A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties
- Corresponding author: Hua YANG, yanghua_08@163.com
Citation:
Zhen-Hai SHI, Yuan HUANG, Yu-Ze WU, Xiao-Li CHEN, Hua YANG. A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties[J]. Chinese Journal of Structural Chemistry,
;2021, 40(4): 495-500.
doi:
10.14102/j.cnki.0254–5861.2011–2942
Polynuclear transition-metal clusters have attracted increasing interest due to their aesthetically pleasing architectures[1-5] and diverse applications in magnetism[6-8], luminescence[9-11], and catalysis[12, 13]. Particularly, polynuclear cobalt clusters have gathered tremendous attention in recent years especially for the following two important reasons: (ⅰ) some cobalt clusters behave as single-molecule magnets (SMMs)[14-17], and could be potentially utilized in high-density information storage devices[18, 19]; (ⅱ) these clusters are also successfully used in many catalysis reactions, such as dioxygen reduction[20-22] and epoxidation of alkenes[23].
A fertile route for the preparation of polynuclear cobalt clusters involves employing polydentate ligands containing several oxygen donors that could incorporate many cobalt ions into one molecular entity. In this work, we employed polydentate Schiff base H2L (H2L = 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol)[24] as a ligand to assemble polynuclear cobalt compound. The existence of two -OH groups renders H2L as a good ligand to generate polynuclear clusters. A hexanuclear cobalt compound with formula [Co2ⅢCo4Ⅱ(L)4(CH3COO)2(MeO)4]·MeOH (1) was prepared. Herein, we report the synthesis, structure and magnetic properties of complex 1.
All manipulations were performed under aerobic and solvothermal conditions using reagents and solvents as received. The H2L ligand (H2L = 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol) was prepared according to the literature procedure[24].
The C, H and N microanalyses were carried out with a Carlo-Erba EA1110 CHNO-S elemental analyser. FT-IR spectrum was recorded from KBr pellets in the range of 400~4000 cm–1 on a Nicolet MagNa-IR 500 spectrometer. Variable-temperature dc magnetic susceptibility data were collected using a Quantum Design MPMS-7 SQUID magnetometer.
A mixture of H2L (0.0257 g, 0.1 mmol), Co(OAc)2·4H2O (0.0249 g, 0.1 mmol) and MeOH (1.5 mL) was sealed in a Pyrex-tube (10 mL). The tube was heated at 80 ℃ for 2 days under autogenous pressure. Cooling of the resultant solution to room temperature gave dark-red needle-like crystals. The crystals were collected by filtration, washed with MeOH (2 mL) and dried in air. Yield: 0.019 g (45% based on cobalt). Anal. Calcd. (%) for C70H78N4O22Co6 (Mr = 1672.94): C, 50.02; H, 4.68; N, 3.33. Found (%): C, 49.97; H, 4.65; N, 3.49. Selected IR data for 1 (cm−1): 1606 (s), 1529 (m), 1479 (m), 1446 (m), 1299 (w), 1251 (s), 1219 (s), 1165 (m), 1144 (m), 1122 (m), 1031 (m), 979 (m), 874 (w), 851 (w), 766 (w).
The data collection for 1 were carried out on a Bruker Smart ApexⅡ diffractometer equipped with a graphite monochromator utilizing MoKα radiation (λ = 0.71073 Å); the ω-2θ scan technique was applied. The crystal structure of complex 1 was solved with the Olex2 solve solution program[25] using Intrinsic Phasing and refined by full-matrix least-squares minimization with the ShelXL refinement package[26]. All non-hydrogen atoms were refined anisotropically. The collected crystal data for 1 are shown in Table S1. Selected bond lengths and bond angles of 1 are listed in Table 1 and Table S2.
