Syntheses, Crystal Structures, SHG Response and Purple Luminescent Property of Tetra(isothiocyanate) Mn(Ⅱ) and Substituted Benzyl Triphenylphosphonium Cations
- Corresponding author: Yu-Hui TAN, tyxcn@163.com
Citation:
Yu-Kong LI, Yu-Hui TAN, Yao LIU, Yun-Zhi TANG, Wen-Juan WEI, Ning SONG, Peng-Kang DU, Ding-Chong HAN. Syntheses, Crystal Structures, SHG Response and Purple Luminescent Property of Tetra(isothiocyanate) Mn(Ⅱ) and Substituted Benzyl Triphenylphosphonium Cations[J]. Chinese Journal of Structural Chemistry,
;2021, 40(6): 739-745.
doi:
10.14102/j.cnki.0254–5861.2011–3012
Noncentrosymmetric (NCS) molecular materials have received much interest because of their potential applications in the areas of nonlinear optical (NLO) materials, ferroelectrics, piezoelectric, etc. Among these NCS materials, NLO crystal material with distinct SHG (second harmonic generation) response is one of the important optoelectronic information functional materials, and nonlinear optical elements in modulation switch, remote communication, information processing and other fields show a trend of accelerating development[1]. For instance, a NLO crystal material coupling other physical property such as photo-luminescent property, SHG responses ferroelectric, etc. will make them bear multi-function and have many practical applications[2, 3].
There is considerable interest in utilizing the crystal engineering techniques and the principles of supramolecular chemistry to prepare molecular materials with specific structural, optical, conductive, and magnetic properties, in which some non-covalent interactions such as weak p···π or π···π stacking interactions and H-bonding interactions are employed to obtain some new materials. On one hand, ligands containing heteroaromatic rings with large π···π stacking interactions construct all kinds of supramolecules. Moreover, it can be an important part of light-emitting materials to effectively enhance the fluorescence response of the compounds[4-7]. On the other hand, inorganic complex anions with Cl-, Br-, CN- and SCN- are proved to be very useful and potential building block for organic-inorganic hybrid materials[8, 9]. Besides, manganese(Ⅱ) compounds have attracted great interest due to their interesting structural diversity and potential applications in light-emitting materials. Mn(Ⅱ) complexes with excellent luminescent properties have attracted extensive attention due to their low cost and low toxicity. They have potential applications in photoluminescence, electroluminescence, luminescent sensors and biomarkers[10]. However, the inorganic-organic hybrid materials containing tetra (isothiocyanate) Mn(Ⅱ) anion and heteroaromatic rings organic cation are scarcer.
Keep these in mind, we choose benzyltriphenylphosphine and thiocyanate as ligands, assembled with Mn(Ⅱ) salt in a mixed solution, and obtained a novel compound 2(BPP)+· [Mn(NCS)4]2-. As we expected, compound 1 exhibits strong SHG responses and excellent fluorescence properties. Here we described its crystal structure, luminescent properties and strong SHG response which may be influenced by the change of substituted group on the phenyl ring of benzyl group in the cations, and shows that it is an excellent fluorescent and nonlinear material.
All reagents and solvents employed in this experiment were obtained from commercial sources and used directly without further purification. PL emission spectra were measured at room temperature on a spectra fluorophotometer (JASCO, FP-6500). At room temperature, Ultraviolet-visible (UV/Vis) diffuse reflectance spectroscopy of 1 was measured by a Shimadzu (Tokyo, Japan) UV-2550 spectrophotometer in a range of 200~800 nm. BaSO4 was used as the 100% reflectance reference. The powder crystals of 1 were used for the measurement. The elemental analyses were measured on a Vario EL ⅡI elemental analyzer. Thermogravimetric analysis (TGA) measurements were performed on a TA-Instruments STD2960 system from 298 to 1100 K. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku D/MAX 2000 PC X-ray diffraction instrument. The PXRD diffraction was measured with CuKα radiation (λα1 = 0.1540598 nm, λα2 = 0.1544426 nm) under the generator voltage (40 kV) and tube current (40 mA) by using continuous scan type from 5.0 to 50.0° at room temperature.
Compound 1 was prepared by the conventional solution method (Scheme 1). MnCl2·4H2O (1 mmol, 0.1258 g) and KSCN (4 mmol, 0.3887 g) were stirred in methanol (15 mL) solvent for 45 minutes. The precipitate was filtered out and the clear solution was taken. Then the methanol solution of benzyltriphenylphosphonium chloride (2 mmol, 0.7774 g) was dropped into the clear solution and stirred for 30 minutes. The obtained filtrate was volatilized slowly at room temperature. For 1, yield, 0.01832, 78% based on BPP. Calcd. (%) for 1: C, 65.25; H, 4.43; N, 5.64. Found (%) for 1: C, 65.44; H, 4.67; N, 5.55. IR (KBr, cm-1, s for strong, m medium, w weak): 3410 (W), 3100 (W), 2825 (W), 2050 (s), 1400 (m), 1487(m), 1588(m), 1125 (m), 750 (m), 500 (m). As shown in Fig. S2, powder X-ray diffraction (PXRD) patterns were collected at room temperature apparatus, and the fitting results of compound 1 can be well matched, proving that compound 1 is a pure phase.
