Processing math: 100%

Citation: Zhi-Zhuan ZHANG, Jian-Ce JIN, Liao-Kuo GONG, Ke-Zhao DU, Xiao-Ying HUANG. Two New Antimony(III) Chloride Hybrids Composed of Mononuclear [SbCl6]3- Unit and Ionic Liquid Cations with Different Length of Alkyl Chain[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1183-1193. doi: 10.14102/j.cnki.0254–5861.2011–3099 shu

Two New Antimony(III) Chloride Hybrids Composed of Mononuclear [SbCl6]3- Unit and Ionic Liquid Cations with Different Length of Alkyl Chain

  • Corresponding author: Liao-Kuo GONG, lkgong@fjirsm.ac.cn Xiao-Ying HUANG, xyhuang@fjirsm.ac.cn
  • Received Date: 17 January 2021
    Accepted Date: 28 January 2021

    Fund Project: the National Natural Science Foundation of China 21671187the Natural Science Foundation of Fujian Province 2020J01118

Figures(5)

  • Two new hybrid chloroantimonates, namely, [Prmim]3SbCl6 (1, Prmim = 1-propyl-3-methylimi-dazolium) and [Hmim]3SbCl6 (2, Hmim = 1-hexyl-3-methylimidazolium), were synthesized in ionic liquids (ILs) with the yields of 97% and 72%, respectively. Single-crystal X-ray diffraction (SCXRD) study reveals that 1 crystallizes in monoclinic, space group Pn with a = 15.2988(12), b = 13.6388(10), c = 15.6761(13) Å, β = 98.677(7)°, V = 3233.5(4) Å3, Z = 4, Dc = 1.459 g·cm-3, F(000) = 1440, μ = 1.370 mm-1, R = 0.0589 and wR = 0.1366 (I > 2σ(I)); 2 crystallizes in the hexagonal space group of P63 with a = 27.7471(6), b = 27.7471(6), c = 8.9811(2) Å, V = 5988.2(3) Å3, Z = 6, Dc = 1.391 g·cm-3, F(000) = 2592, μ = 1.121 mm-1, R = 0.0420 and wR = 0.0726 (I > 2σ(I)). The photophysical properties of the title compounds were studied by solid-state optical absorption, photoluminescent excitation/emission (PLE/PL), PL decay spectra and photoluminescent quantum yield (PLQY). 1 and 2 exhibit PL peaks at 627 and 607 nm, Stokes shifts of 257 and 242 nm, and PLQY of 32.5% and 49.2%, respectively. The distinct photo physical characteristics of 1 and 2 are highly related to the distortion extent of the [SbCl6]3- unit.
  • Inorganic-organic hybrid metal halides (IOMHs) have received increasing attention because of their superior photophysical characteristics with potential applications in photovoltaics, solid-state lighting, etc.[1-10]. Zero dimensional (0D) IOMHs with structurally and electronically isolated halometallate species generally exhibit broadband emission mainly due to self-trapped excitons (STE) from the interaction of excitons with lattice and large structural reorganization in the excited state[11-14]. The STE emission has been observed in the hybrid compounds based on the metal ion with ns2 electron configuration, such as, Ge2+, Sn2+, Pb2+, Sb3+ and Bi3+[15-31].

    Sb3+ coordinating with halogen ions X- (X = Cl, Br, I) can form haloantimonate(III) anions with rich structural moieties like [SbX4]-[32], [SbX5]2-[31, 33-41], [SbX6]3-[38, 42], [Sb2X7]-[43], [Sb2X8]2-[44], [Sb2X9]3-[45, 46], [Sb2X10]4-[47] and [Sb2X11]5-[48]. Among them, the mononuclear [SbCl5]2- unit is commonly used to construct photoluminescent (PL) 0D-IOMHs. Such IOMHs generally exhibit broadband emission over a wide range of spectrum originating from 3P11S0 transition[31, 33-41], mostly with a near-unity PL quantum yield (PLQY), e.g., in (C9NH20)2SbCl5 (C9NH20 = 1-butyl-1-methylpyrrolidinium)[40], (TEBA)2SbCl5 (TEBA = benzyltriethylammonium)[31], (Ph4P)2SbCl5 (Ph4P = tetraphenylphosphonium)[41], and (PPN)2SbCl5 (PPN = bis(triphenylphosphoranylidene) ammonium cation)[33]. The high PL efficiency might be attributed to the sufficient separation of the neighboring [SbCl5]2- units by cations leading to little-to-no interactions or electronic band formation[40]. Additionally, dual emission as well as white light emission in compounds (Bmim)2SbCl5 (Bmim = 1-butyl-3-methlimidazolium) and (TTA)2SbCl5 (TTA = tetraethylammonium) could be easily and con-veniently realized by adjusting the excitation wavelength[31, 39]. By introducing H2O molecules to expand the distance between [SbCl5]2- species and create more local photoelectrons for the [SbCl5]2- species, the PLQY of 25.3% in (C6N2H16)2SbCl5 (C6N2H16 = 2, 6-dimethylpiperazine) could be enhanced to 39.6% in (C6N2H16)2SbCl5·H2O[36]. These compounds have shown potential applications in emerging fields such as thermal imaging analysis[34], scintillator[33] and anti-counterfeiting luminescent paper[37, 38]. 0D-IOMHs with mononuclear [SbCl6]3- unit also have been widely reported based on CCDC database. However, their PL properties have been rarely demonstrated[38, 42]. Recently, it has been reported that (Bzmim)3SbCl6 (Bzmim = 1-benzyl-3-methylimidazolium) could exhibit green emission with high PLQY of 87.5%[38].

    Ionic liquids (ILs), as a kind of "green" reagents and templates, exhibit various excellent properties, such as low volatility, large liquid ranges, nonflammability, and high stability[49-52]. Additionally, a wide variety of ILs and various substitution ways on the parent rings provide favorable conditions for obtaining diverse structures[53-55]. Herein, by using imidazolium based ILs with different-length alkyl chain as the solvent and template, two new hybrid chloroan-timonates, namely, [Prmim]3SbCl6 (1, Prmim = 1-propyl-3-methylimidazolium) and [Hmim]3SbCl6 (2, Hmim = 1-hexyl-3-methylimidazolium), were synthesized. Both feature a 0D structure with isolated [SbCl6]3- octahedron as confirmed by single-crystal X-ray diffraction (SCXRD). Under the excitation wavelength of 370 nm, 1 exhibits orange emission peak at 627 nm with a large Stokes shift of 257 nm, while 2 exhibits orange-yellow emission peak at 607 nm with a large Stokes shift of 242 nm excited at 365 nm. The PLQY for 1 and 2 are 32.5% and 49.2%, respectively. The distinct photophysical properties (emission peak, Stokes shift, and PLQY) of two compounds are revealed to be related to the distortion of isolated [SbCl6]3- octahedron by comparing the title [SbCl6]3- unit with those reported in literature[38, 42].

    Antimony(III) chloride (SbCl3, 99%) was purchased from Adamas Reagent Co., Ltd. [Prmim]Cl (99%) and [Hmim]Cl (99%) were purchased from Lanzhou GreenChem ILs, LICP, CAS (Lanzhou, China). All the reagents were utilized without further purification.

    Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku Miniflex II diffractometer with Cu radiation (λ = 1.54178 Å) at room temperature. Elemental analyses (EA) for C, H and N were conducted on a German Elementary Vario MICRO instrument. Thermogravimetric (TG) analysis was performed on a NETZSCH STA 449F3 instrument at a heating rate of 10 K·min–1 under a N2 atmosphere from 20 to 800 ℃. Solid-state optical diffuse reflectance spectra were performed at room temperature on a Shimadzu 2600 UV/Vis spectrometer in a range of 200~800 nm. BaSO4 with 100% reflectance was used as a standard. The absorption data were obtained from reflectance spectra by using the Kubelka-Munk function α/S = (1 – R)2/2R[56], where α is the absorption coefficient, S the scattering coefficient, and R the reflectance. Photoluminescent excitation (PLE), PL spectra and PL decay spectra were recorded on an Edinburgh FLS1000 UV/V/NIR fluorescence spectrometer. PLQY of the title compounds were measured by the FLSP920(EI) fluorescence spectrometer.

    A mixture of SbCl3 (0.2335 g, 1 mmol) and [Prmim]Cl (0.4882 g, 3 mmol) was sealed into a 28 mL Teflon-lined stainless-steel autoclave. In this reaction system, the ionic liquid [Prmim]Cl acts as both solvent and template. The container was closed, heated at 120 ℃ for 3 hours, and then cooled to room temperature naturally. Colourless and transparent block-like crystals were formed after certain time (around two weeks) at room temperature. Long crystallization time possibly relates to the viscosity of the ILs. Once the crystal nuclei were formed, many crystals would be precipitated, and finally 1 could be obtained in a high yield (yield: 0.7042 g, 97% based on Sb). Elemental analysis: calcd. (%) for C21H39N6SbCl6: C, 35.52; H, 5.53; N, 11.83. Found: C, 35.70; H, 6.11; N, 11.99.

