Citation: Gai-Mei LIU, Wei-Jia MA, Yan WANG, Yan YANG, Xin-Jian SONG. Computational Insights into the Excited State Intramolecular Proton Transfer Reactions in Ortho-hydroxylated Oxazolines[J]. Chinese Journal of Structural Chemistry, ;2021, 40(5): 540-548. doi: 10.14102/j.cnki.0254–5861.2011–2990 shu

Computational Insights into the Excited State Intramolecular Proton Transfer Reactions in Ortho-hydroxylated Oxazolines

  • Corresponding author: Yan WANG, hbmdwangy@aliyun.com
  • Received Date: 22 September 2020
    Accepted Date: 7 December 2020

    Fund Project: the National Natural Science Foundation of China 21963008the National Natural Science Foundation of China 21767010the Natural Science Foundation of Hubei Province 2018CFB650the Postgraduate Research and Innovation Plan Project of Hubei Minzu University MYK2020001

Figures(5)

  • Excited-state intramolecular proton transfer (ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4, 4-dimethyl-4, 5-dihydro-oxazol-2-yl)-phenol (DDOP), 4-(4, 4-dimethyl-4, 5-dihydro-oxazol-2-yl)-[1, 1΄-biphenyl]-3-ol (DDOP-C6H5) and 4-(4, 4-dimethyl-4, 5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile (DDOP-CN), have been systematically explored by density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Two stable configurations (enol and keto forms) are found in the ground states (S0) for all the compounds while the enol form only exists in the first excited states (S1) for the compound modified with electron donating group (-C6H5). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)−H(2)···N(3) in DDOP-C6H5 is strengthened in the S1 states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S1 states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S0 states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S1 states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C6H5 has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.
  • Hydrogen bond, as one of most fundamental weak interactions, has been an important research subjects for a long time due to its pervasiveness in biology, physics and chemistry fields[1-9]. It plays a critical role in the stabilization of polypeptides and proteins as well as the accumulation of crystals. Since the dynamics of excited hydrogen bonds were proposed, excited state hydrogen bond was widely found in many photophysical and photochemical processes, such as intramolecular charge transfer (ICT)[10, 11], photoinduced electron transfer (PET)[12, 13], fluorescence resonance energy transfer (FRET)[14], fluorescence quenching (FQ)[15, 16], and excited state intramolecular proton transfer (ESIPT)[17]. ESIPT reaction with hydrogen bonding should be one of the most important dynamic processes. Commonly, the molecules with ESIPT properties involve a heterocyclic ring which possesses proton donor (-OH or -NH2) and acceptor (-C=O or -N=) bridged by intramolecular hydrogen bond. In excited states, the proton would transfer from donor to acceptor rapidly. Previous work has shown that the ESIPT reaction was a process of four-level enol-keto-phototautomerism cycle[18-22], in which, dual fluorescence and a large stokes shift between absorption and tautomer emission could be observed[23, 24]. These remarkable natures make ESIPT molecules widely developed in a variety of applications, fluorescence sensors, laser dyes, UV-absorbers, molecular switches, fluorescent probes, bioimaging and OLEDs[25-31].

    ESIPT compounds include the derivatives of salicylate and aniline salicylate, flavonoids, benzoazoles and chalcolones[32]. Their photophysical properties could be modulated via introducing electron withdrawing and donating substituents, replacing heteroatom or changing the conjugation of structures[33]. Up to now, the effects of substituents have received intense attention both experimentally and theoretically. By introducing different substituents into the benzothiazolyl ring, Li et al. synthesized a series of novel 2-(2-hydroxyphenyl)benzothiazole (HBT) derivatives[34]. The emission intensity of these derivatives decreases with the enhancement of electron-withdrawing ability of the substituents and further demonstrated that electron-withdrawing substituents are not beneficial to the ESIPT reactions. In the experiment, Araki's team observed the blue- and red-shift of fluorescence emission peaks of 1-(2΄-hydroxyphenyl)-1H-imidazo[4, 5-c]pyridine (HPIP) derivatives would be tuned by introducing electron withdrawing and electron donating groups into the part of proton donor, respectively[35]. However, the introduction of such groups into the part of proton accepter led to opposite results. Tong and co-workers investigated the asymmetric substitution effect on the optical properties of keto-salicylaldehyde azine (KSA), which is valuable to design and develop novel KSA fluorescent probes[36]. Very recently, Nachtsheim and co-workers have developed an efficient method to synthesize oxazoline-directed ortho C(sp2)–H hydroxylation using molecular oxygen or air as green oxidants. The emission properties of selected phenols were investigated in dichloromethane, showing almost exclusive ESIPT keto-emission and exhibiting large Stokes shifts up to 12, 000 cm-1. Depending on the substitution pattern and the π-extension of luminophore, the emission wavelengths range from blue to green and red[37]. However, the deeper investigations into luminescent properties and the detailed ESIPT dynamical behaviors of ortho-hydroxylated oxazolines are deficient. In this study, the ESIPT reactions and spectral properties of three typical ortho-hydroxylated oxazolines, 2-(4, 4-dimethyl-4, 5-dihydrooxazol-2-yl)-phenol (DDOP), 4-(4, 4-dimethyl-4, 5-dihydrooxazol-2-yl)-[1, 1΄-biphenyl]-3-ol (DDOP-C6H5) and 4-(4, 4-dimethyl-4, 5-dihydrooxazol-2-yl)-3-hydroxy-ben-zoni-trile (DDOP-CN) (Fig. 1) were systemically investigated in dichloromethane solvent by using DFT and TD-DFT methods. The geometries for different electronic states were optimized and their bond lengths, bond angles and infrared vibrational spectra associated with the hydrogen bonds were analyzed. The frontier molecular orbitals (FMOs) and reduced density gradient (RDG) function were also discussed. To further reveal the ESIPT reactions, we constructed the S0 and S1 state potential energy curves.