Single crystal of 1 was obtained directly from the above preparation. The single-crystal X-ray diffraction studies were performed with a Bruker Smart Apex Ⅱ single crystal diffractometer operating with a graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). The crystal was kept at 299.9 K during data collection. Using Olex2[11], the structure was solved with the SHELXS structure solution program by direct methods and refined with the SHELXL refinement package using least-squares minimization[12]. All non-hydrogen atoms except the guest molecules were refined by full-matrix least-squares techniques with anisotropic displacement parameters and the hydrogen atoms were geometrically fixed at the calculated positions attached to their parent atoms, and treated as riding atoms[13]. Crystal data for 1, space group Cc with a = 11.0435(11), b = 23.857(2), c = 20.012(2) Å, V = 5083.0(8) Å3, Z = 4, μ(MoKα) = 0.527 mm-1, C54H44MnN4P2S4, Mr = 994.05, Dc = 1.299 g/cm3, F(000) = 2060 and GOOF = 1.038. For 1, 44587 reflections measured (6.40°≤2θ≤55.26°), 11772 unique (Rint = 0.0427, Rsigma = 0.0514) which were used in all calculations. The final R = 0.0505 (I > 2σ(I)) and wR = 0.1199 (all data). The Flack parameter was 0.00(3) (Fig. 1a). The selected bond lengths and bond angles for 1 are given in Table 1. The hydrogen bond parameters are shown in Table S1.
Bond | Dist. | Bond | Dist. | |
Mn(1)–N(1) | 2.046(7) | N(4)–C(4) | 1.131(8) | |
Mn(1)–N(2) | 2.078(7) | P(1)–C(5) | 1.790(5) | |
Mn(1)–N(3) | 2.039(7) | P(1)–C(6) | 1.820(5) | |
Mn(1)–N(4) | 2.043(7) | P(1)–C(8) | 1.791(5) | |
Angle | (°) | Angle | (°) | |
N(4)–Mn(1)–N(1) | 114.5(3) | N(3)–Mn(1)–N(1) | 105.9(3) | |
N(2)–Mn(1)–N(4) | 110.2(2) | N(2)–Mn(1)–N(1) | 105.0(3) | |
N(2)–Mn(1)–N(3) | 110.76(9) | N(3)–Mn(1)–N(4) | 110.2(3) |
As shown in Table 1, compound 1 crystallizes in monoclinic system, space group Cc. Each asymmetric unit consists of one [Mn(NCS)4]2- anion and two [BPP]+ cations. Fig. 1(a) depicts the coordination environment of the Mn(Ⅱ) atom with atomic numbering scheme. Every Mn2+ ion binds to four N (N(1), N(2), N(3), N(4)) atoms of thiocyanate, and the [Mn(NCS)4]2– anion presents seriously distorted tetrahedral coordination geometry[14, 15]. For [Mn(NCS)4]2– anions, the average Mn–N bond length is 2.05 Å, the N–Mn–N bond angles fall in the 105.000~114.500° range, and the N–C–S bond angles of four NCS– groups is averaged by 178.500(6)°. In addition, the average C–N and C–S bond distances are 1.13 and 1.60 Å, respectively, similar to those analogues containing [Mn(NCS)4]2– anions[33-35]. The nearest Mn···Mn distance between two adjacent anions is 11.34 Å[16]. For each [BPP]+ cation, the average C–P bond length is 1.80 Å, and the C–P–C bond angles are in the range of 108.50~113.9°, so the four C atoms together with the P atom form a regular tetrahedron.