    A similar synthesis procedure as that for 1 was adopted except that a mixture of SbCl3 (1.1641 g, 5 mmol) and [Hmim]Cl (2.1408 g, 10 mmol) was used. Colourless and transparent block-like crystals were formed with the yield of 3.1045 g (72% based on Sb). Elemental analysis: calcd. (%) for C30H57N6SbCl6: C, 43.08; H, 6.86; N, 10.04. Found: C, 40.94; H, 6.83; N, 9.70.

    The colorless-transparent block-like crystals 1 and 2 were selected for SCXRD experiment with dimensions of 0.39mm × 0.39mm × 0.20mm and 0.50mm × 0.25mm × 0.20mm, respectively. For 1, a total of 31441 reflections were collected in the range of 1.99°≤θ≤30.31° with Rint = 0.0371, 15049 of which are independent. Crystal 1 crystallizes in monoclinic, space group Pn with a = 15.2988(12), b = 13.6388(10), c = 15.6761(13) Å, β = 98.677(7)°, V = 3233.5(4) Å3, Z = 4, Dc = 1.459 g·cm-3, F(000) = 1440, μ = 1.370 mm-1, R = 0.0589 and wR = 0.1366 (I > 2σ(I)). For 2, 37899 total reflections were collected in 2.24°≤θ≤29.24° region with Rint = 0.0946, of which 9758 were independent. Crystal 2 is of hexagonal system, space group P63 with a = 27.7471(6), b = 27.7471(6), c = 8.9811(2) Å, V = 5988.2(3) Å3, Z = 6, Dc = 1.391 g·cm-3, F(000) = 2592, μ = 1.121 mm-1, R = 0.0420 and wR = 0.0726 (I > 2σ(I)). SHELX 2018 package was used to solve and refine the structure on F2 by full-matrix least-square methods[57]. Selected bond lengths and bond angles of 1 and 2 are shown in Table 1, and selected hydrogen bond parameters in Table 2.

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (o) for 1 and 2
    DownLoad: CSV
    Compound 1
    Bond Dist. Bond Dist.
    Sb(1)−Cl(2) 2.552(3) Sb(2)−Cl(10) 2.529(3)
    Sb(1)−Cl(5) 2.568(3) Sb(2)−Cl(8) 2.605(4)
    Sb(1)−Cl(3) 2.576(4) Sb(2)−Cl(12) 2.617(4)
    Sb(1)−Cl(4) 2.752(4) Sb(2)−Cl(9) 2.685(4)
    Sb(1)−Cl(1) 2.754(4) Sb(2)−Cl(11) 2.738(4)
    Sb(1)−Cl(6) 2.789(3) Sb(2)−Cl(7) 2.838(4)
    Angle (°) Angle (°)
    Cl(2)−Sb(1)−Cl(5) 89.77(13) Cl(10)−Sb(2)−Cl(8) 89.91(13)
    Cl(2)−Sb(1)−Cl(3) 87.59(14) Cl(10)−Sb(2)−Cl(12) 90.11(14)
    Cl(5)−Sb(1)−Cl(3) 90.89(14) Cl(8)−Sb(2)−Cl(12) 92.27(13)
    Cl(2)−Sb(1)−Cl(4) 89.57(13) Cl(10)−Sb(2)−Cl(9) 86.76(13)
    Cl(5)−Sb(1)−Cl(4) 178.50(16) Cl(8)−Sb(2)−Cl(9) 89.21(12)
    Cl(3)−Sb(1)−Cl(4) 87.74(13) Cl(12)−Sb(2)−Cl(9) 176.53(13)
    Cl(2)−Sb(1)−Cl(1) 88.75(12) Cl(10)−Sb(2)−Cl(11) 88.94(13)
    Cl(5)−Sb(1)−Cl(1) 87.71(14) Cl(8)−Sb(2)−Cl(11) 178.46(12)
    Cl(3)−Sb(1)−Cl(1) 176.08(15) Cl(12)−Sb(2)−Cl(11) 88.74(14)
    Cl(4)−Sb(1)−Cl(1) 93.62(13) Cl(9)−Sb(2)−Cl(11) 89.72(13)
    Cl(2)−Sb(1)−Cl(6) 178.27(14) Cl(10)−Sb(2)−Cl(7) 177.55(17)
    Cl(5)−Sb(1)−Cl(6) 88.74(12) Cl(8)−Sb(2)−Cl(7) 88.10(13)
    Cl(3)−Sb(1)−Cl(6) 91.55(13) Cl(12)−Sb(2)−Cl(7) 91.40(13)
    Cl(4)−Sb(1)−Cl(6) 91.89(12) Cl(9)−Sb(2)−Cl(7) 91.79(12)
    Cl(1)−Sb(1)−Cl(6) 92.08(12) Cl(11)−Sb(2)−Cl(7) 93.03(13)
    Compound 2
    Bond Dist. Bond Dist.
    Sb(1)−Cl(5) 2.5480(15) Sb(1)−Cl(6) 2.6324(14)
    Sb(1)−Cl(1) 2.6136(16) Sb(1)−Cl(4) 2.7367(15)
    Sb(1)−Cl(3) 2.6324(15) Sb(1)−Cl(2) 2.7880(15)
    Angle (°) Angle (°)
    Cl(5)−Sb(1)−Cl(1) 89.60(5) Cl(3)−Sb(1)−Cl(4) 91.94(5)
    Cl(5)−Sb(1)−Cl(3) 89.66(5) Cl(6)−Sb(1)−Cl(4) 85.57(5)
    Cl(1)−Sb(1)−Cl(3) 90.41(5) Cl(5)−Sb(1)−Cl(2) 176.56(5)
    Cl(5)−Sb(1)−Cl(6) 88.44(5) Cl(1)−Sb(1)−Cl(2) 90.00(5)
    Cl(1)−Sb(1)−Cl(6) 92.06(5) Cl(3)−Sb(1)−Cl(2) 93.75(5)
    Cl(3)−Sb(1)−Cl(6) 176.88(5) Cl(6)−Sb(1)−Cl(2) 88.16(4)
    Cl(5)−Sb(1)−Cl(4) 89.67(5) Cl(4)−Sb(1)−Cl(2) 90.59(5)
    Cl(1)−Sb(1)−Cl(4) 177.54(5)