    Figure 1

    Figure 1.  Optimized structures of the enol forms in the S0 state and keto forms in the S1 state for DDOP, DDOP-C6H5, and DDOP-CN

    In this work, all the quantum-chemical computations about the electronic structures of the ground states (S0) and the first excited states (S1) were obtained on the basis of DFT and TDDFT methods with B3LYP functional[38] in combination with 6-31+G(d) basis set by Gaussian 09 programs[39]. All the compounds were optimized with no constraints, and the most stable structures are given without imaginary frequencies. The absorption and emission properties were calculated based on the optimized S0 and S1 structures. Simultaneously, the experimental environment was simulated in view of the polarizable continuum model (PCM) incur-porating dichloromethane as the solvent[40-42]. In order to precisely clarify the ESIPT mechanism, the potential energy curves (PECs) in the S0 and S1 states were constructed by scanning the O(1)–H(2) bond length for a fixed step size from 0.8 to 2.2 Å at a step of 0.1 Å. In addition, the reduced density gradient (RDG) analysis was obtained by Multiwfn[43] and VMD[44] softwares.

    All geometry structures of the S0 and S1 states of three ortho-hydroxylated oxazolines (DDOP, DDOP-C6H5, and DDOP-CN) are optimized in dichloromethane solvent based on B3LYP/6-31+G(d) and TD-B3LYP/6-31+G(d) levels. The optimized enol forms in the S0 states and keto forms in the S1 states of DDOP, DDOP-C6H5 and DDOP-CN are shown in Fig. 1, and the major bond lengths and bond angles of each structure are provided in Table 1. The calculated results show that there are two stable forms (enol and keto) for all compounds in the S0 state, but no stable DDOP-enol and DDOP-CN-enol forms in the S1 states can be optimized. In other words, when we optimized the DDOP-enol(S1) and DDOP-CN-enol(S1) forms, the stable states turn out to be DDOP-keto (S1) and DDOP-CN-keto (S1) forms. It shows that the ESIPT reactions of DDOP and DDOP-CN molecules may be a non-barrier process, which will be discussed in detail in the section of potential energy curves. However, when introducing an electron donating group (-C6H5) at the para position of the phenyl ring, the corresponding molecule is DDOP-C6H5. There are two stable forms (enol and keto) in the S1 states, which would lead to an energy barrier in the ESIPT reaction. As a result, the ESIPT reaction of DDOP-C6H5 is more difficult than that of DDOP and DDOP-CN to some extent.

    Table 1

    Table 1.  Calculated Geometric Parameters (Bond Lengths in Å and Bond Angles in °) for DDOP, DDOP-C6H5, and DDOP-CN in S0 and S1 States Based on the DFT and TD-DFT Methods, respectively
    DownLoad: CSV
    DDOP-enol DDOP-keto DDOP-C6H5-enol DDOP-C6H5-keto DDOP-CN-enol DDOP-CN-keto
    State S0 S1 S0 S1 S0 S1 S0 S1 S0 S1 S0 S1
    O(1)−H(2) 1.000 - 1.820 2.018 1.000 1.010 1.819 2.007 1.001 - 1.826 2.011
    H(2)−N(3) 1.750 - 1.032 1.025 1.750 1.710 1.032 1.023 1.742 - 1.032 1.022
    O(1)−H(2)···N(3) 146.7 - 131.5 127.0 146.8 148.8 131.5 126.6 146.5 - 131.1 125.2

    In view of the DDOP-C6H5-enol form, it can be seen that DDOP-C6H5 changed from S0(enol) to S1(enol) upon photoexcitation, O(1)−H(2) bond length increased from 1.000 to 1.010 Å, and the H(2)···N(3) bond length reduced significantly from 1.750 to 1.710 Å. In addition, the O(1)–H(2)···N(3) bond angle in the S0 state (146.8°) increased significantly in the S1 state (148.8°). The lengthening of the O(1)–H(2) bond length, the shortening of the H(2)···N(3) bond length and the increase of O(1)–H(2)···N(3) bond angle suggest that the hydrogen-bond O(1)–H(2)···N(3) is reinforced in the S1 state, which can facilitate the ESIPT reaction. As to the keto forms, in the S1 state, the O(1)···H(2) bond lengths of DDOP, DDOP-C6H5, and DDOP-CN are 2.018, 2.007 and 2.011 Å, and the H(2)–N(3) bond lengths are 1.025, 1.025 and 1.022 Å, respectively, which confirm that the H(2) atoms have migrated from O(1) atoms to N(3) atoms and form new covalent bonds with N(3) atoms. In addition, the O(1)···H(2) bond lengths of DDOP, DDOP-C6H5, and DDOP-CN are decreased to 1.820, 1.819 and 1.826 Å in the S0 states. And the H(2)–N(3) bond lengths are increased to 1.320 Å in the S0 states. Meanwhile, the bond angles O(1)···H(2)–N(3) are enlarged from 127.0°, 126.6° and 125.2° in the S1 states to 131.5°, 131.5° and 131.1° in the S1 states. It can be concluded that the hydrogen bonds O(1)···H(2)–N(3) are more stable in the S0 states. That is, the keto forms of the S1 states are likely to undergo radiative transition to the S0 states, forming stable intramolecular hydrogen bond O(1)···H(2)–N(3) after the ESIPT process.