The most interesting fact is that the [Mn(NCS)4]2- anions form a linear chain through S···S interaction (Fig. 1b), and the S···S distance of 3.412 Å is shorter than the sum of van der Waals radii of two sulfur atoms, indicating a strong supramolecular interaction[17, 18]. It is also worth noting that the C–H···S hydrogen bond is found between the S(3) atom of the anion and the adjacent cation (Fig. 2a): C(16B)– H(16B)···S(3A) (symmetry code: A = x, –y, –1/2+z, B: 1+x, y, z) with C(16B)···S(3A) to be 3.488 and H(16B)···S(3A) being 3.254 Å[19, 20]. As shown in Fig. 2b, there are also many π···π stacking interactions between neighboring [BPP]+ cations in complex 1, and the distance is 3.554 Å. The [BPP]+ cations filled in two chains of [Mn(NCS)4]2- anions through S···S interaction. From the stacking diagram along the a axis (Fig. S3), it can be seen that the thiocyanate radicals are connected like an irregular hexagon, which encapsulates the organic phosphorus in the cavity and enhances the stability of the structure. Additionally, a comparison between 1 and the [BzTPP]2[Zn(NCS)4] compound previously reported reveals that when the cation is identical[21], while the metal ion of the anion changes from Zn(Ⅱ) to Mn(Ⅱ), the crystal system and space group are still the same, but the shortest S···S, M···P and M···M (M = Mn or Zn) distances between the adjacent anions and cations, the stacking mode and the weak interactions of the cations and anions are significantly different[20].
The photo-luminescent properties of 1 were investigated in solid state at room temperature (Fig. 3). Under 248 nm excitation, 1 shows a strong emission band at 396 nm. As documented, the complex 2(BzTPP)+[Zn(NCS)4]2- has a broad luminescence peak in the range of 327~361 nm, with a maximum of 356 nm[21]. Obviously, when the anion [Zn(NCS)4]2- changes to [Mn(NCS)4]2-, the maximum emission peak shifts to an Einstein shift of 40 nm, indicating that [Mn(NCS)4]2- plays an important role in the fluorescence emission of the compounds, and the magnitude of the peak value is attributed to the ligand metal transition[10, 22]. What's more, the C–Hd···S hydrogen bonds between the [Mn(NCS)4]2− anion and the [BPP]+ cation improved the emission intensity[21]. Interestingly, 1 also exhibits interesting semiconductor properties. In order to deeply investigate the mechanism, solid-state UV/Vis diffuse reflectance spectroscopy was performed at room temperature. As shown in Fig. 3b, an intense absorption occurs at the band edge onset of 320 nm. The corresponding optical band gap can be defined as 4.0 eV according to Tauce equation (Fig. S4, inset). This value is within the band gap of most known organic-inorganic hybrid perovskites (3.5~4.5 eV)[36].
The compounds with the second-order nonlinear optical properties must be chiral or non-centric[23-28]. Because the title compound adopts space group Cc, we study its nonlinear optical properties[27]. The second harmonic generation (SHG) measurements show that compound 1 has nonlinear optical activity and its SHG response is 2.25 times that of standard potassium dihydrogen phosphate (KDP). The reason can be attributed to the coordination of N from thiocyanate to a metal left, thus resulting in the donation of the lone pair of electrons on the N atoms to the metal left and the formation of an excellent donor acceptor (D-A) system[23, 31, 32]. Furthermore, the C–H···S hydrogen bonds between the [Mn(NCS)4]2− anion and the [BPP]+ cation can effectively mediate the push-pull strength. In addition, the mechanism of SHG formation may be attributed to the formation of a distorted tetrahedron formed by the coordination of thiocyanate with manganese ions, and the polarization effect cannot be counteracted[28], which makes the complex as a potential secondorder nonlinear optical material.
In order to study the thermal stability of compound 1, thermal analysis (TGA) was carried out in N2 (100 mL/min) at a heating rate of 10 ℃·min-1 from room temperature to 1100 K. As shown in Fig. 5, complex 1 has high thermal stability below 573 K. Above 431 K, the DTA curve of 1 shows an obvious rising peak which may be caused by the high nitrogen content and high energy[31]. When the temperature is higher than 573 K, the compound loses weight, corresponding to the release of organic ligands. The thermal stability of complex 1 is higher than that of similar compounds due to the strong S⋅⋅⋅S interaction and abundant C–H⋅⋅⋅S and π⋅⋅⋅π interactions.
In conclusion, a new manganese compound 2(BPP)+·[Mn(NCS)4]2- (1) was synthesized by the simple solution method. It has strong purple luminescent property with wavelength 396 nm. In addition, SHG measurements show that 1 has nonlinear optical activity and its SHG response is 2.25 times that of standard potassium dihydrogen phosphate (KDP), which is promised with great potential to the development of new supramolecular fluorescence and nonlinear materials.
Liu, C.; Mei, D. J.; Cao, W. Z.; Yang, Y.; Wu, Y. D.; Li, G. B.; Lin, Z. S. Mn-Based tin sulfide Sr3MnSn2S8 with a wide band gap and strong nonlinear optical response. J. Mater. Chem. 2019, 7, 1146–1150.