    Table 2

    Table 2.  Selected Hydrogen Bond Lengths (Å) and Bond Angles (°) for 1 and 2
    DownLoad: CSV
    Compound 1
    D−H···A d(D−H) d(H···A) d(D···A) ∠DHA
    C(1)−H(1A)···Cl(7)#1 0.93 2.94 3.692(18) 138.8
    C(2)−H(2A)···Cl(5)#2 0.93 2.88 3.743(17) 154.1
    C(3)−H(3A)···Cl(6) 0.93 2.76 3.549(15) 142.7
    C(4)−H(4A)···Cl(7)#1 0.96 2.97 3.822(18) 148.1
    C(4)−H(4B)···Cl(3) 0.96 2.87 3.659(18) 139.8
    C(8)−H(8A)···Cl(1)#3 0.93 2.82 3.585(15) 140.7
    C(9)−H(9A)···Cl(7)#4 0.93 2.79 3.673(15) 160.0
    C(10)−H(10A)···Cl(10)#3 0.93 2.94 3.710(14) 141.4
    C(11)−H(11A)···Cl(4)#3 0.96 2.78 3.631(17) 148.5
    C(11)−H(11C)···Cl(11)#3 0.96 2.78 3.606(17) 144.9
    C(12)−H(12A)···Cl(9)#3 0.97 2.82 3.750(15) 160.9
    C(12)−H(12B)···Cl(12)#4 0.97 2.75 3.617(15) 148.6
    C(15)−H(15A)···Cl(11)#5 0.93 2.77 3.609(19) 151.2
    C(16)−H(16A)···Cl(6)#6 0.93 2.88 3.763(18) 159.9
    C(17)−H(17A)···Cl(8)#7 0.93 2.90 3.549(16) 127.7
    C(17)−H(17A)···Cl(9)#7 0.93 2.89 3.618(16) 135.6
    C(19)−H(19A)···Cl(10)#7 0.97 2.94 3.832(17) 153.2
    C(19)−H(19B)···Cl(3)#6 0.97 2.73 3.616(16) 151.6
    C(23)−H(23A)···Cl(1) 0.93 2.62 3.46(2) 150.0
    C(24)−H(24A)···Cl(9)#8 0.93 2.96 3.68(2) 135.0
    C(25)−H(25A)···Cl(9)#8 0.96 2.56 3.50(3) 165.4
    C(25)−H(25B)···Cl(12)#6 0.96 2.64 3.53(3) 155.9
    C(26)−H(26A)···Cl(6) 0.97 2.72 3.63(3) 156.9
    C(27)−H(27B)···Cl(3)#9 0.97 2.95 3.74(3) 140.4
    C(29)−H(29A)···Cl(1)#3 0.93 2.84 3.56(3) 134.3
    C(30)−H(30A)···Cl(12)#7 0.93 2.84 3.73(3) 162.3
    C(31)−H(31A)···Cl(2) 0.93 2.61 3.34(3) 135.8
    C(31)−H(31A)···Cl(3) 0.93 2.87 3.66(2) 143.6
    C(33)−H(33B)···Cl(8)#7 0.97 2.77 3.56(3) 139.2
    C(36)−H(36A···Cl(2) 0.93 2.39 3.275(19) 158.4
    C(38)−H(38A)···Cl(11)#5 0.93 2.66 3.468(19) 145.5
    C(39)−H(39A)···Cl(7)#5 0.96 2.83 3.60(3) 137.7
    Compound 2
    D−H···A d(D−H) d(H···A) d(D···A) ∠DHA
    C(1)−H(1A)···Cl(5) 0.95 2.72 3.582(7) 151.1
    C(2)−H(2A)···Cl(3)#1 0.95 2.64 3.470(6) 146.3
    C(3)−H(3A)···Cl(4)#2 0.95 2.77 3.573(6) 143.3
    C(3)−H(3A)···Cl(6)#2 0.95 2.91 3.617(6) 132.6
    C(4)−H(4A)···Cl(2)#2 0.98 2.68 3.570(6) 151.8
    C(4)−H(4C)···Cl(1) 0.98 2.90 3.761(7) 146.6
    C(5)−H(5A)···Cl(6)#2 0.99 2.66 3.447(7) 136.9
    C(5)−H(5B)···Cl(3)#1 0.99 2.91 3.808(7) 151.0
    C(12)−H(12A)···Cl(2)#2 0.95 2.75 3.468(6) 132.6
    C(13)−H(13A)···Cl(2)#1 0.95 2.64 3.449(6) 143.1
    C(14)−H(14A)···Cl(6) 0.98 2.79 3.368(6) 118.0
    C(14)−H(14C)···Cl(2)#1 0.98 2.73 3.636(6) 154.1
    C(15)−H(15A)···Cl(1)#1 0.99 2.72 3.590(6) 146.3
    C(15)−H(15B)···Cl(6)#2 0.99 2.78 3.568(6) 137.3
    C(15)−H(15A)···Cl(1)#1 0.99 2.72 3.590(6) 146.3
    C(15)−H(15B)···Cl(6)#2 0.99 2.78 3.568(6) 137.3
    C(21)−H(21A)···Cl(4)#1 0.95 2.90 3.683(6) 140.8
    C(22)−H(22A)···Cl(5)#3 0.95 2.86 3.649(6) 141.5
    C(23)−H(23A)···Cl(4) 0.95 2.94 3.714(5) 138.9
    C(23)−H(23A)···Cl(5) 0.95 2.80 3.552(6) 136.2
    C(24)−H(24A)···Cl(4)#1 0.98 2.80 3.736(5) 159.2
    C(24)−H(24C)···Cl(6) 0.98 2.79 3.495(6) 129.4
    C(25)−H(25A)···Cl(4) 0.99 2.86 3.668(6) 139.8
    C(25)−H(25B)···Cl(3)#3 0.99 2.84 3.616(6) 135.7
    Compound 1: Symmetry transformations: #1: x + 1/2, –y + 2, z – 1/2; #2: x + 1/2, –y + 1, z + 1/2; #3: x + 1/2, –y + 1, z – 1/2; #4: x, y – 1, z–1; #5: x – 1/2, –y + 2, z – 1/2; #6: x – 1/2, –y + 1, z – 1/2; #7: x, y, z – 1; #8: x, y – 1, z; #9: x – 1/2, –y + 1, z + 1/2 Compound 2: Symmetry transformations: #1: x, y, z + 1; #2: y, –x + y, z + 1/2; #3: –x + 1, –y + 1, z + 1/2

    SCXRD analysis reveals that 1 crystallizes in the mono-clinic space group of Pn. As shown in Fig. 1a, the crystallographic asymmetric unit of 1 consists of six [Prmim]+ cations and two isolated [SbCl6]3- anions. Each Sb3+ atom in the crystal is coordinated with six Cl- atoms, forming a mononuclear [SbCl6]3- octahedron. The [SbCl6]3- units are completely separated from each other by [Prmim]+ cations (Fig. 1b). The bond lengths of Sb–Cl fall in the range of 2.529(3)~2.838(4) Å (Table 1), close to those in previously reported [Bzmim]3SbCl6 with a range from 2.4983(19) to 2.8679(19) Å[38]. 1 exhibits a three-dimensional supramolecular network considering the hydrogen bonds among [SbCl6]3- anions and [Prmim]+ cations (Fig. 1c, Table 2). As there are two unique [SbCl6]3- octahedra in the crystal with Sb(1)…Sb(2) distances of 10.1335(11) Å, the hydrogen bonding environments for them are dissimilar (Fig. 1c). Moreover, PLATON calculations indicate different patterns of ππ accumulation between two imidazole rings (Fig. 1d, Table 3).

    Figure 1

    Figure 1.  (a) Asymmetric unit of compound 1. (b) A diagram showing packing of anions and cations in one unit cell of 1. (c) Three-dimensional supramolecular network for 1 considering hydrogen bonds (left) and the hydrogen bonding environment around the [Sb(1)Cl6]3- and [Sb(2)Cl6]3- anions (right). (d) Selected ππ interactions in 1

    Table 3

    Table 3.  ππ Interactions in Compound 1
    DownLoad: CSV
    Cg(I)→Cg(J) Cg···Cg (Å) α (°) β (°) γ (°)
    Cg(3)→Cg(6) 4.1369 26.51 19.68 8.15
    Cg(4)→Cg(3) 5.2276 57.60 20.93 78.44
    Cg(6)→Cg(2) 4.7628 62.21 9.23 61.86
    Cg(6)→Cg(3) 4.1369 26.51 8.15 19.68
    Cg(3): N(5)→C(15)→C(16)→N(6)→C(17); Cg(4): N(7)→C(22)→C(23)→N(8)→C(24); Cg(6): N(11)→C(36)→C(37)→N(12)→C(38)

    Single crystal of 2 belongs to the hexagonal space group of P63 and the crystallographic asymmetric unit contains three [Hmim]+ cations and one [SbCl6]3- anion, as shown in Fig. 2a. The mononuclear six-coordination [SbCl6]3- units are surrounded by imidazolium cations with a relatively long hexyl chain, resulting in a 0D structure (Fig. 2b). The Sb–Cl bond distances range from 2.5480(15) to 2.7880(15) Å (Table 1), also comparable to those of 2.4983(19)~2.8679(19) Å in [Bzmim]3SbCl6[38]. Hydrogen bonds are also observed in 2 (Table 2). The detailed hydrogen bonding environment for [SbCl6]3- anions are presented in Fig. 2c. The isolated [SbCl6]3- anions are connected to the neighbouring [Hmim]+ cations via C–H···Cl hydrogen bonds, some of which, such as C(13)–H(13A)···Cl(2), C(15)–H(13B)···Cl(6), C(25)–H(25B)···Cl(3) and C(25)–H(25A)···Cl(4), result in a 2D layer along the ab plane (Fig. 2d). Further connected by hydrogen bonds along the c axis (e.g., C(24)–H(24A)···Cl(4) and C(24)–H(24B)···Cl(6), Fig. 2c), a 3D supramolecular structure finally could be obtained. Additionally, π···π interactions between two imidazole rings in 2 were observed (Fig. 2e, Table 4).