    As is well known, an effective signature for the evidence of excited state hydrogen bond strengthening or weakening can be estimated by the peak red-shift or blue-shift of the stretching vibrations of O–H moiety involved in hydrogen bond[45-48]. In this work, the infrared spectra were performed in both S0 and S1 states, and the infrared vibrational spectra linking the hydrogen bond in dichloromethane solvent are shown in Fig. 2. As can be seen, the S1 states vibration frequencies of H(2)–N(3) group in DDOP-keto, DDOP-C6H5-keto, and DDOP-CN-keto are 3421, 3454, and 3480 cm-1, decreased to 3297, 3295, and 3130 cm-1 in the S0 states, respectively. The 124, 159, and 350 cm-1 blue-shifts of H(2)–N(3) stretching frequency obviously reveal the O(1)–H(2)···N(3) hydrogen bonds of these three compounds are strengthened in the S0 states. For DDOP-C6H5-enol, the computed O(1)–H(2) stretching vibrational frequency is located at 3160 cm-1 in the S0 state, whereas 2934 cm-1 in the S1 state. A significant red-shift of 226 cm-1 for the O(1)–H(2) stretching band indicates that the O(1)–H(2)···N(3) hydrogen bond is strengthened in the S1 state. Therefore, the ESIPT reaction of DDOP-C6H5 might be promoted by the strengthened hydrogen bond, which is in agreement with the result based on analyzing bond lengths and bond angles.

    Figure 2

    Figure 2.  Calculated IR vibrational spectra for H(2)−N(3) stretching bands of (A) DDOP-keto, (B) DDOP-C6H5-keto, (C) DDOP-CN-keto and for O(1)−H(2) vibrational mode of (D) DDOP-C6H5-enol

    The calculated Stokes shifts, absorption and emission peaks, oscillator strengths (f), and the corresponding compositions based TD-B3LYP/6-31+G(d) level are reported in Table 2, together with the available experimental values[37]. It should be noted that the calculated absorption peak of DDOP, DDOP-C6H5, and DDOP-CN are 287, 306 and 311 nm, respectively, which are in good agreements with the corresponding experimental data (303, 316 and 326 nm)[37]. The calculated fluorescence emission peaks based on the optimized S1 states of DDOP-keto, DDOP-C6H5-keto, and DDOP-CN-keto are located at 450, 447 and 446 nm, which also match well with the experimental ESIPT-based emission values (470, 472 and 471 nm). In addition, all three compounds show large Stokes shifts, the calculated Stokes shifts of DDOP, DDOP-C6H5, and DDOP-CN are 12621 cm-1, 10308, and 9733, which are well consistent with the experimental values (11730, 10460, and 9440 cm-1). That is to say, the absence of the emission of the enol form would confirm that the ESIPT reactions are instantaneously in the S1 states. In a word, the experimental absorption and emission spectra are well reproduced based on our calculated results, which demonstrate that the theoretical level is reasonable and effective.

    Table 2

    Table 2.  Calculated Absorption and Emission Peaks (nm), Oscillator Strengths (f), and the Corresponding Compositions (CI) for DDOP, DDOP-C6H5, and DDOP-CN in Dichloromethane Solvent, along with the Experimental Data
    DownLoad: CSV
    Compound Absorption Emission Stokes shift (cm-1) Stokes shiftexp(cm-1)
    Composition (CI%) λ(nm) f λexp(nm) Composition (CI%) λ(nm) f λexp(nm)
    DDOP HOMO→LUMO(92%) 287 0.1567 303 HOMO→LUMO(97%) 450 0.1328 470 12621 11730
    DDOP-C6H5 HOMO→LUMO(90%) 306 0.4672 316 HOMO→LUMO(98%) 447 0.1345 472 10308 10460
    DDOP-CN HOMO→LUMO(93%) 311 0.2072 326 HOMO→LUMO(97%) 446 0.1598 471 9733 9440

    In addition, it is well known that the nature of the excited state can be directly exhibited by analyzing the frontier molecular orbitals (FMOs). The highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) are displayed in Fig. 3. The S0S1 transition is mainly relative to the HOMO→LUMO for DDOP, DDOP-C6H5, and DDOP-CN molecules, in which their orbital transition contribution rates are 92%, 90% and 93%, as shown in Table 2. It can be distinctly found that the excitation processes have significant characteristic ππ* transitions from the HOMO to the LUMO for these compounds. As shown in Fig. 3, the electron density distributions of HOMO and LUMO are different. Herein, we mainly focus on the differences about the moiety involved in intramolecular H-bond O(1)–H(2)···N(3). The HOMO→LUMO transition make the electron density of O(1) atoms decrease and the electron densities of N(3) atom increase. As a result, the intramolecular hydrogen bond O(1)–H(2)···N(3) is strengthened, which may further trigger the proton transfer.

    Figure 3

    Figure 3.  HOMO and LUMO of DDOP, DDOP-C6H5, and DDOP-CN based on the calculated level of TD-DFT/B3LYP/6-31+g(d)

    To further elucidate the mechanism of ESIPT reactions in the ortho-hydroxylated oxazolines, the S0 and S1 states potential energy curves of DDOP, DDOP-C6H5 and DDOP-CN have been scanned along the proton transfer pathways based on constrained optimizations at the fixed O(1)–H(2) distance from 0.8 to 2.2 Å in a step of 0.1 Å, and the potential energy curves are shown in Fig. 4. The potential energy curves show two minimum energy points in the S0 state, and the potential barriers are 6.26, 6.24 and 5.58 kcal·mol-1 for DDOP, DDOP-C6H5 and DDOP-CN, respectively. It indicates that the stable enol forms can barely convert into the keto ones because of their high energy barriers for these three compounds. In comparison, the energy barriers for the RGSIPT processes are 3.46, 3.51 and 3.91 kcal·mol-1 for DDOP, DDOP-C6H5 and DDOP-CN, respectively, which are significantly lower than that of the GSIPT processes. That is to say, the RGSIPT processes are easier to occur than that of the GSIPT processes to some extent.