Tang, Y. Z.; Yu, Y. M.; Xiong, J. B.; Tan, Y. H.; Wen, H. R. Unusual high-temperature reversible phase-transition behavior, structures, and dielectric-ferroelectric properties of two new crown ether clathrates. J. Am. Chem. Soc. 2015, 137, 13345–13351.
doi: 10.1021/jacs.5b08061
Chen, S. P.; Wang, C. F.; Zhou, H. T.; Tan, Y. H.; Wen, H. R.; Tang, Y. Z. Ferroelectric property, switchable dielectric, and excellent second harmonic generation response in a homochiral organic salt: l-prolinammonium 1-adamantane carboxylate. Cryst. Growth Des. 2018, 18, 6117–6122.
doi: 10.1021/acs.cgd.8b00994
Antorrena, G. .; Palacio, F.; Castro, M.; Pellaux, R.; Decurtins, S. Thermal and magnetic study of mixed-metal oxalate-bridged 2D magnets. J. Magn. Magn. Mater. 1999, 196, 581–583.
Hollingsworth, M. D. Crystal engineering: from structure to function. Science 2002, 295, 2410–2413.
doi: 10.1126/science.1070967
Galet, A.; Muñoz, M. C.; Gaspar, A. B.; Real, J. A. Architectural isomerism in the three-dimensional polymeric spin crossover system {Fe(pmd)2[Ag(CN)2]2}: synthesis, structure, magnetic properties, and calorimetric studies. Inorg. Chem. 2005, 24, 8749–8755.
Wernsdorfer, W.; Aliaga-Alcalde, N.; Hendrickson, D. N.; Christou, G. Exchange-biased quantum tunneling in a supramolecular dimer of single-molecule magnets. Nature 2002, 416, 406–409.
doi: 10.1038/416406a
Yang, E. C.; Zhao, H. K.; Ding, B.; Wang, X. G.; Zhao, X. J. Four novel three-dimensional triazole-based zinc(Ⅱ) metal-organic frameworks controlled by the spacers of dicarboxylate ligands: hydrothermal synthesis, crystal structure, and luminescence properties. Cryst. Growth Des. 2007, 7, 2009–2015.
doi: 10.1021/cg070356n
Hu, R. F.; Zhang, J.; Kang, Y.; Yao, Y. G. A fluorescent Zn-benzotriazole 2D polymer with (6, 3) topology. Inorg. Chem. Commun. 2005, 8, 828–830.
doi: 10.1016/j.inoche.2005.06.017
Chen, J. L.; Guo, Z. H.; Luo, Y. S.; Qiu, L.; He, L. H.; Liu, S. J.; Wen, H. R.; Wang, J. Y. Luminescent monometallic Cu(I) triphenylphosphine complexes based on methylated 5-trifluoromethyl-3-(2΄-pyridyl)-1, 2, 4-triazole ligands. New J. Chem. 2016, 40, 5325–5332.
doi: 10.1039/C5NJ03529E
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339−341.
doi: 10.1107/S0021889808042726
Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
Yu, Y. Z.; Chang, S. Y.; Han, X.; Chen, G. X.; Xuan, Y. W.; Wu, X. L.; Wang, F. Hydrothermal synthesis, crystal structure and luminescence property of a 2D manganese(Ⅱ) coordination polymer. Chin. J. Struct. Chem. 2019, 38, 147–154.
Chen, X.; Dai, S. L.; Cheng, Z. P.; Liang, L. B.; Han, S.; Liu, J. F.; Zhou, J. R.; Yang, L. M.; Ni, C. L. Syntheses, crystal structures, and magnetic properties of two hybrid materials self-assembly from tetra(isothiocyanate)cobalt(Ⅱ) anion and substituted benzyl triphenylphosphinium. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nan-Metal Chemistry 2012, 42, 987–993.
doi: 10.1080/15533174.2012.680114
Chen, H. J.; Zhang, L. Z.; Cai, Z. G.; Yang, G.; Chen, X. M. Organic-inorganic hybrid materials assembled through weak intermolecular interactions. synthesis, structures and non-linear optical properties of [4, 4΄-bipyH2][M(NCS)4] (M = Mn2+, Co2+ or Zn2+; 4, 4΄-bipy = 4, 4΄-bipyridine). J. Chem. Soc. Dalton Trans. 2000, 14, 2463–2466.