1 | |||||||
Bond | Dist. | Bond | Dist. | Bond | Dist. | ||
Co(1)–O(2) | 1.905(4) | Co(2)–O(2) | 2.139(4) | Co(4)–O(19) | 2.199(4) | ||
Co(1)–O(13) | 1.911(4) | Co(3)–O(4) | 1.933(4) | Co(5)–O(9) | 1.905(4) | ||
Co(1)–O(1) | 1.912(4) | Co(3)–O(5) | 2.008(4) | Co(5)–O(8) | 1.906(4) | ||
Co(1)–N(4) | 1.916(5) | Co(3)–N(1) | 2.011(5) | Co(5)–N(3) | 1.911(5) | ||
Co(1)–O(19) | 1.925(4) | Co(3)–O(1) | 2.013(4) | Co(5)–O(20) | 1.925(4) | ||
Co(1)–O(17) | 1.946(4) | Co(3)–O(19) | 2.212(4) | Co(5)–O(16) | 1.927(4) | ||
Co(2)–O(15) | 2.049(4) | Co(4)–O(10) | 2.050(4) | Co(5)–O(18) | 1.941(4) | ||
Co(2)–O(14) | 2.053(4) | Co(4)–O(5) | 2.058(4) | Co(6)–O(11) | 1.921(5) | ||
Co(2)–O(18) | 2.068(4) | Co(4)–O(18) | 2.130(4) | Co(6)–O(10) | 1.995(4) | ||
Co(2)–O(17) | 2.074(4) | Co(4)–O(17) | 2.138(4) | Co(6)–N(2) | 2.011(5) | ||
Co(2)–O(8) | 2.132(4) | Co(4)–O(20) | 2.196(4) | Co(6)–O(9) | 2.025(4) | ||
Co(6)–O(20) | 2.198(4) | ||||||
Angle | (°) | Angle | (°) | Angle | (°) | ||
O(2)–Co(1)–O(13) | 89.07(2) | O(15)–Co(2)–O(17) | 171.08(2) | O(4)–Co(3)–O(19) | 93.26(2) | ||
O(2)–Co(1)–O(1) | 174.59(2) | O(14)–Co(2)–O(17) | 89.83(2) | O(5)–Co(3)–O(19) | 81.65(2) | ||
O(13)–Co(1)–O(1) | 92.04(2) | O(18)–Co(2)–O(17) | 82.06(2) | O(10)–Co(4)–O(5) | 100.73(2) | ||
O(2)–Co(1)–N(4) | 93.94(2) | O(15)–Co(2)–O(8) | 84.43(2) | O(10)–Co(4)–O(18) | 91.02(2) | ||
O(13)–Co(1)–N(4) | 87.72(2) | O(14)–Co(2)–O(8) | 108.12(2) | O(5)–Co(4)–O(18) | 167.25(2) | ||
O(1)–Co(1)–N(4) | 91.40(2) | O(4)–Co(3)–O(5) | 135.69(2) | O(10)–Co(4)–O(17) | 168.70(2) | ||
O(2)–Co(1)–O(19) | 92.43(2) | O(4)–Co(3)–N(1) | 92.2(2) | O(5)–Co(4)–O(17) | 89.58(2) | ||
O(13)–Co(1)–O(19) | 176.07(2) | O(5)–Co(3)–N(1) | 91.46(2) | O(18)–Co(4)–O(17) | 79.16(2) | ||
O(15)–Co(2)–O(14) | 97.96(2) | O(4)–Co(3)–O(1) | 115.95(2) | O(10)–Co(4)–O(20) | 80.62(2) | ||
O(15)–Co(2)–O(18) | 90.58(2) | O(5)–Co(3)–O(1) | 105.60(2) | O(5)–Co(4)–O(20) | 104.88(2) | ||
O(14)–Co(2)–O(18) | 170.12(2) | N(1)–Co(3)–O(1) | 104.95(2) | O(18)–Co(4)–O(20) | 71.95(2) |
Complex 1 is prepared by mixing H2L and Co(OAc)2·4H2O in 1:1 ratio in MeOH under solvothermal conditions. This solvothermal reaction mode allows to crystallize complex 1 directly from the reaction solution.
Several bands appear in the 1605~1445 cm–1 range (Fig. S1). Contributions from the carboxylic νas(CO2) and νs(CO2) vibrations would be expected in this region. The vibration of the C=N bonds is at 1445 cm–1. Several bands appear in the 1299~1121 cm–1 range, whilst the contributions from the vibrations of aromatic rings would be expected in this region. The overlap of the signals of aromatic rings with the vibrations of -CH3 and -CH2 groups makes assignments difficult. Several peaks in the 979~766 cm–1 range are found. They can be ascribed to the vibrations of C–H bonds.