    Figure 4

    Figure 4.  Potential energy curves of the S0 and S1 states for DDOP, DDOP-C6H5, and DDOP-CN along with the proton transfer coordinate

    For the S1 states, there is only minimum energy point for DDOP and DDOP-CN, and the ESIPT reactions are assumed to be a barrierless process, which are in accordance with the optimized geometries and explain why the optimized geometries of DDOP-enol (S1) and DDOP-CN-enol (S1) are not obtained. It means that the proton transfer processes are spontaneously in the S1 state. In contrast to DDOP and DDOP-CN, there are two minimum energy points and a small barrier of 1.26 kcal·mol-1 along the ESIPT process for DDOP-C6H5, indicating that the DDOP-C6H5-enol can be easily isomerized into DDOP-C6H5-keto (minimum energy point) by crossing a low barrier in the S1 state. Hence, it could conceivably be concluded that the donating group (-C6H5) at the para position of the phenyl ring hinders the ESIPT reactions. Furthermore, the reverse proton transfer barrier of DDOP-C6H5 is relatively higher (14.09 kcal·mol-1), and the DDOP-C6H5-keto can barely convert into DDOP-C6H5-enol. As a result, there is no enol form emission due to the high reverse proton transfer barrier and the ultrafast ESIPT process following the excitation, which is in accordance with the experimental emission spectra[37].

    To visualize the hydrogen bonding interactions in the real space, we calculated the reduced density gradient (RDG) scatter plots and the corresponding isosurfaces in the S0 state. As reported by previous work[49], the positive values of sign(λ2)ρ, the values of sign(λ2)ρ close to zero and the negative sign(λ2)ρ represent the steric effect, Van der Waals (VDW) interactions and hydrogen bonding interactions, respectively. As shown in Fig. 5, the spikes locates around –0.01 a.u. in the S0 state. This phenomenon once again illustrates the intramolecular hydrogen bond O(1)–H(2)···N(3) for DDOP and its derivatives.

    Figure 5

    Figure 5.  RDG scatter plots and isosurfaces for DDOP, DDOP-C6H5, and DDOP-CN in S0 state

    In this present work, DFT and TD-DFT calculations with B3LYP functional in combination with the 6-31+G(d) basis set are performed to explore the ESIPT mechanisms of three ortho-hydroxylated oxazolines (DDOP, DDOP-C6H5, and DDOP-CN), and their absorption and fluorescence spectra are simulated and their potential energy curves involving the S0 and S1 states are constructed. Via analyzing the bond lengths, bond angles, and infrared vibrational spectra of these three stable structures, we confirm that the intramolecular hydrogen bond O(1)−H(2)···N(3) should be strengthened in the S1 state. All three compounds show large Stokes shifts of ~10000 cm-1 due to the absence of the emission of enol form. Our calculated results reproduce well the experimental absorption and emission spectra and the first electronic transitions of all three compounds have significant characteristic ππ* nature. The HOMO→LUMO transition results in the redistribution of charge and would facilitate the ESIPT reaction. In addition, the constructed potential energy curves of both S0 and S1 states further confirm that the proton transfer reactions can take place in the S1 state easier than in the S0 state. More importantly, the S1 proton transfer potential energy curves of DDOP and DDOP-CN have been determined to be barrierless, indicating a fast dynamics mechanism, but there is a small barrier for DDOP-C6H5, which further verifies that the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.


    1. [1]

      Chen, M. J.; Runge, T.; Wang, L. L.; Li, R.; Feng, J.; Shu, X. L.; Shi, Q. S. Hydrogen bonding impact on chitosan plasticization. Carbohyd. Polym. 2018, 200, 115−121.  doi: 10.1016/j.carbpol.2018.07.062

    2. [2]

      Zuo, H. Y.; Christopher, J. R.; Wong, T. H. F.; Tong, K. Y.; Chan, J.; Au-Yeung, H. Y. Activity-based sensing of ascorbate by using copper-mediated oxidative bond cleavage. Chem. Eur. J. 2020, 26, 1−8.  doi: 10.1002/chem.201905547

    3. [3]

      Dalchand, N.; Cui, Q.; Geiger, F. M. Electrostatics, hydrogen bonding, and molecular structure at polycation and peptide: lipid membrane interfaces. ACS Appl. Mater. Inter. 2020, 12, 2149−2158.

    4. [4]

      Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.; Lippard, S. J. CF2H, a hydrogen bond donor. J. Am. Chem. Soc. 2017, 139, 9325−9332.  doi: 10.1021/jacs.7b04457

    5. [5]

      Yang, Z. G.; Cao, J. F.; He, Y. X.; Yang, J. H.; Kim, T.; Peng, X. J.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563−4601.  doi: 10.1039/C4CS00051J

    6. [6]

      Brovarets', O. O.; Yurenko, Y. P.; Hovorun, D. M. Intermolecular СН···О/N Н-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J. Biomol. Struct. Dyn. 2014, 32, 993−1022.  doi: 10.1080/07391102.2013.799439

    7. [7]

      Liang, S. Z.; Hammond, G. B.; Xu, B. Hydrogen bonding: regulator for nucleophilic fluorination. Chem. Eur. J. 2017, 23, 17850−17861.  doi: 10.1002/chem.201702664

    8. [8]

      Crabtree, R. H. Hypervalency, secondary bonding and hydrogen bonding: siblings under the skin. Chem. Soc. Rev. 2017, 46, 1720−1729.  doi: 10.1039/C6CS00688D

    9. [9]

      Robertson, C. C.; Wright, J. S.; Carrington, E. J.; Perutz, R. N.; Hunter, C. A.; Brammer, L. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem. Sci. 2017, 8, 5392−5398.  doi: 10.1039/C7SC01801K

    10. [10]

      Wen, Z. C.; Jiang, Y. B. Ratiometric dual fluorescent receptor for anions under intramolecular charge transfer mechanism. J. Cheminform. 2005, 36, 11109−11115.