Bleiholder, C.; Werz, D. B.; Koppel, H.; Gleiter, R. Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? J. Am. Chem. Soc. 2006, 128, 2666–2674.
doi: 10.1021/ja056827g
Liu, X. M.; Lu, X. Z.; Fu. F.; Liu, B.; Hu, H. M.; Gao, Q. C.; Wang, J. W.; Xue, G. L. Synthesis and crystal structure of a novel charge transfer salt, (TMT-TTF)4[HPMo12O40]. J. Mol. Struct. 2005, 751, 17–21.
doi: 10.1016/j.molstruc.2005.05.003
Bleiholder, C.; Gleiter, R.; Werz. D. B.; Köppel, H. Theoretical investigations on heteronuclear chalcogen-chalcogen interactions: on the nature of weak bonds between chalcogen lefts. Inorg. Chem. 2007, 46, 2249–2260.
doi: 10.1021/ic062110y
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76.
doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
Chen, X.; Chen, W. Q.; Han, S.; Liu, J. F.; Zhou, J. R.; Yu, L. L.; Yang, L. M.; Ni, C. L.; Hu, X. L. Two hybrid materials self-assembly from tetra(isothiocyanate)cobalt(Ⅱ) dianion and substituted benzyl triphenylphosphinium. J. Mol. Struct. 2010, 984, 164–169.
doi: 10.1016/j.molstruc.2010.09.022
Ye, H. Q.; Xie, J. L.; Yu, J. Y.; Liu, Q. T.; Dai, S. L.; Huang, W. Q.; Zhou, J. R.; Yang, L. M.; Ni, C. L. Syntheses, crystal structures, luminescent properties of two new molecular solids with tetra(isothiocyanate)zinc(Ⅱ) and substituted benzyl triphenylphosphonium cations. Synthetic Metals. 2014, 197, 99–104.
doi: 10.1016/j.synthmet.2014.09.006
Yang, H. L.; Chen, F.; He, X.; Li, Y.; Zhang, X. Q. Synthesis, crystal structure, thermal stability, luminescence and magnetic property of a new Mn(Ⅱ) coordination polymer. Chin. J. Struct. Chem. 2018, 37, 1834–1841.
Zhou, H. T.; Yang, K.; Liu, Y.; Tang, Y. Z.; Wei, W. J.; Shu, Q.; Zhao, J. J.; Tan, Y. H. In situ [2 + 3] cycloaddition synthesis, crystal structures, strong SHG responses and fluorescence properties of three novel Zn coordination polymers. Chin. Chem. Lett. 2019, 31, 841–845.
Fan, X. W.; Liu, Y.; Tang, Y. Z.; Wei, W. J.; Zhang, J. C.; Luo, Z. Y.; Wang, C. F.; Tan, Y. H. High-temperature reversible phase-transition behavior, switchable dielectric and second harmonic generation response of two homochiral crown ether clathrates. Chem. Asian J. 2019, 14, 2203–2209.
doi: 10.1002/asia.201900512
Tang, Y. Z.; Zhou, M.; Huang, J.; Tan, Y. H.; Wu, J. S.; Wen, H. R. In situ synthesis and ferroelectric, SHG response, and luminescent properties of a novel 3D acentric zinc coordination polymer. Inorg. Chem. 2013, 52, 1679–1681.
doi: 10.1021/ic302411r
Gao, J. X.; Xiong, J. B.; Xu, Q.; Tan, Y. H.; Liu, Y.; Wen, H. R.; Tang, Y. Z. Supramolecular interactions induced chirality transmission, second harmonic generation responses, and photoluminescent property of a pair of enantiomers from in situ [2 + 3] cycloaddition synthesis. Cryst. Growth Des. 2016, 16, 1559–1564.
doi: 10.1021/acs.cgd.5b01684
Liu, Y.; Zhou, H. T.; Chen, S. P.; Tan, Y. H.; Wang, C. F.; Yang, C. S.; Wen, H. R.; Tang, Y. Z. reversible phase transition and switchable dielectric behaviors triggered by rotation and order-disorder motions of crowns. Dalton Trans. 2018, 47, 3851–3856.
doi: 10.1039/C8DT00003D
Yang, K.; Yang, C. S.; Dong, X. X.; Tan, Y. H.; Tang, Y. H.; Wei, W. J. Two rare-earth molecular ferroelectrics with high curie temperatures, large spontaneous polarization, switchable second harmonic generation effects, and strong photoluminescence. Chemistry-A European Journal 2020, 26, 5887–5892.
doi: 10.1002/chem.202000188
Yang, K.; Dong, X. X.; Xu, Q.; Tan, Y. H.; Tang, Y. Z. Nopinic acid is an unprecedented homochiral single-component organic ferroelectric. Appl. Mater. Today 2020, 20, 100687.
doi: 10.1016/j.apmt.2020.100687
Fan, H. L.; Lin, C. S.; Chen, K. C.; Peng, G.; Li, B. X.; Zhang, G.; Long, X. F.; Ye, N. (NH4)Bi2(IO3)2F5: an unusual ammonium-containing metal iodate fluoride showing strong second harmonic generation response and thermochromic behavior. Angew. Chem. Int. Ed. 2020, 59, 5268–5272.
doi: 10.1002/anie.201913287
Li, F. F.; Lu, L. P. A new Mn(Ⅱ) coordination polymer: synthesis, structure and magnetic property. Chin. J. Struct. Chem. 2019, 38, 1814–1822.
