53, 7508-7517.

    12. [12]

      (12) Wang, X. F.; Hu, P.; Li, Y. G.; Li, L. C. Construction of nitronyl nitroxide-based 3d-4f clusters: structure and magnetism. Chem. Asian J. 2015, 10, 325-328.

    13. [13]

      (13) Li, L. L.; Liu, S.; Zhang, Y.; Shi, W.; Cheng, P. Three new mononuclear tri-spin lanthanide nitronyl nitroxide radical compounds: syntheses, structures and magnetic properties. Dalton Trans. 2015, 44, 6118-6125.

    14. [14]

      (14) Ullman, E. F.; Osiecki, J. H.; Boocock, D. G. B.; Darcy, R. Stable free radicals. X. Nitronyl nitroxide monoradicals and biradicals as possible small molecule spin labels. J. Am. Chem. Soc. 1972, 94, 7049-7059.

    15. [15]

      (15) Bruker. APEXII software, Version 6.3.1, Bruker AXS Inc, Madison, Wisconsin, USA (2004).

    16. [16]

      (16) Parkin, S.; Moezzi, B.; Hope, H. XABS2: an empirical absorption correction program. J. Appl. Cryst. 1995, 28, 53-56.

    17. [17]

      (17) Sheldrick, G. M. A short history of SHELX Acta. Cryst. 2008, A64, 112-122.

    18. [18]

      (18) Spek, A. L. PLATON, A Multipurpose Crystallographic Tool. Utrecht University: Utrecht, The Netherlands (2005).

    19. [19]

      (19) Wang, X. L. Five new tri-spin lanthanide-nitronyl nitroxide (LnIII = GdIII, TbIII, DyIII, HoIII, ErIII) complexes: structures and magnetic properties. Inorg. Chim. Acta 2012, 387, 20-24.

    20. [20]

      (20) Benelli, C.; Caneschi, A.; Gatteschi, D.; Laugier, J.; Rey, P. Structure and magnetic properties of a gadolinium hexafluoroacetylacetonate adduct with the radical 4, 4, 5, 5-tetramethyl-2-phenyl-4, 5-dihydro-1H-imidazole 3-oxide 1-oxyl. Angew. Chem. Int. Ed. 1987, 26, 913-917.

    21. [21]

      (21) Kahn, M. L.; Sutter J. P.; Golhen, S.; Guionneau, P.; Ouahab, L.; Kahn O.; Chasseau, D. Systematic investigation of the nature of the coupling between a Ln(III) ion (Ln = Ce(III) to Dy(III)) and its aminoxyl radical ligands. Structural and magnetic characteristics of a series of {Ln(organic radical)2} compounds and the related {Ln(Nitrone)2} derivatives. J. Am. Chem. Soc. 2000, 122, 3413-3421.

    22. [22]

      (22) Meng, Z. S.; Liu, J. L.; Leng, J. D.; Guo, F. S.; Tong, M. L. Linear trinuclear MnII-LnIII-MnII clusters via the “compartmentalized ligand” approach: synthesis, structures and magnetic properties. Polyhedron 2011, 30, 3095-3099.

    23. [23]

      (23) Hu, P.; Sun, Z.; Wang, X.; Li, L.; Liao, D.; Luneau, D. Magnetic relation in mononuclear Tb complex involving a nitronyl nitroxide ligand. New J. Chem. 2014, 38, 4716-4721.

    24. [24]

      (24) Du, F. X.; Hu, P.; Gao, Y. Y.; Xiao, F. P.; Wu, Y. N. A hydroxyl-containing nitronyl nitroxide radical and its Gd(III), Tb(III), Dy(III) complexes: synthesis, structure and magnetic properties. Inorg. Chem. Commun. 2014, 48, 166-170.

    25. [25]

      (25) Zhang, C. X.; Qiao, X. M.; Kong, Y. K.; Wang, B.; Zhang, Y. Y.; Wang, Q. L. Two Lanthanide-nitronyl nitroxide radicals compounds with slow magnetic relaxation behavior. Journal of Molecular Structure 2015, 1081, 348-354.

  • 加载中
    1. [1]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    2. [2]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    3. [3]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    4. [4]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    8. [8]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    12. [12]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    13. [13]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    14. [14]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    15. [15]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    16. [16]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    17. [17]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    18. [18]

      Jindan ZhangZhenghong LiChi LiMengqi ZhuShicheng TangKaicong CaiZhibin ChengChulong LiuShengchang XiangZhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046

    19. [19]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    20. [20]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

Metrics
  • PDF Downloads(0)
  • Abstract views(1010)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return