    11. [11]

      Kumari, N.; Jha, S.; Bhattacharya, S. Colorimetric probes on anthraimidazolediones for selective sensing of fluoride and cyanide ion via intramolecular charge transfer. J. Organomet. Chem. 2011, 76, 8215−8222.

    12. [12]

      Khrenova, M. G.; Nemukhin, A. V.; Domratcheva, T. Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors. J. Phys. Chem. B 2013, 117, 2369−2377.  doi: 10.1021/jp312775x

    13. [13]

      Hankache, J.; Hanss, D.; Wenger, O. S. Hydrogen-bond strengthening upon photoinduced electron transfer in ruthenium-anthraquinone dyads interacting with hexafluoroisopropanol or water. J. Phys. Chem. A 2012, 116, 3347−3358.  doi: 10.1021/jp300090n

    14. [14]

      Xu, W. J.; Liu, S. J.; Sun, H. B.; Zhao, X. Y.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T. C.; Zhou, L. X.; Huang, W. RET-based probe for fluoride based on a phosphorescent iridium(III) complex containing triarylboron groups. J. Mater. Chem. 2011, 21, 7572−7581.  doi: 10.1039/c1jm00071c

    15. [15]

      Barman, N.; Singha, D.; Sahu, K. Fluorescence quenching of hydrogen-bonded coumarin 102-phenol complex: effect of excited-state hydrogen bonding strength. J. Phys. Chem. A 2013, 117, 3945−3953.  doi: 10.1021/jp4019298

    16. [16]

      Chang, D. H.; Ou, C. L.; Hsu, H. Y.; Huang, G. J.; Kao, C. Y.; Liu, Y. H.; Peng, S. M.; Diau, E. W. G.; Yang, J. S. Cooperativity and site-selectivity of intramolecular hydrogen bonds on the fluorescence quenching of modified GFP chromophores. J. Org. Chem. 2015, 80, 12431−12443.  doi: 10.1021/acs.joc.5b02303

    17. [17]

      Cao, H.; Liu, G. M.; Cai, J.; Wang, Y. Excited-state intramolecular proton transfer mechanisms of thiazole-based chemosensor: a TD-DFT study. Chin. J. Struct. Chem. 2020, 11, 1993−1940.

    18. [18]

      Yang, D. P.; Yang, G.; Jia, M.; Song, X. Y.; Zhang, Q. L. Comparing the substituent effects about ESIPT process for HBO derivatives. Comput. Theor. Chem. 2018, 1131, 51−56.  doi: 10.1016/j.comptc.2018.03.016

    19. [19]

      Li, Y. Q.; Ma, Y. Z.; Yang, Y. F.; Shi, W.; Lan, R. F.; Guo, Q. Effects of different substituents of methyl 5-R-salicylates on the excited state intramolecular proton transfer process. Phys. Chem. Chem. Phys. 2018, 20, 4208−4215.  doi: 10.1039/C7CP06987A

    20. [20]

      Berbigier, J. F.; Duarte, L. G. T. A.; Zawacki, M. F.; Araújo, B. B.; Santos, C. M.; Atvars, T. D. Z.; Gonçalves, P. F. B.; Petzhold, C. L.; Rodembusch, F. S. ATRP initiators based on proton transfer benzazole dyes: solid state photoactive polymer with very large stokes shift. ACS Appl. Polym. Mater. 2020, 2, 1406−1416.  doi: 10.1021/acsapm.0c00102

    21. [21]

      Padalkar, V. S.; Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2015, 45, 169−202.

    22. [22]

      Kwon, J. E.; Park, S. Y. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv. Mater. 2011, 23, 3615−3642.  doi: 10.1002/adma.201102046

    23. [23]

      Sedgwick, A. C.; Wu, L. L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842−8880.  doi: 10.1039/C8CS00185E

    24. [24]

      Zhang, Q. L.; Zhao, Z. J.; Cheng, S. B.; Yang, G.; Zhang, T. J.; Jia, M.; Song, X. Y. A theoretical investigation on the excited state intramolecular single or double proton transfer mechanism of a salicyladazine system. J. Chin. Chem. Soc. 2019, 66, 1416−1421.  doi: 10.1002/jccs.201800490

    25. [25]

      Zhang, Y. W.; Sun, Q. K.; Li, Z. P.; Zhi, Y. F.; Li, H.; Li, Z. P.; Xia, H.; Liu, X. M. Light-emitting conjugated microporous polymers based on an excited-state intramolecular proton transfer strategy and selective switch-off sensing of anions. Mater. Chem. Front. 2020, 4, 3040−3046.  doi: 10.1039/D0QM00384K

    26. [26]

      Sugiyama, K.; Tsuchiya, T.; Kikuchi, A.; Yagi, M. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate. Photochem. Photobiol. Sci. 2015, 14, 1651−1659.  doi: 10.1039/c5pp00138b

    27. [27]

      Kanamori, D.; Okamura, T. A.; Yamamoto, H.; Ueyama, N. Linear-to-turn conformational switching induced by deprotonation of unsymmetrically linked phenolic oligoamides. Angew. Chem. Int. Ed. 2005, 44, 969−972.  doi: 10.1002/anie.200461842

    28. [28]

      Yan, C. C.; Wang, X. D.; Liao, L. S. Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics. 2020, 7, 1355−1366.  doi: 10.1021/acsphotonics.0c00407

    29. [29]

      Zhao, Y.; Ding, Y.; Yang, Y.; Shi, W.; Li, Y. Fluorescence deactivation mechanism for a new probe detecting phosgene based on ESIPT and TICT. Org. Chem. Front. 2019, 6, 597−602.  doi: 10.1039/C8QO01320A

    30. [30]

      Kaur, I.; Sharma, V.; Mobin, S. M.; Khajuria, A.; Ohri, P.; Kaur, P.; Singh, K. Aggregation tailored emission of a benzothiazole based derivative: photostable turn on bioimaging. RSC Adv. 2019, 9, 39970−39975.  doi: 10.1039/C9RA08149F