Shi, C.; Ma, J. J.; Jiang, J. Y.; Hua, M. M.; Xu, Q.; Yu, H.; Zhang, Y.; Ye, H. Y. Large piezoelectric response in hybrid rare-earth double perovskite relaxor ferroelectric. J. Am. Chem. Soc. 2020, 142, 9634–9641.
Savard, D.; Leznoff, D. B. Synthesis, structure and light scattering properties of tetraalkylammonium metal isothiocyanate salts. Dalton Trans. 2013, 42, 14982–14991.
doi: 10.1039/c3dt50974e
Li, Q.; Shi, P. P.; Ye, Q.; Wang, H. T.; Wu, D. H.; Ye, H. Y.; Fu, D. W.; Zhang, Y. A switchable molecular dielectric with two sequential reversible phase transitions: [(CH3)4P]4[Mn(SCN)6]. Inorg. Chem. 2015, 54, 10642−10647.
doi: 10.1021/acs.inorgchem.5b01437
Neumann, T.; Jess, I.; Näther, C. Crystal structures of bis[4-(dimethylamino)-pyridinium] tetrakis(thiocyanato-κN) manganate(Ⅱ) and tris[4-(dimethylamino)pyridinium] pentakis-(thiocyanato-κN)manganate(Ⅱ). Acta Cryst. 2018, E74, 15–20.
Wang, C. F.; Fan, X. W.; Tan, Y. H.; Wei, W. J.; Tang, Y. Z. High-temperature reversible phase transition and switchable dielectric and semiconductor properties in a 2D hybrid [(C3H12N2O)CdCl4]n. Eur. J. Inorg. Chem. 2019, 2907–2911.
Liu, C.; Mei, D. J.; Cao, W. Z.; Yang, Y.; Wu, Y. D.; Li, G. B.; Lin, Z. S. Mn-Based tin sulfide Sr3MnSn2S8 with a wide band gap and strong nonlinear optical response. J. Mater. Chem. 2019, 7, 1146–1150.
Tang, Y. Z.; Yu, Y. M.; Xiong, J. B.; Tan, Y. H.; Wen, H. R. Unusual high-temperature reversible phase-transition behavior, structures, and dielectric-ferroelectric properties of two new crown ether clathrates. J. Am. Chem. Soc. 2015, 137, 13345–13351.
doi: 10.1021/jacs.5b08061
Chen, S. P.; Wang, C. F.; Zhou, H. T.; Tan, Y. H.; Wen, H. R.; Tang, Y. Z. Ferroelectric property, switchable dielectric, and excellent second harmonic generation response in a homochiral organic salt: l-prolinammonium 1-adamantane carboxylate. Cryst. Growth Des. 2018, 18, 6117–6122.
doi: 10.1021/acs.cgd.8b00994
Antorrena, G. .; Palacio, F.; Castro, M.; Pellaux, R.; Decurtins, S. Thermal and magnetic study of mixed-metal oxalate-bridged 2D magnets. J. Magn. Magn. Mater. 1999, 196, 581–583.
Hollingsworth, M. D. Crystal engineering: from structure to function. Science 2002, 295, 2410–2413.
doi: 10.1126/science.1070967
Galet, A.; Muñoz, M. C.; Gaspar, A. B.; Real, J. A. Architectural isomerism in the three-dimensional polymeric spin crossover system {Fe(pmd)2[Ag(CN)2]2}: synthesis, structure, magnetic properties, and calorimetric studies. Inorg. Chem. 2005, 24, 8749–8755.
Wernsdorfer, W.; Aliaga-Alcalde, N.; Hendrickson, D. N.; Christou, G. Exchange-biased quantum tunneling in a supramolecular dimer of single-molecule magnets. Nature 2002, 416, 406–409.
doi: 10.1038/416406a
Yang, E. C.; Zhao, H. K.; Ding, B.; Wang, X. G.; Zhao, X. J. Four novel three-dimensional triazole-based zinc(Ⅱ) metal-organic frameworks controlled by the spacers of dicarboxylate ligands: hydrothermal synthesis, crystal structure, and luminescence properties. Cryst. Growth Des. 2007, 7, 2009–2015.
doi: 10.1021/cg070356n
Hu, R. F.; Zhang, J.; Kang, Y.; Yao, Y. G. A fluorescent Zn-benzotriazole 2D polymer with (6, 3) topology. Inorg. Chem. Commun. 2005, 8, 828–830.