    Figure 2

    Figure 2.  (a) Asymmetric unit of compound 2. (b) A diagram showing packing of anions and cations in one unit cell of 2. (c) Three-dimensional supramolecular network for 2 considering hydrogen bonds (left) and the hydrogen bonding environment around the [Sb(1)Cl6]3- anion as well as a one-dimensional supramolecular chain along the c axis for 2 considering partial hydrogen bonds (right). (d) Two-dimensional supramolecular network for 2, considering various hydrogen bonds along he ab plane. t Partial [Hmim]+ cations and hydrogen bonds are omitted for clarity. (e) Selected ππ interactions in 2

    Table 4

    Table 4.  π···π Interactions in Compound 2
    DownLoad: CSV
    Cg(I)→Cg(J) Cg···Cg (Å) α (°) β (°) γ (°)
    Cg(1)→Cg(2) 3.6355 6.54 26.46 20.59
    Cg(2)→Cg(1) 3.6355 6.54 20.59 26.46
    Cg(3)→Cg(3) 5.6011 22.02 43.29 65.06
    Cg(1): N(3)→C(11)→C(12)→N(4)→C(13); Cg(2): N(1)→C(1)→C(2)→N(2) →C(3); Cg(3): N(5)→C(21)→C(22)→N(6)→C(23)

    The phase purity of the title compounds was confirmed by PXRD (Fig. 3) and EA (Experimental section). TG analyses of 1 and 2 were performed under a N2 atmosphere from 20 to 800 ℃. As shown in Fig. 4, both compounds display a one-step weight loss from 250 to 370 ℃. Compared with the thermal decomposition procedure of SbCl3 and the corresponding ILs, clearly the thermal properties of the title compounds are highly related to the high thermal stability of ILs.

    Figure 3

    Figure 3.  Comparison of PXRD patterns of the title compounds with the corresponding simulated ones

    Figure 4

    Figure 4.  Comparison of the thermogravimetric curves of the title compounds and SbCl3 as well as the corresponding ionic liquids

    The photophysical properties of the title compounds were further characterized by solid-state optical absorption spectra, PLE, PL as well as PL decay spectra at room temperature. As shown in Figs. 5a and 5b, 1 exhibits bright orange emission under the irradiation of 370 nm light, slightly different from 2 which exhibits bright orange-yellow emission under the irradiation of 365 nm light. Both 1 and 2 represent a similarly colorless and transparent appearance under ambient light, suggesting nearly no absorption in the visible region, which is consistent with the optical absorption spectra, as shown in Figs. 5c and 5d. Based on the electron absorption transition of ns2 electron configuration ions, the two obvious absorption peaks in the absorption spectra can be assigned to 1S01P1 and 1S03P1 transition, respectively[58-60]. The PLE bands of 1 and 2 were consistent with the corresponding optical absorption spectra. Under the excitation of 370 nm light, the PL band of 1 is centered at 627 nm with a large Stokes shift of 257 nm, while the PL band of 2 peaks at 607 nm with a large Stokes shift of 242 nm excited at 365 nm. Broadband emissions of 1 and 2 could be ascribed to 3P11S0 transition from the Sb-based isolated halometallate species[31, 36, 38, 42, 60]. The microsecond PL lifetime for 1 and 2 is in accordance with that of the reported antimony halide hybrids (Figs. 5e and 5f)[38, 42].

    Figure 5

    Figure 5.  (a) Single crystal of 1 under ambient light (up) and UV light (down). (b) Single crystal of 2 under ambient light (up) and UV light (down). (c) Optical absorption/PLE/PL spectra for 1. (d) Optical absorption/PLE/PL spectra for 2. (e) PL decay spectra for 1. (f) PL decay spectra for 2

    In order to deeply understand the factor that affects the photophysical properties (PL band, Stokes shift, PLQY) of 1 and 2, the distortion degree of the isolated [SbCl6]3- unit in the title compounds and corresponding structures in literature was evaluated by using the following formulas[61-63]:

    σ2=11112n=1(θn90°)2

    Δd=166n=1[(dnd)/d]2

    where θn are the Cl−Sb−Cl bond angles, dn are the Sb−Cl bond lengths, and d is the average of the Sb−Cl bond distances. The results of distortion associated with photophysical properties are summarized in Table 5. It can be found that the PL wavelength and Stokes shift increase with the increasing values of σ2 and Δd, especially in the case of compounds with a similar organic ligand (C6H22N4 = tris(2-aminoethyl)amine), which eliminates the influence of organic parts on luminescence. The trend is also observed for the compounds constructed from the ILs with different substituents (e.g., BzmimCl, PrmimCl, and HmimCl). Therefore, the red shift of PL wavelength and larger Stokes shift for 1 should be due to the relatively larger bond length variance (Δd) compared to that for 2. For PLQY, the trend is in contrast. It is decreasing with more distortion of the halometallate species. The higher extent of structural distortion might lead to more energy dissipation from non-radiative transition in the procedure of excited state reorganization into the symmetric structure, finally resulting in less radiative emission with weak luminescent intensity or weak PLQY in 1[42]

    Table 5

    Table 5.  Summary of the Photophysical Characteristics and Distortion Degree of [SbCl6]3- Octahedron for Selected Hybrid Chloroantimonates (III)
    DownLoad: CSV
    Compounds PL (nm) Emission colour Stokes shift (nm) PLQY (%) σ2 Δd (*10-4) Ref
    [(C6H22N4)2(Sb2Cl10) (SbCl6)(Cl)2(H3O)]·3(H2O) 517 Green 165 45 5.95 0.03 [42]
    (C6H22N4)4(SbCl6)3(Cl)7·4(H2O) 580 Yellow 200 43 9.57 0.18 [42]
    (C6H22N4)2(SbCl6)2(Cl)2·3(H2O) 638 Red 290 6 105.14 90.79 [42]
    (Bzmim)3SbCl6 560 Green 202 87.5 5.54 10.08 [38]
    [Hmim]3SbCl6 (2) 607 Orange-yellow 242 49.2 6.91 9.07 Thiswork
    [Prmim]3SbCl6 (1) 627 Orange 257 32.5 6.24 14.30 Thiswork

    In summary, by combining SbCl3 and the imidazolium based ILs with different lengths of alkyl chain, two new antimony(III) chloride hybrids featuring a mononuclear [SbCl6]3- unit were obtained. Compound 1 exhibits bright orange emission peaking at 627 nm with relatively larger Stokes shift of 257 nm. 2 exhibits bright orange-yellow emission peaking at 607 nm with Stokes shift of 242 nm. The PL peak, Stokes shift and PLQY for 1 and 2 are highly related to the extent of distortion of halometallate unit. Our studies enrich the family of [SbCl6]3- based luminescent IOMHs.


    1. [1]

      Gautier, R.; Massuyeau, F.; Galnon, G.; Paris, M. Lead halide post-perovskite-type chains for high-efficiency white-light emission. Adv. Mater. 2019, 31, 1807383−6.  doi: 10.1002/adma.201807383

    2. [2]

      Gong, L. K.; Hu, Q. Q.; Huang, F. Q.; Zhang, Z. Z.; Shen, N. N.; Hu, B.; Song, Y.; Wang, Z. P.; Du, K. Z.; Huang, X. Y. Efficient modulation of photoluminescence by hydrogen bonding interactions between inorganic [MnBr4]2- anions and organic cations. Chem. Commun. 2019, 55, 7303−7306.  doi: 10.1039/C9CC03038G

    3. [3]

      Lin, H. R.; Zhou, C. K.; Tian, Y.; Siegrist, T.; Ma, B. W. Low-dimensional organometal halide perovskites. ACS Energy Lett. 2017, 3, 54−62.

    4. [4]

      Saidaminov, M. I.; Mohammed, O. F.; Bakr, O. M. Low-dimensional-networked metal halide perovskites: the next big thing. ACS Energy Lett. 2017, 2, 889−896.  doi: 10.1021/acsenergylett.6b00705

    5. [5]

      Shen, N. N.; Wang, Z. P.; Jin, J. C.; Gong, L. K.; Zhang, Z. Z.; Huang, X. Y. Phase transitions and photoluminescence switching in hybrid antimony(III) and bismuth(III) halides. CrystEngComm. 2020, 22, 3395−3405.  doi: 10.1039/D0CE00057D

    6. [6]

      Tsai, H. H.; Nie, W. Y.; Blancon, J. C.; Toumpos, C. S.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312−316.  doi: 10.1038/nature18306

    7. [7]

      Worku, M.; Tian, Y.; Zhou, C. K.; Lee, S.; Meisner, Q.; Zhou, Y.; Ma, B. W. Sunlike white-light-emitting diodes based on zero-dimensional organic metal halide hybrids. ACS Appl. Mater. Interfaces 2018, 10, 30051−30057.  doi: 10.1021/acsami.8b12474

    8. [8]

      Xuan, T. T.; Xie, R. J. Recent processes on light-emitting lead-free metal halide perovskites. Chem. Eng. J. 2020, 393, 124757−20.  doi: 10.1016/j.cej.2020.124757

    9. [9]

      Zhou, C. K.; Lin, H. R.; He, Q. Q.; Xu, L. J.; Worku, M.; Chaaban, M.; Lee, S. J.; Shi, X. Q.; Du, M. H.; Ma, B. W. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R 2019, 137, 38−65.  doi: 10.1016/j.mser.2018.12.001

    10. [10]

      Zhou, C. K.; Lin, H. R.; Lee, S. J.; Chaaban, M.; Ma, B. W. Organic-inorganic metal halide hybrids beyond perovskites. Mater. Res. Lett. 2018, 6, 552−569.  doi: 10.1080/21663831.2018.1500951

    11. [11]

      Li, M. Z.; Xia, Z. G. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021DOI: 10.1039/d0cs00779j.