    31. [31]

      Duarte, L. T.; Germino, J. C.; Berbigier, J. F.; Barboza, C. A.; Faleiros, M. M.; Simoni, D. A.; Galante, M. T.; Holanda, M. S.; Rodembusch, F. S.; Atvars, T. D. Z. White-light generation from all-solution-processed OLEDs using a benzothiazole-salophen derivative reactive to the ESIPT process. Phys. Chem. Chem. Phys. 2019, 21, 1172−1182.  doi: 10.1039/C8CP06485G

    32. [32]

      Watwiangkham, A.; Roongcharoen, T.; Kungwan, N. Effect of nitrogen substitution and conjugation on photophysical properties and excited state intramolecular proton transfer reactions of methyl salicylate derivatives. J. Photoch. Photobio. A Chem. 2019, 389, 112267−11.

    33. [33]

      Berbigier, J. F.; Duarte, L. T.; Zawacki, M.; Araújo, B.; Santos, C.; Atvars, T. Z.; Goncalves, P. F. B.; Petzhold, C. L.; Rodembusch, F. S. ATRP initiators based on proton transfer benzazole dyes: solid state photoactive polymer with very large stokes shift. ACS Appl. Polym. Mater. 2020, 2, 1406−1416.  doi: 10.1021/acsapm.0c00102

    34. [34]

      Wang, R. J.; Liu, D.; Xu, K.; Li, J. Y. Substituent and solvent effects on excited state intramolecular proton transfer in novel 2-(2-hydroxyphenyl) benzothiazole derivatives. J. Photochem. Photobio. A Chem. 2009, 205, 61−69.  doi: 10.1016/j.jphotochem.2009.03.025

    35. [35]

      Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. Tuning of excited-state intramolecular proton transfer (ESIPT) fluorescence of imidazo[1, 2 a]pyridine in rigid matrices by substitution effect. J. Org. Chem. 2013, 78, 2482−2489.  doi: 10.1021/jo302711t

    36. [36]

      Tong, J. L.; Zhang, K. X.; Wang, J.; Li, H.; Zhou, F.; Wang, Z. M.; Zhang, X. J.; Tang, B. Z. Keto-salicylaldehyde azine: asymmetric substituent effect on their optical properties via electron-donating group insertion. J. Mater. Chem. C 2020, 8, 996−1001.  doi: 10.1039/C9TC05822B

    37. [37]

      Göbel, D.; Clamor, N.; Lork, E.; Nachtsheim, B. J. Aerobic C(sp2)-H hydroxylations of 2-aryloxazolines: fast access to excited-state intramolecular proton transfer (ESIPT)-based luminophores. Org. Lett. 2019, 21, 5373−5377.  doi: 10.1021/acs.orglett.9b01350

    38. [38]

      Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.  doi: 10.1063/1.464913

    39. [39]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT 2009.

    40. [40]

      Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B 1997, 101, 10506−10517.  doi: 10.1021/jp971959k

    41. [41]

      Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16, 1449−1458.  doi: 10.1002/jcc.540161202

    42. [42]

      Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117−129.  doi: 10.1016/0301-0104(81)85090-2

    43. [43]

      Tian, L.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    44. [44]

      Humphery, W.; Dalke, A.; Shulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33−38.  doi: 10.1016/0263-7855(96)00018-5

    45. [45]

      Zhao, G. J.; Han, K. L. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 2012, 45, 404−413.  doi: 10.1021/ar200135h

    46. [46]

      Zhao, G. J.; Han, K. L. pH-Controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction. Phys. Chem. Chem. Phys. 2010, 12, 8914−8918.  doi: 10.1039/b924549a

    47. [47]

      Zhao, G. J.; Han, K. L. Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study. J. Phys. Chem. A 2007, 111, 2469−2474.  doi: 10.1021/jp068420j

    48. [48]

      Zhao, G. J.; Han, K. L. Time-dependent density functional theory study on hydrogen-bonded intramolecular charge-transfer excited state of 4-dimethylamino-benzonitrile in methanol. J. Comput. Chem. 2008, 29, 2010−2017.  doi: 10.1002/jcc.20957

    49. [49]

      Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Carcis, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498−6506.  doi: 10.1021/ja100936w

    1. [1]

      Chen, M. J.; Runge, T.; Wang, L. L.; Li, R.; Feng, J.; Shu, X. L.; Shi, Q. S. Hydrogen bonding impact on chitosan plasticization. Carbohyd. Polym. 2018, 200, 115−121.  doi: 10.1016/j.carbpol.2018.07.062

    2. [2]

      Zuo, H. Y.; Christopher, J. R.; Wong, T. H. F.; Tong, K. Y.; Chan, J.; Au-Yeung, H. Y. Activity-based sensing of ascorbate by using copper-mediated oxidative bond cleavage. Chem. Eur. J. 2020, 26, 1−8.  doi: 10.1002/chem.201905547

    3. [3]

      Dalchand, N.; Cui, Q.; Geiger, F. M. Electrostatics, hydrogen bonding, and molecular structure at polycation and peptide: lipid membrane interfaces. ACS Appl. Mater. Inter. 2020, 12, 2149−2158.