doi: 10.1016/j.inoche.2005.06.017
Chen, J. L.; Guo, Z. H.; Luo, Y. S.; Qiu, L.; He, L. H.; Liu, S. J.; Wen, H. R.; Wang, J. Y. Luminescent monometallic Cu(I) triphenylphosphine complexes based on methylated 5-trifluoromethyl-3-(2΄-pyridyl)-1, 2, 4-triazole ligands. New J. Chem. 2016, 40, 5325–5332.
doi: 10.1039/C5NJ03529E
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339−341.
doi: 10.1107/S0021889808042726
Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
Yu, Y. Z.; Chang, S. Y.; Han, X.; Chen, G. X.; Xuan, Y. W.; Wu, X. L.; Wang, F. Hydrothermal synthesis, crystal structure and luminescence property of a 2D manganese(Ⅱ) coordination polymer. Chin. J. Struct. Chem. 2019, 38, 147–154.
Chen, X.; Dai, S. L.; Cheng, Z. P.; Liang, L. B.; Han, S.; Liu, J. F.; Zhou, J. R.; Yang, L. M.; Ni, C. L. Syntheses, crystal structures, and magnetic properties of two hybrid materials self-assembly from tetra(isothiocyanate)cobalt(Ⅱ) anion and substituted benzyl triphenylphosphinium. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nan-Metal Chemistry 2012, 42, 987–993.
doi: 10.1080/15533174.2012.680114
Chen, H. J.; Zhang, L. Z.; Cai, Z. G.; Yang, G.; Chen, X. M. Organic-inorganic hybrid materials assembled through weak intermolecular interactions. synthesis, structures and non-linear optical properties of [4, 4΄-bipyH2][M(NCS)4] (M = Mn2+, Co2+ or Zn2+; 4, 4΄-bipy = 4, 4΄-bipyridine). J. Chem. Soc. Dalton Trans. 2000, 14, 2463–2466.
Bleiholder, C.; Werz, D. B.; Koppel, H.; Gleiter, R. Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? J. Am. Chem. Soc. 2006, 128, 2666–2674.
doi: 10.1021/ja056827g
Liu, X. M.; Lu, X. Z.; Fu. F.; Liu, B.; Hu, H. M.; Gao, Q. C.; Wang, J. W.; Xue, G. L. Synthesis and crystal structure of a novel charge transfer salt, (TMT-TTF)4[HPMo12O40]. J. Mol. Struct. 2005, 751, 17–21.
doi: 10.1016/j.molstruc.2005.05.003
Bleiholder, C.; Gleiter, R.; Werz. D. B.; Köppel, H. Theoretical investigations on heteronuclear chalcogen-chalcogen interactions: on the nature of weak bonds between chalcogen lefts. Inorg. Chem. 2007, 46, 2249–2260.
doi: 10.1021/ic062110y
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76.
doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
Chen, X.; Chen, W. Q.; Han, S.; Liu, J. F.; Zhou, J. R.; Yu, L. L.; Yang, L. M.; Ni, C. L.; Hu, X. L. Two hybrid materials self-assembly from tetra(isothiocyanate)cobalt(Ⅱ) dianion and substituted benzyl triphenylphosphinium. J. Mol. Struct. 2010, 984, 164–169.
doi: 10.1016/j.molstruc.2010.09.022
Ye, H. Q.; Xie, J. L.; Yu, J. Y.; Liu, Q. T.; Dai, S. L.; Huang, W. Q.; Zhou, J. R.; Yang, L. M.; Ni, C. L. Syntheses, crystal structures, luminescent properties of two new molecular solids with tetra(isothiocyanate)zinc(Ⅱ) and substituted benzyl triphenylphosphonium cations. Synthetic Metals. 2014, 197, 99–104.
doi: 10.1016/j.synthmet.2014.09.006
Yang, H. L.; Chen, F.; He, X.; Li, Y.; Zhang, X. Q. Synthesis, crystal structure, thermal stability, luminescence and magnetic property of a new Mn(Ⅱ) coordination polymer. Chin. J. Struct. Chem. 2018, 37, 1834–1841.
Zhou, H. T.; Yang, K.; Liu, Y.; Tang, Y. Z.; Wei, W. J.; Shu, Q.; Zhao, J. J.; Tan, Y. H. In situ [2 + 3] cycloaddition synthesis, crystal structures, strong SHG responses and fluorescence properties of three novel Zn coordination polymers. Chin. Chem. Lett. 2019, 31, 841–845.