    12. [12]

      Wang, X. M.; Meng, W. W.; Liao, W. Q.; Wang, J. B.; Xiong, R. G.; Yan, Y. F. Atomistic mechanism of broadband emission in metal halide perovskites. J. Phys. Chem. Lett. 2019, 10, 501−506.  doi: 10.1021/acs.jpclett.8b03717

    13. [13]

      Zhou, C. K.; Xu, L. J.; Lee, S. J.; Lin, H. R.; Ma, B. W. Recent advances in luminescent zero-dimensional organic metal halide hybrids. Adv. Opt. Mater. 2020, 2001766−17.

    14. [14]

      Zhou, G. J.; Su, B. B.; Huang, J. L.; Zhang, Q. Y.; Xia, Z. G. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Mater. Sci. Eng. R 2020, 141, 100548−21.  doi: 10.1016/j.mser.2020.100548

    15. [15]

      Benin, B. M.; Dirin, D. N.; Morad, V.; Worle, M.; Yakunin, S.; Raino, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem. Int. Ed. 2018, 57, 11329−11333.  doi: 10.1002/anie.201806452

    16. [16]

      Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 2014, 136, 13154−13157.  doi: 10.1021/ja507086b

    17. [17]

      Fu, P. F.; Huang, M. L.; Shang, Y. Q.; Yu, N.; Zhou, H. L.; Zhang, Y. B.; Chen, S. Y.; Gong, J. K.; Ning, Z. J. Organic-inorganic layered and hollow tin bromide perovskite with tunable broadband Emission. ACS Appl. Mater. Interfaces 2018, 10, 34363−34369.  doi: 10.1021/acsami.8b07673

    18. [18]

      Kshirsagar, A. S.; Nag, A. Synthesis and optical properties of colloidal Cs2AgSb1-xBixCl6 double perovskite nanocrystals. J. Chem. Phys. 2019, 151, 161101−6.  doi: 10.1063/1.5127971

    19. [19]

      Mao, L. L.; Guo, P. J.; Kepenekian, M.; Hadar, I.; Katan, C.; Even, J.; Schaller, R. D.; Stoumpos, C. C.; Kanatzidis, M. G. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J. Am. Chem. Soc. 2018, 140, 13078−13088.  doi: 10.1021/jacs.8b08691

    20. [20]

      Morad, V.; Shynkarenko, Y.; Yakunin, S.; Brumberg, A.; Schaller, R. D.; Kovalenko, M. V. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. J. Am. Chem. Soc. 2019, 141, 9764−9768.  doi: 10.1021/jacs.9b02365

    21. [21]

      Song, G. M.; Li, M. Z.; Yang, Y.; Liang, F.; Huang, Q.; Liu, X. M.; Gong, P. F.; Xia, Z. G.; Lin, Z. S. Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. J. Phys. Chem. Lett. 2020, 11, 1808−1813.  doi: 10.1021/acs.jpclett.0c00096

    22. [22]

      Su, B. B.; Song, G. M.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg. Chem. 2020, 58, 9962−9968.

    23. [23]

      Tan, Z. F.; Li, J. H.; Zhang, C.; Li, Z.; Hu, Q. S.; Xiao, Z. W.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; Cheng, Y.; Tang, J. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 2018 1801131−10.

    24. [24]

      Yangui, A.; Roccanova, R.; Wu, Y.; Du, M. H.; Saparov, B. Highly efficient broad-band luminescence involving organic and inorganic molecules in a zero-dimensional hybrid lead chloride. J. Phys. Chem. C 2019, 123, 22470−22477.  doi: 10.1021/acs.jpcc.9b05509

    25. [25]

      Zhao, Y.; Zhou, C. K.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J. C.; Van De Burgt, L. J.; Kountouriotis, K.; Xin, Y.; Holt, E.; Schanze, K.; Clark, R.; Siegrist, T.; Ma, B. W. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 2017, 8, 14051−7.  doi: 10.1038/ncomms14051

    26. [26]

      Zhang, R. L.; Mao, X.; Yang, Y.; Yang, S. Q.; Zhao, W. Y.; Wumaier, T.; Wei, D. H.; Deng, W. Q.; Han, K. L. Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultra-broadband emission. Angew. Chem. Int. Ed. 2019, 58, 2725−2729.  doi: 10.1002/anie.201812865

    27. [27]

      Zhou, C. K.; Lin, H. R.; Neu, J.; Zhou, Y.; Chaaban, M.; Lee, S. J.; Worku, M.; Chen, B. H.; Clark, R.; Cheng, W. H.; Guan, J. J.; Djurovich, P.; Zhang, D. Z.; Lü, X. J.; Bullock, J.; Pak, C.; Shatruk, M.; Du, M. H.; Siegrist, T.; Ma, B. W. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency. ACS Energy Lett. 2019, 4, 1579−1583.  doi: 10.1021/acsenergylett.9b00991

    28. [28]

      Zhou, C. K.; Lin, H. R.; Shi, H. L.; Tian, Y.; Pak, C.; Shatruk, M.; Zhou, Y.; Djurovich, P.; Du, M. H.; Ma, B. W. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew. Chem. Int. Ed. 2017, 57, 1021−1024.

    29. [29]

      Zhou, C. K.; Lin, H. R.; Worku, M.; Neu, J.; Zhou, Y.; Tian, Y.; Lee, S. J.; Djurovich, P.; Siegrist, T.; Ma, B. W. Blue emitting single crystalline assembly of metal halide clusters. J. Am. Chem. Soc. 2018, 140, 13181−13184.  doi: 10.1021/jacs.8b07731

    30. [30]

      Zhou, C. K.; Tian, Y.; Wang, M. C.; Rose, A.; Besara, T.; Doyle, N. K.; Yuan, Z.; Wang, J. C.; Clark, R.; Hu, Y. Y.; Siegrist, T.; Lin, S. C.; Ma, B. W. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 2017, 56, 9018−9022.  doi: 10.1002/anie.201702825

    31. [31]

      Li, Z. Y.; Li, Y.; Liang, P.; Zhou, T. L.; Wang, L.; Xie, R. J. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem. Mater. 2019, 31, 9363−9371.  doi: 10.1021/acs.chemmater.9b02935

    32. [32]

      Elleuch, N.; Lhoste, J.; Boujelbene, M. Characterization, Hirshfeld surface analysis and vibrational properties of 2, 6-diaminopurinium chloride tetrachloroantimonates(III) monohydrate (C5H8N6)[SbCl4]Cl∙H2O. J. Mol. Struct. 2020, 1217, 128386−11.  doi: 10.1016/j.molstruc.2020.128386

    33. [33]

      He, Q. Q.; Zhou, C. K.; Xu, L. J.; Lee, S. J.; Lin, X. S.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B. W. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater. Lett. 2020, 2, 633−638.  doi: 10.1021/acsmaterialslett.0c00133

    34. [34]

      Morad, V.; Yakunin, S.; Kovalenko, M. V. Supramolecular approach for fine-tuning of the bright luminescence from zero-dimensional antimony(III) halides. ACS Mater. Lett. 2020, 2, 845−852.  doi: 10.1021/acsmaterialslett.0c00174

    35. [35]

      Sedakova, T. V.; Mirochnik, A. G. Luminescence of antimony(III) halogenides complexes with 2-and 4-benzylpyridine. Russ. J. Phys. Chem. A 2017, 91, 791−795.  doi: 10.1134/S0036024417030256

    36. [36]

      Song, G. M.; Li, M. Z.; Zhang, S. Z.; Wang, N. Z.; Gong, P. F.; Xia, Z. G.; Lin, Z. S. Enhancing photoluminescence quantum yield in 0D metal halides by introducing water molecules. Adv. Funct. Mater. 2020, 30, 2002468−6.  doi: 10.1002/adfm.202002468

    37. [37]

      Wang, Z. P.; Xie, D. L.; Zhang, F.; Yu, J. B.; Chen, X. P.; Wong, C. P. Controlling information duration on rewritable luminescent paper based on hybrid antimony(III) chloride/small-molecule absorbates. Sci. Adv. 2020, 6, eabc2181−10.  doi: 10.1126/sciadv.abc2181

    38. [38]