    4. [4]

      Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.; Lippard, S. J. CF2H, a hydrogen bond donor. J. Am. Chem. Soc. 2017, 139, 9325−9332.  doi: 10.1021/jacs.7b04457

    5. [5]

      Yang, Z. G.; Cao, J. F.; He, Y. X.; Yang, J. H.; Kim, T.; Peng, X. J.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563−4601.  doi: 10.1039/C4CS00051J

    6. [6]

      Brovarets', O. O.; Yurenko, Y. P.; Hovorun, D. M. Intermolecular СН···О/N Н-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J. Biomol. Struct. Dyn. 2014, 32, 993−1022.  doi: 10.1080/07391102.2013.799439

    7. [7]

      Liang, S. Z.; Hammond, G. B.; Xu, B. Hydrogen bonding: regulator for nucleophilic fluorination. Chem. Eur. J. 2017, 23, 17850−17861.  doi: 10.1002/chem.201702664

    8. [8]

      Crabtree, R. H. Hypervalency, secondary bonding and hydrogen bonding: siblings under the skin. Chem. Soc. Rev. 2017, 46, 1720−1729.  doi: 10.1039/C6CS00688D

    9. [9]

      Robertson, C. C.; Wright, J. S.; Carrington, E. J.; Perutz, R. N.; Hunter, C. A.; Brammer, L. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem. Sci. 2017, 8, 5392−5398.  doi: 10.1039/C7SC01801K

    10. [10]

      Wen, Z. C.; Jiang, Y. B. Ratiometric dual fluorescent receptor for anions under intramolecular charge transfer mechanism. J. Cheminform. 2005, 36, 11109−11115.

    11. [11]

      Kumari, N.; Jha, S.; Bhattacharya, S. Colorimetric probes on anthraimidazolediones for selective sensing of fluoride and cyanide ion via intramolecular charge transfer. J. Organomet. Chem. 2011, 76, 8215−8222.

    12. [12]

      Khrenova, M. G.; Nemukhin, A. V.; Domratcheva, T. Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors. J. Phys. Chem. B 2013, 117, 2369−2377.  doi: 10.1021/jp312775x

    13. [13]

      Hankache, J.; Hanss, D.; Wenger, O. S. Hydrogen-bond strengthening upon photoinduced electron transfer in ruthenium-anthraquinone dyads interacting with hexafluoroisopropanol or water. J. Phys. Chem. A 2012, 116, 3347−3358.  doi: 10.1021/jp300090n

    14. [14]

      Xu, W. J.; Liu, S. J.; Sun, H. B.; Zhao, X. Y.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T. C.; Zhou, L. X.; Huang, W. RET-based probe for fluoride based on a phosphorescent iridium(III) complex containing triarylboron groups. J. Mater. Chem. 2011, 21, 7572−7581.  doi: 10.1039/c1jm00071c

    15. [15]

      Barman, N.; Singha, D.; Sahu, K. Fluorescence quenching of hydrogen-bonded coumarin 102-phenol complex: effect of excited-state hydrogen bonding strength. J. Phys. Chem. A 2013, 117, 3945−3953.  doi: 10.1021/jp4019298

    16. [16]

      Chang, D. H.; Ou, C. L.; Hsu, H. Y.; Huang, G. J.; Kao, C. Y.; Liu, Y. H.; Peng, S. M.; Diau, E. W. G.; Yang, J. S. Cooperativity and site-selectivity of intramolecular hydrogen bonds on the fluorescence quenching of modified GFP chromophores. J. Org. Chem. 2015, 80, 12431−12443.  doi: 10.1021/acs.joc.5b02303

    17. [17]

      Cao, H.; Liu, G. M.; Cai, J.; Wang, Y. Excited-state intramolecular proton transfer mechanisms of thiazole-based chemosensor: a TD-DFT study. Chin. J. Struct. Chem. 2020, 11, 1993−1940.

    18. [18]

      Yang, D. P.; Yang, G.; Jia, M.; Song, X. Y.; Zhang, Q. L. Comparing the substituent effects about ESIPT process for HBO derivatives. Comput. Theor. Chem. 2018, 1131, 51−56.  doi: 10.1016/j.comptc.2018.03.016

    19. [19]

      Li, Y. Q.; Ma, Y. Z.; Yang, Y. F.; Shi, W.; Lan, R. F.; Guo, Q. Effects of different substituents of methyl 5-R-salicylates on the excited state intramolecular proton transfer process. Phys. Chem. Chem. Phys. 2018, 20, 4208−4215.  doi: 10.1039/C7CP06987A

    20. [20]

      Berbigier, J. F.; Duarte, L. G. T. A.; Zawacki, M. F.; Araújo, B. B.; Santos, C. M.; Atvars, T. D. Z.; Gonçalves, P. F. B.; Petzhold, C. L.; Rodembusch, F. S. ATRP initiators based on proton transfer benzazole dyes: solid state photoactive polymer with very large stokes shift. ACS Appl. Polym. Mater. 2020, 2, 1406−1416.  doi: 10.1021/acsapm.0c00102

    21. [21]

      Padalkar, V. S.; Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2015, 45, 169−202.

    22. [22]

      Kwon, J. E.; Park, S. Y. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv. Mater. 2011, 23, 3615−3642.  doi: 10.1002/adma.201102046

    23. [23]

      Sedgwick, A. C.; Wu, L. L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842−8880.  doi: 10.1039/C8CS00185E

    24. [24]

      Zhang, Q. L.; Zhao, Z. J.; Cheng, S. B.; Yang, G.; Zhang, T. J.; Jia, M.; Song, X. Y. A theoretical investigation on the excited state intramolecular single or double proton transfer mechanism of a salicyladazine system. J. Chin. Chem. Soc. 2019, 66, 1416−1421.  doi: 10.1002/jccs.201800490

    25. [25]

      Zhang, Y. W.; Sun, Q. K.; Li, Z. P.; Zhi, Y. F.; Li, H.; Li, Z. P.; Xia, H.; Liu, X. M. Light-emitting conjugated microporous polymers based on an excited-state intramolecular proton transfer strategy and selective switch-off sensing of anions. Mater. Chem. Front. 2020, 4, 3040−3046.  doi: 10.1039/D0QM00384K

    26. [26]

      Sugiyama, K.; Tsuchiya, T.; Kikuchi, A.; Yagi, M. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate. Photochem. Photobiol. Sci. 2015, 14, 1651−1659.  doi: 10.1039/c5pp00138b