Fan, X. W.; Liu, Y.; Tang, Y. Z.; Wei, W. J.; Zhang, J. C.; Luo, Z. Y.; Wang, C. F.; Tan, Y. H. High-temperature reversible phase-transition behavior, switchable dielectric and second harmonic generation response of two homochiral crown ether clathrates. Chem. Asian J. 2019, 14, 2203–2209.
doi: 10.1002/asia.201900512
Tang, Y. Z.; Zhou, M.; Huang, J.; Tan, Y. H.; Wu, J. S.; Wen, H. R. In situ synthesis and ferroelectric, SHG response, and luminescent properties of a novel 3D acentric zinc coordination polymer. Inorg. Chem. 2013, 52, 1679–1681.
doi: 10.1021/ic302411r
Gao, J. X.; Xiong, J. B.; Xu, Q.; Tan, Y. H.; Liu, Y.; Wen, H. R.; Tang, Y. Z. Supramolecular interactions induced chirality transmission, second harmonic generation responses, and photoluminescent property of a pair of enantiomers from in situ [2 + 3] cycloaddition synthesis. Cryst. Growth Des. 2016, 16, 1559–1564.
doi: 10.1021/acs.cgd.5b01684
Liu, Y.; Zhou, H. T.; Chen, S. P.; Tan, Y. H.; Wang, C. F.; Yang, C. S.; Wen, H. R.; Tang, Y. Z. reversible phase transition and switchable dielectric behaviors triggered by rotation and order-disorder motions of crowns. Dalton Trans. 2018, 47, 3851–3856.
doi: 10.1039/C8DT00003D
Yang, K.; Yang, C. S.; Dong, X. X.; Tan, Y. H.; Tang, Y. H.; Wei, W. J. Two rare-earth molecular ferroelectrics with high curie temperatures, large spontaneous polarization, switchable second harmonic generation effects, and strong photoluminescence. Chemistry-A European Journal 2020, 26, 5887–5892.
doi: 10.1002/chem.202000188
Yang, K.; Dong, X. X.; Xu, Q.; Tan, Y. H.; Tang, Y. Z. Nopinic acid is an unprecedented homochiral single-component organic ferroelectric. Appl. Mater. Today 2020, 20, 100687.
doi: 10.1016/j.apmt.2020.100687
Fan, H. L.; Lin, C. S.; Chen, K. C.; Peng, G.; Li, B. X.; Zhang, G.; Long, X. F.; Ye, N. (NH4)Bi2(IO3)2F5: an unusual ammonium-containing metal iodate fluoride showing strong second harmonic generation response and thermochromic behavior. Angew. Chem. Int. Ed. 2020, 59, 5268–5272.
doi: 10.1002/anie.201913287
Li, F. F.; Lu, L. P. A new Mn(Ⅱ) coordination polymer: synthesis, structure and magnetic property. Chin. J. Struct. Chem. 2019, 38, 1814–1822.
Shi, C.; Ma, J. J.; Jiang, J. Y.; Hua, M. M.; Xu, Q.; Yu, H.; Zhang, Y.; Ye, H. Y. Large piezoelectric response in hybrid rare-earth double perovskite relaxor ferroelectric. J. Am. Chem. Soc. 2020, 142, 9634–9641.
Savard, D.; Leznoff, D. B. Synthesis, structure and light scattering properties of tetraalkylammonium metal isothiocyanate salts. Dalton Trans. 2013, 42, 14982–14991.
doi: 10.1039/c3dt50974e
Li, Q.; Shi, P. P.; Ye, Q.; Wang, H. T.; Wu, D. H.; Ye, H. Y.; Fu, D. W.; Zhang, Y. A switchable molecular dielectric with two sequential reversible phase transitions: [(CH3)4P]4[Mn(SCN)6]. Inorg. Chem. 2015, 54, 10642−10647.
doi: 10.1021/acs.inorgchem.5b01437
Neumann, T.; Jess, I.; Näther, C. Crystal structures of bis[4-(dimethylamino)-pyridinium] tetrakis(thiocyanato-κN) manganate(Ⅱ) and tris[4-(dimethylamino)pyridinium] pentakis-(thiocyanato-κN)manganate(Ⅱ). Acta Cryst. 2018, E74, 15–20.
Wang, C. F.; Fan, X. W.; Tan, Y. H.; Wei, W. J.; Tang, Y. Z. High-temperature reversible phase transition and switchable dielectric and semiconductor properties in a 2D hybrid [(C3H12N2O)CdCl4]n. Eur. J. Inorg. Chem. 2019, 2907–2911.
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Yukun CHEN , Kexin FENG , Bolun ZHANG , Wentao SONG , Jianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Yan XU , Suzhi LI , Yan LI , Lushun FENG , Wentao SUN , Xinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Yinling HOU , Jia JI , Hong YU , Xiaoyun BIAN , Xiaofen GUAN , Jing QIU , Shuyi REN , Ming FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251
Hongren RONG , Gexiang GAO , Zhiwei LIU , Ke ZHOU , Lixin SU , Hao HUANG , Wenlong LIU , Qi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173