      Wang, Z. P.; Zhang, Z. Z.; Tao, L. Q.; Shen, N. N.; Hu, B.; Gong, L. K.; Li, J. R.; Chen, X. P.; Huang, X. Y. Hybrid chloroantimonates(III): thermally induced triple-mode reversible luminescent switching and laser-printable rewritable luminescent paper. Angew. Chem. Int. Ed. 2019, 58, 9974−9978.  doi: 10.1002/anie.201903945

    39. [39]

      Wang, Z. P.; Wang, J. Y.; Li, J. R.; Feng, M. L.; Zou, G. D.; Huang, X. Y. [Bmim]2SbCl5: a main group metal-containing ionic liquid exhibiting tunable photoluminescence and white-light emission. Chem. Commun. 2015, 51, 3094−3097.  doi: 10.1039/C4CC08825E

    40. [40]

      Zhou, C. K.; Lin, H. R.; Tian, Y.; Yuan, Z.; Clark, R.; Chen, B. H.; Van De Burgt, L. J.; Wang, J. C.; Zhou, Y.; Hanson, K.; Meisner, Q. J.; Neu, J.; Besara, T.; Siegrist, T.; Lambers, E.; Djurovich, P.; Ma, B. W. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 2018, 9, 586−593.  doi: 10.1039/C7SC04539E

    41. [41]

      Zhou, C. K.; Worku, M.; Neu, J.; Lin, H. R.; Tian, Y.; Lee, S. J.; Zhou, Y.; Han, D.; Chen, S. Y.; Hao, A.; Djurovich, P. I.; Siegrist, T.; Du, M. H.; Ma, B. W. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chem. Mater. 2018, 30, 2374−2378.  doi: 10.1021/acs.chemmater.8b00129

    42. [42]

      Biswas, A.; Bakthavatsalam, R.; Mali, B. P.; Bahadur, V.; Biswas, C.; Raavi, S. S. K.; Gonnade, R. G.; Kundu, J. The metal halide structure and the extent of distortion control the photo-physical properties of luminescent zero dimensional organic-antimony(III) halide hybrids. J. Mater. Chem. C 2021, 9, 348−358.  doi: 10.1039/D0TC03440A

    43. [43]

      Chen, F.; Wang, S.; Li, Y. H.; Huang, W. Effects of anionic geometries on hydrogen-bonding networks of 1-(4-pyridyl) piperazine. J. Chem. Crystallogr. 2016, 46, 309−323.  doi: 10.1007/s10870-016-0662-y

    44. [44]

      Wojciechowska, M.; Szklarz, P.; Bialonska, A.; Baran, J.; Janicki, R.; Medycki, W.; Durlak, P.; Piecha-Bisiorek, A.; Jakubas, R. Enormous lattice distortion through an isomorphous phase transition in an organic-inorganic hybrid based on haloantimonate(III). CrystEngComm. 2016, 18, 6184−6194.  doi: 10.1039/C6CE01008C

    45. [45]

      Parmar, S.; Pal, S.; Biswas, A.; Gosavi, S.; Chakraborty, S.; Reddy, M. C.; Ogale, S. Designing a new family of oxonium-cation based structurally diverse organic-inorganic hybrid iodoantimonate crystals. Chem. Commun. 2019, 55, 7562−7565.  doi: 10.1039/C9CC03485D

    46. [46]

      Wojtas, M.; Jakubas, R.; Ciunik, Z.; Medycki, W. Structure and phase transitions in [(CH3)4P]3Sb2Br9 and [(CH3)4P]3Bi2Br9. J. Solid State Chem. 2004, 177, 1575−1584.  doi: 10.1016/j.jssc.2003.12.011

    47. [47]

      Benin, B. M.; Mccall, K. M.; Worle, M.; Morad, V.; Aebli, M.; Yakunin, S.; Shynkarenko, Y.; Kovalenko, M. V. The Rb7Bi3-3xSb3xCl16 family: a fully inorganic solid solution with room-temperature luminescent members. Angew. Chem. Int. Ed. 2020, 59, 14490−14497.  doi: 10.1002/anie.202003822

    48. [48]

      Plecha, A.; Pietraszko, A.; Bator, G.; Jakubas, R. Structural characterization and ferroelectric ordering in (C3N2H5)5Sb2Br11. J. Solid State Chem. 2008, 181, 1155−1166.  doi: 10.1016/j.jssc.2008.02.029

    49. [49]

      Ma, Z.; Yu, J. H.; Dai, S. Preparation of inorganic materials using ionic liquids. Adv. Mater. 2010, 22, 261−285.  doi: 10.1002/adma.200900603

    50. [50]

      Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A-Gen. 2010, 373, 1−56.  doi: 10.1016/j.apcata.2009.10.008

    51. [51]

      Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123−150.  doi: 10.1039/B006677J

    52. [52]

      Zhang, S. G.; Zhang, Q. H.; Zhang, Y.; Chen, Z. J.; Watanabe, M.; Deng, Y. Q. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog. Mater. Sci. 2016, 77, 80−124.  doi: 10.1016/j.pmatsci.2015.10.001

    53. [53]

      Li, H. R.; Liu, P.; Shao, H. F.; Wang, Y. G.; Zheng, Y. X.; Sun, Z.; Chen, Y. H. Green synthesis of luminescent soft materials derived from task-specific ionic liquid for solubilizing lanthanide oxides and organic ligand. J. Mater. Chem. 2009, 19, 5533−5540.  doi: 10.1039/b902663k

    54. [54]

      Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 2010, 22, 1196−1221.  doi: 10.1002/adma.200902184

    55. [55]

      Ichikawa, T.; Kato, T.; Ohno, H. Dimension control of ionic liquids. Chem. Commun. 2019, 55, 8205−8214.  doi: 10.1039/C9CC04280F

    56. [56]

      Wendlandt, W. M.; Hecht, H. G. Reflectance Spectroscopy. Interscience, New York 1966.

    57. [57]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3−8.

    58. [58]

      Vogler, A.; Nikol, H. Photochemistry and photophysics of coordination compounds of the main group metals. Pure Appl. Chem. 1992, 64, 1311−1317.  doi: 10.1351/pac199264091311

    59. [59]

      Nikol, H.; Vogler, A. Photoluminescence of antimony(III) and bismuth(III) complexes in solution. J. Am. Chem. Soc. 1991, 113, 8988−8990.  doi: 10.1021/ja00023a081

    60. [60]

      Vogler, A.; Nikol, H. The structures of s2 metal complexes in the ground and sp excited states. Comments Inorg. Chem. 1993, 14, 245−261.  doi: 10.1080/02603599308048663

    61. [61]

      Robinson, K.; Gibbs, G. V.; Ribbe, P. H. Quadriatic elongation-quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567−570.  doi: 10.1126/science.172.3983.567

    62. [62]

      Yin, J. L.; Zhang, G. Y.; Peng, C. D.; Fei, H. H. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chem. Commun. 2019, 55, 1702−1705.  doi: 10.1039/C8CC08726A

    63. [63]

      Zhou, L.; Liao, J. F.; Huang, Z. G.; Wei, J. H.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal. Angew. Chem. Int. Ed. 2019, 58, 15435−15440.  doi: 10.1002/anie.201907503

    1. [1]

      Gautier, R.; Massuyeau, F.; Galnon, G.; Paris, M. Lead halide post-perovskite-type chains for high-efficiency white-light emission. Adv. Mater. 2019, 31, 1807383−6.  doi: 10.1002/adma.201807383

    2. [2]

      Gong, L. K.; Hu, Q. Q.; Huang, F. Q.; Zhang, Z. Z.; Shen, N. N.; Hu, B.; Song, Y.; Wang, Z. P.; Du, K. Z.; Huang, X. Y. Efficient modulation of photoluminescence by hydrogen bonding interactions between inorganic [MnBr4]2- anions and organic cations. Chem. Commun. 2019, 55, 7303−7306.  doi: 10.1039/C9CC03038G

    3. [3]

      Lin, H. R.; Zhou, C. K.; Tian, Y.; Siegrist, T.; Ma, B. W. Low-dimensional organometal halide perovskites. ACS Energy Lett. 2017, 3, 54−62.