    27. [27]

      Kanamori, D.; Okamura, T. A.; Yamamoto, H.; Ueyama, N. Linear-to-turn conformational switching induced by deprotonation of unsymmetrically linked phenolic oligoamides. Angew. Chem. Int. Ed. 2005, 44, 969−972.  doi: 10.1002/anie.200461842

    28. [28]

      Yan, C. C.; Wang, X. D.; Liao, L. S. Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics. 2020, 7, 1355−1366.  doi: 10.1021/acsphotonics.0c00407

    29. [29]

      Zhao, Y.; Ding, Y.; Yang, Y.; Shi, W.; Li, Y. Fluorescence deactivation mechanism for a new probe detecting phosgene based on ESIPT and TICT. Org. Chem. Front. 2019, 6, 597−602.  doi: 10.1039/C8QO01320A

    30. [30]

      Kaur, I.; Sharma, V.; Mobin, S. M.; Khajuria, A.; Ohri, P.; Kaur, P.; Singh, K. Aggregation tailored emission of a benzothiazole based derivative: photostable turn on bioimaging. RSC Adv. 2019, 9, 39970−39975.  doi: 10.1039/C9RA08149F

    31. [31]

      Duarte, L. T.; Germino, J. C.; Berbigier, J. F.; Barboza, C. A.; Faleiros, M. M.; Simoni, D. A.; Galante, M. T.; Holanda, M. S.; Rodembusch, F. S.; Atvars, T. D. Z. White-light generation from all-solution-processed OLEDs using a benzothiazole-salophen derivative reactive to the ESIPT process. Phys. Chem. Chem. Phys. 2019, 21, 1172−1182.  doi: 10.1039/C8CP06485G

    32. [32]

      Watwiangkham, A.; Roongcharoen, T.; Kungwan, N. Effect of nitrogen substitution and conjugation on photophysical properties and excited state intramolecular proton transfer reactions of methyl salicylate derivatives. J. Photoch. Photobio. A Chem. 2019, 389, 112267−11.

    33. [33]

      Berbigier, J. F.; Duarte, L. T.; Zawacki, M.; Araújo, B.; Santos, C.; Atvars, T. Z.; Goncalves, P. F. B.; Petzhold, C. L.; Rodembusch, F. S. ATRP initiators based on proton transfer benzazole dyes: solid state photoactive polymer with very large stokes shift. ACS Appl. Polym. Mater. 2020, 2, 1406−1416.  doi: 10.1021/acsapm.0c00102

    34. [34]

      Wang, R. J.; Liu, D.; Xu, K.; Li, J. Y. Substituent and solvent effects on excited state intramolecular proton transfer in novel 2-(2-hydroxyphenyl) benzothiazole derivatives. J. Photochem. Photobio. A Chem. 2009, 205, 61−69.  doi: 10.1016/j.jphotochem.2009.03.025

    35. [35]

      Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. Tuning of excited-state intramolecular proton transfer (ESIPT) fluorescence of imidazo[1, 2 a]pyridine in rigid matrices by substitution effect. J. Org. Chem. 2013, 78, 2482−2489.  doi: 10.1021/jo302711t

    36. [36]

      Tong, J. L.; Zhang, K. X.; Wang, J.; Li, H.; Zhou, F.; Wang, Z. M.; Zhang, X. J.; Tang, B. Z. Keto-salicylaldehyde azine: asymmetric substituent effect on their optical properties via electron-donating group insertion. J. Mater. Chem. C 2020, 8, 996−1001.  doi: 10.1039/C9TC05822B

    37. [37]

      Göbel, D.; Clamor, N.; Lork, E.; Nachtsheim, B. J. Aerobic C(sp2)-H hydroxylations of 2-aryloxazolines: fast access to excited-state intramolecular proton transfer (ESIPT)-based luminophores. Org. Lett. 2019, 21, 5373−5377.  doi: 10.1021/acs.orglett.9b01350

    38. [38]

      Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.  doi: 10.1063/1.464913

    39. [39]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT 2009.

    40. [40]

      Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B 1997, 101, 10506−10517.  doi: 10.1021/jp971959k

    41. [41]

      Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16, 1449−1458.  doi: 10.1002/jcc.540161202

    42. [42]

      Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117−129.  doi: 10.1016/0301-0104(81)85090-2

    43. [43]

      Tian, L.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    44. [44]

      Humphery, W.; Dalke, A.; Shulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33−38.  doi: 10.1016/0263-7855(96)00018-5

    45. [45]

      Zhao, G. J.; Han, K. L. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 2012, 45, 404−413.  doi: 10.1021/ar200135h

    46. [46]

      Zhao, G. J.; Han, K. L. pH-Controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction. Phys. Chem. Chem. Phys. 2010, 12, 8914−8918.  doi: 10.1039/b924549a

    47. [47]

      Zhao, G. J.; Han, K. L. Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study. J. Phys. Chem. A 2007, 111, 2469−2474.  doi: 10.1021/jp068420j

    48. [48]

      Zhao, G. J.; Han, K. L. Time-dependent density functional theory study on hydrogen-bonded intramolecular charge-transfer excited state of 4-dimethylamino-benzonitrile in methanol. J. Comput. Chem. 2008, 29, 2010−2017.  doi: 10.1002/jcc.20957

    49. [49]

      Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Carcis, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498−6506.  doi: 10.1021/ja100936w

  • 加载中
    1. [1]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    2. [2]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    3. [3]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    4. [4]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    5. [5]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    6. [6]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    7. [7]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    8. [8]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    9. [9]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    10. [10]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    11. [11]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    12. [12]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    13. [13]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    14. [14]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    15. [15]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    16. [16]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    17. [17]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    18. [18]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    19. [19]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    20. [20]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

Metrics
  • PDF Downloads(2)
  • Abstract views(580)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return