    4. [4]

      Saidaminov, M. I.; Mohammed, O. F.; Bakr, O. M. Low-dimensional-networked metal halide perovskites: the next big thing. ACS Energy Lett. 2017, 2, 889−896.  doi: 10.1021/acsenergylett.6b00705

    5. [5]

      Shen, N. N.; Wang, Z. P.; Jin, J. C.; Gong, L. K.; Zhang, Z. Z.; Huang, X. Y. Phase transitions and photoluminescence switching in hybrid antimony(III) and bismuth(III) halides. CrystEngComm. 2020, 22, 3395−3405.  doi: 10.1039/D0CE00057D

    6. [6]

      Tsai, H. H.; Nie, W. Y.; Blancon, J. C.; Toumpos, C. S.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312−316.  doi: 10.1038/nature18306

    7. [7]

      Worku, M.; Tian, Y.; Zhou, C. K.; Lee, S.; Meisner, Q.; Zhou, Y.; Ma, B. W. Sunlike white-light-emitting diodes based on zero-dimensional organic metal halide hybrids. ACS Appl. Mater. Interfaces 2018, 10, 30051−30057.  doi: 10.1021/acsami.8b12474

    8. [8]

      Xuan, T. T.; Xie, R. J. Recent processes on light-emitting lead-free metal halide perovskites. Chem. Eng. J. 2020, 393, 124757−20.  doi: 10.1016/j.cej.2020.124757

    9. [9]

      Zhou, C. K.; Lin, H. R.; He, Q. Q.; Xu, L. J.; Worku, M.; Chaaban, M.; Lee, S. J.; Shi, X. Q.; Du, M. H.; Ma, B. W. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R 2019, 137, 38−65.  doi: 10.1016/j.mser.2018.12.001

    10. [10]

      Zhou, C. K.; Lin, H. R.; Lee, S. J.; Chaaban, M.; Ma, B. W. Organic-inorganic metal halide hybrids beyond perovskites. Mater. Res. Lett. 2018, 6, 552−569.  doi: 10.1080/21663831.2018.1500951

    11. [11]

      Li, M. Z.; Xia, Z. G. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021DOI: 10.1039/d0cs00779j.

    12. [12]

      Wang, X. M.; Meng, W. W.; Liao, W. Q.; Wang, J. B.; Xiong, R. G.; Yan, Y. F. Atomistic mechanism of broadband emission in metal halide perovskites. J. Phys. Chem. Lett. 2019, 10, 501−506.  doi: 10.1021/acs.jpclett.8b03717

    13. [13]

      Zhou, C. K.; Xu, L. J.; Lee, S. J.; Lin, H. R.; Ma, B. W. Recent advances in luminescent zero-dimensional organic metal halide hybrids. Adv. Opt. Mater. 2020, 2001766−17.

    14. [14]

      Zhou, G. J.; Su, B. B.; Huang, J. L.; Zhang, Q. Y.; Xia, Z. G. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Mater. Sci. Eng. R 2020, 141, 100548−21.  doi: 10.1016/j.mser.2020.100548

    15. [15]

      Benin, B. M.; Dirin, D. N.; Morad, V.; Worle, M.; Yakunin, S.; Raino, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem. Int. Ed. 2018, 57, 11329−11333.  doi: 10.1002/anie.201806452

    16. [16]

      Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 2014, 136, 13154−13157.  doi: 10.1021/ja507086b

    17. [17]

      Fu, P. F.; Huang, M. L.; Shang, Y. Q.; Yu, N.; Zhou, H. L.; Zhang, Y. B.; Chen, S. Y.; Gong, J. K.; Ning, Z. J. Organic-inorganic layered and hollow tin bromide perovskite with tunable broadband Emission. ACS Appl. Mater. Interfaces 2018, 10, 34363−34369.  doi: 10.1021/acsami.8b07673

    18. [18]

      Kshirsagar, A. S.; Nag, A. Synthesis and optical properties of colloidal Cs2AgSb1-xBixCl6 double perovskite nanocrystals. J. Chem. Phys. 2019, 151, 161101−6.  doi: 10.1063/1.5127971

    19. [19]

      Mao, L. L.; Guo, P. J.; Kepenekian, M.; Hadar, I.; Katan, C.; Even, J.; Schaller, R. D.; Stoumpos, C. C.; Kanatzidis, M. G. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J. Am. Chem. Soc. 2018, 140, 13078−13088.  doi: 10.1021/jacs.8b08691

    20. [20]

      Morad, V.; Shynkarenko, Y.; Yakunin, S.; Brumberg, A.; Schaller, R. D.; Kovalenko, M. V. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. J. Am. Chem. Soc. 2019, 141, 9764−9768.  doi: 10.1021/jacs.9b02365

    21. [21]

      Song, G. M.; Li, M. Z.; Yang, Y.; Liang, F.; Huang, Q.; Liu, X. M.; Gong, P. F.; Xia, Z. G.; Lin, Z. S. Lead-free tin(IV)-based organic-inorganic metal halide hybrids with excellent stability and blue-broadband emission. J. Phys. Chem. Lett. 2020, 11, 1808−1813.  doi: 10.1021/acs.jpclett.0c00096

    22. [22]

      Su, B. B.; Song, G. M.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg. Chem. 2020, 58, 9962−9968.

    23. [23]

      Tan, Z. F.; Li, J. H.; Zhang, C.; Li, Z.; Hu, Q. S.; Xiao, Z. W.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; Cheng, Y.; Tang, J. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv. Funct. Mater. 2018 1801131−10.

    24. [24]

      Yangui, A.; Roccanova, R.; Wu, Y.; Du, M. H.; Saparov, B. Highly efficient broad-band luminescence involving organic and inorganic molecules in a zero-dimensional hybrid lead chloride. J. Phys. Chem. C 2019, 123, 22470−22477.  doi: 10.1021/acs.jpcc.9b05509

    25. [25]

      Zhao, Y.; Zhou, C. K.; Tian, Y.; Shu, Y.; Messier, J.; Wang, J. C.; Van De Burgt, L. J.; Kountouriotis, K.; Xin, Y.; Holt, E.; Schanze, K.; Clark, R.; Siegrist, T.; Ma, B. W. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 2017, 8, 14051−7.  doi: 10.1038/ncomms14051

    26. [26]

      Zhang, R. L.; Mao, X.; Yang, Y.; Yang, S. Q.; Zhao, W. Y.; Wumaier, T.; Wei, D. H.; Deng, W. Q.; Han, K. L. Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultra-broadband emission. Angew. Chem. Int. Ed. 2019, 58, 2725−2729.  doi: 10.1002/anie.201812865

    27. [27]

      Zhou, C. K.; Lin, H. R.; Neu, J.; Zhou, Y.; Chaaban, M.; Lee, S. J.; Worku, M.; Chen, B. H.; Clark, R.; Cheng, W. H.; Guan, J. J.; Djurovich, P.; Zhang, D. Z.; Lü, X. J.; Bullock, J.; Pak, C.; Shatruk, M.; Du, M. H.; Siegrist, T.; Ma, B. W. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency. ACS Energy Lett. 2019, 4, 1579−1583.  doi: 10.1021/acsenergylett.9b00991

    28. [28]

      Zhou, C. K.; Lin, H. R.; Shi, H. L.; Tian, Y.; Pak, C.; Shatruk, M.; Zhou, Y.; Djurovich, P.; Du, M. H.; Ma, B. W. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew. Chem. Int. Ed. 2017, 57, 1021−1024.

    29. [29]

      Zhou, C. K.; Lin, H. R.; Worku, M.; Neu, J.; Zhou, Y.; Tian, Y.; Lee, S. J.; Djurovich, P.; Siegrist, T.; Ma, B. W. Blue emitting single crystalline assembly of metal halide clusters. J. Am. Chem. Soc. 2018, 140, 13181−13184.  doi: 10.1021/jacs.8b07731

    30. [30]

      Zhou, C. K.; Tian, Y.; Wang, M. C.; Rose, A.; Besara, T.; Doyle, N. K.; Yuan, Z.; Wang, J. C.; Clark, R.; Hu, Y. Y.; Siegrist, T.; Lin, S. C.; Ma, B. W. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 2017, 56, 9018−9022.  doi: 10.1002/anie.201702825

    31. [31]

      Li, Z. Y.; Li, Y.; Liang, P.; Zhou, T. L.; Wang, L.; Xie, R. J. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem. Mater. 2019, 31, 9363−9371.  doi: 10.1021/acs.chemmater.9b02935

    32. [32]

      Elleuch, N.; Lhoste, J.; Boujelbene, M. Characterization, Hirshfeld surface analysis and vibrational properties of 2, 6-diaminopurinium chloride tetrachloroantimonates(III) monohydrate (C5H8N6)[SbCl4]Cl∙H2O. J. Mol. Struct. 2020, 1217, 128386−11.  doi: 10.1016/j.molstruc.2020.128386

    33. [33]

      He, Q. Q.; Zhou, C. K.; Xu, L. J.; Lee, S. J.; Lin, X. S.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B. W. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater. Lett. 2020, 2, 633−638.  doi: 10.1021/acsmaterialslett.0c00133

    34. [34]

      Morad, V.; Yakunin, S.; Kovalenko, M. V. Supramolecular approach for fine-tuning of the bright luminescence from zero-dimensional antimony(III) halides. ACS Mater. Lett. 2020, 2, 845−852.  doi: 10.1021/acsmaterialslett.0c00174

    35. [35]

      Sedakova, T. V.; Mirochnik, A. G. Luminescence of antimony(III) halogenides complexes with 2-and 4-benzylpyridine. Russ. J. Phys. Chem. A 2017, 91, 791−795.  doi: 10.1134/S0036024417030256

    36. [36]

      Song, G. M.; Li, M. Z.; Zhang, S. Z.; Wang, N. Z.; Gong, P. F.; Xia, Z. G.; Lin, Z. S. Enhancing photoluminescence quantum yield in 0D metal halides by introducing water molecules. Adv. Funct. Mater. 2020, 30, 2002468−6.  doi: 10.1002/adfm.202002468

    37. [37]

      Wang, Z. P.; Xie, D. L.; Zhang, F.; Yu, J. B.; Chen, X. P.; Wong, C. P. Controlling information duration on rewritable luminescent paper based on hybrid antimony(III) chloride/small-molecule absorbates. Sci. Adv. 2020, 6, eabc2181−10.  doi: 10.1126/sciadv.abc2181

    38. [38]

      Wang, Z. P.; Zhang, Z. Z.; Tao, L. Q.; Shen, N. N.; Hu, B.; Gong, L. K.; Li, J. R.; Chen, X. P.; Huang, X. Y. Hybrid chloroantimonates(III): thermally induced triple-mode reversible luminescent switching and laser-printable rewritable luminescent paper. Angew. Chem. Int. Ed. 2019, 58, 9974−9978.  doi: 10.1002/anie.201903945

    39. [39]

      Wang, Z. P.; Wang, J. Y.; Li, J. R.; Feng, M. L.; Zou, G. D.; Huang, X. Y. [Bmim]2SbCl5: a main group metal-containing ionic liquid exhibiting tunable photoluminescence and white-light emission. Chem. Commun. 2015, 51, 3094−3097.  doi: 10.1039/C4CC08825E

    40. [40]

      Zhou, C. K.; Lin, H. R.; Tian, Y.; Yuan, Z.; Clark, R.; Chen, B. H.; Van De Burgt, L. J.; Wang, J. C.; Zhou, Y.; Hanson, K.; Meisner, Q. J.; Neu, J.; Besara, T.; Siegrist, T.; Lambers, E.; Djurovich, P.; Ma, B. W. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 2018, 9, 586−593.  doi: 10.1039/C7SC04539E

    41. [41]

      Zhou, C. K.; Worku, M.; Neu, J.; Lin, H. R.; Tian, Y.; Lee, S. J.; Zhou, Y.; Han, D.; Chen, S. Y.; Hao, A.; Djurovich, P. I.; Siegrist, T.; Du, M. H.; Ma, B. W. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chem. Mater. 2018, 30, 2374−2378.  doi: 10.1021/acs.chemmater.8b00129

    42. [42]

      Biswas, A.; Bakthavatsalam, R.; Mali, B. P.; Bahadur, V.; Biswas, C.; Raavi, S. S. K.; Gonnade, R. G.; Kundu, J. The metal halide structure and the extent of distortion control the photo-physical properties of luminescent zero dimensional organic-antimony(III) halide hybrids. J. Mater. Chem. C 2021, 9, 348−358.  doi: 10.1039/D0TC03440A

    43. [43]

      Chen, F.; Wang, S.; Li, Y. H.; Huang, W. Effects of anionic geometries on hydrogen-bonding networks of 1-(4-pyridyl) piperazine. J. Chem. Crystallogr. 2016, 46, 309−323.  doi: 10.1007/s10870-016-0662-y

    44. [44]

      Wojciechowska, M.; Szklarz, P.; Bialonska, A.; Baran, J.; Janicki, R.; Medycki, W.; Durlak, P.; Piecha-Bisiorek, A.; Jakubas, R. Enormous lattice distortion through an isomorphous phase transition in an organic-inorganic hybrid based on haloantimonate(III). CrystEngComm. 2016, 18, 6184−6194.  doi: 10.1039/C6CE01008C

    45. [45]

      Parmar, S.; Pal, S.; Biswas, A.; Gosavi, S.; Chakraborty, S.; Reddy, M. C.; Ogale, S. Designing a new family of oxonium-cation based structurally diverse organic-inorganic hybrid iodoantimonate crystals. Chem. Commun. 2019, 55, 7562−7565.  doi: 10.1039/C9CC03485D

    46. [46]

      Wojtas, M.; Jakubas, R.; Ciunik, Z.; Medycki, W. Structure and phase transitions in [(CH3)4P]3Sb2Br9 and [(CH3)4P]3Bi2Br9. J. Solid State Chem. 2004, 177, 1575−1584.  doi: 10.1016/j.jssc.2003.12.011

    47. [47]

      Benin, B. M.; Mccall, K. M.; Worle, M.; Morad, V.; Aebli, M.; Yakunin, S.; Shynkarenko, Y.; Kovalenko, M. V. The Rb7Bi3-3xSb3xCl16 family: a fully inorganic solid solution with room-temperature luminescent members. Angew. Chem. Int. Ed. 2020, 59, 14490−14497.  doi: 10.1002/anie.202003822

    48. [48]

      Plecha, A.; Pietraszko, A.; Bator, G.; Jakubas, R. Structural characterization and ferroelectric ordering in (C3N2H5)5Sb2Br11. J. Solid State Chem. 2008, 181, 1155−1166.  doi: 10.1016/j.jssc.2008.02.029

    49. [49]

      Ma, Z.; Yu, J. H.; Dai, S. Preparation of inorganic materials using ionic liquids. Adv. Mater. 2010, 22, 261−285.  doi: 10.1002/adma.200900603

    50. [50]

      Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A-Gen. 2010, 373, 1−56.  doi: 10.1016/j.apcata.2009.10.008

    51. [51]

      Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123−150.  doi: 10.1039/B006677J

    52. [52]

      Zhang, S. G.; Zhang, Q. H.; Zhang, Y.; Chen, Z. J.; Watanabe, M.; Deng, Y. Q. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog. Mater. Sci. 2016, 77, 80−124.  doi: 10.1016/j.pmatsci.2015.10.001

    53. [53]

      Li, H. R.; Liu, P.; Shao, H. F.; Wang, Y. G.; Zheng, Y. X.; Sun, Z.; Chen, Y. H. Green synthesis of luminescent soft materials derived from task-specific ionic liquid for solubilizing lanthanide oxides and organic ligand. J. Mater. Chem. 2009, 19, 5533−5540.  doi: 10.1039/b902663k

    54. [54]

      Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 2010, 22, 1196−1221.  doi: 10.1002/adma.200902184

    55. [55]

      Ichikawa, T.; Kato, T.; Ohno, H. Dimension control of ionic liquids. Chem. Commun. 2019, 55, 8205−8214.  doi: 10.1039/C9CC04280F

    56. [56]

      Wendlandt, W. M.; Hecht, H. G. Reflectance Spectroscopy. Interscience, New York 1966.

    57. [57]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3−8.

    58. [58]

      Vogler, A.; Nikol, H. Photochemistry and photophysics of coordination compounds of the main group metals. Pure Appl. Chem. 1992, 64, 1311−1317.  doi: 10.1351/pac199264091311

    59. [59]

      Nikol, H.; Vogler, A. Photoluminescence of antimony(III) and bismuth(III) complexes in solution. J. Am. Chem. Soc. 1991, 113, 8988−8990.  doi: 10.1021/ja00023a081

    60. [60]

      Vogler, A.; Nikol, H. The structures of s2 metal complexes in the ground and sp excited states. Comments Inorg. Chem. 1993, 14, 245−261.  doi: 10.1080/02603599308048663

    61. [61]

      Robinson, K.; Gibbs, G. V.; Ribbe, P. H. Quadriatic elongation-quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567−570.  doi: 10.1126/science.172.3983.567

    62. [62]

      Yin, J. L.; Zhang, G. Y.; Peng, C. D.; Fei, H. H. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chem. Commun. 2019, 55, 1702−1705.  doi: 10.1039/C8CC08726A

    63. [63]

      Zhou, L.; Liao, J. F.; Huang, Z. G.; Wei, J. H.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal. Angew. Chem. Int. Ed. 2019, 58, 15435−15440.  doi: 10.1002/anie.201907503

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    3. [3]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    4. [4]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    5. [5]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    6. [6]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    7. [7]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    8. [8]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    9. [9]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    10. [10]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    11. [11]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    12. [12]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    13. [13]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    14. [14]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    15. [15]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    16. [16]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    17. [17]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    18. [18]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    19. [19]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    20. [20]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

Metrics
  • PDF Downloads(2)
  • Abstract views(557)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return