X-ray single-crystal analysis reveals that complex 1 crystallizes in the triclinic space group P
Atom | Valence | Atom | Valence | |
Co(1) | 3.57 | Co(4) | 1.88 | |
Co(2) | 2.06 | Co(5) | 3.29 | |
Co(3) | 2.24 | Co(6) | 2.28 |
Complex 1 is a member of a big family of hexanuclear cobalt clusters. These complexes display various structures including cage[31], hexameric ring[2, 21], and giant wheel[22]. The examples of hexanuclear CoⅡ/Ⅲ clusters which exhibit defect tetracubane core are very rare[29].
There are many Co7 clusters that show disc-like configuration, in which the seven cobalt centers are almost coplanar and occupy the vertexes of the six defect cubanes[32-41]. Compared the structure of complex 1 with those of Co7 clusters, complex 1 can be regarded as obtained by removing one of seven vertexes of the six cubanes.
Direct current (dc) magnetic susceptibilities for complex 1 were determined at an applied magnetic field of 1000 Oe in the temperature range of 2~300 K. The χMT value of 1 at 300 K is 12.08 cm3·mol–1·K (Fig. 2), which is much larger than the spin-only value of 7.50 cm3·mol–1·K expected for four S = 3/2 uncoupled spins, probably due to the orbital contributions of the metal ions[42, 43]. As the temperature is lowered, the χMT value decreases gradually to a minimum value of 4.53 cm3·mol–1·K at 2 K. This behavior is indicative of the presence of antiferromagnetic exchange interactions between the metal ions. The relationship between 1/χM and temperature of 2~300 K obeys the Curie-Weiss Law of 1/χM = (T – θ)/C. The Curie constant C = 14.28 cm3·mol–1·K and Weiss constant θ = –49.84 K were obtained. The negative θ value confirms the antiferromagnetic exchange interactions.
In order to study the magnetic dynamic behavior of 1, the ac magnetic susceptibilities for complex 1 at 1000 Hz under a zero dc field were determined (Fig. 3). The χ ''susceptibilities do not increase with the decrease of temperature or no peaks were observed, which indicate that complex 1 is not a single-molecule magnet.
A mixed-valence hexanuclear cobalt complex [Co2ⅢCo4Ⅱ(L)4(CH3COO)2(MeO)4]·2MeOH (1) supported by a Schiff base ligand H2L was synthesized. Complex 1 exhibits defect tetracubane-type architecture. Four cobalt atoms are hexa-coordinated and two cobalt atoms are penta-coordinated. The dc magnetic property measurements reveal the existence of antiferromagnetic interactions.
Han, S. D.; Song, W. C.; Zhao, J. P.; Yang, Q.; Liu, S. J.; Li, Y.; Bu, X. H. Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co24] macrocycles. Chem. Commun. 2013, 49, 871–873.
doi: 10.1039/C2CC37593A
Guo, L. Y.; Zeng, S. Y.; Jaglicic, Z.; Hu, Q. D.; Wang, S. X.; Wang, Z.; Sun, D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 2016, 55, 9006–9011.
doi: 10.1021/acs.inorgchem.6b01468
Guo, Z. Y.; Su, S. G.; Deng, R. P.; Zhang, H. J. An unprecedented ten-connected 3D metal-organic framework based on hexanuclear cobalt(Ⅱ) cluster building blocks. Inorg. Chem. Commun. 2015, 51, 9–12.
doi: 10.1016/j.inoche.2014.10.030
Liu, W.; Liu, M.; Du, S. C.; Li, Y. F.; Liao, W. P. Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4, 4'-bipyridyl. J. Mol. Stru. 2014, 1060, 58–62.
doi: 10.1016/j.molstruc.2013.12.044
Zhao, J. J.; Xu, J. C.; King, R. B. Hexanuclear cobalt carbonyl carbide clusters: the interplay between octahedral and trigonal prismatic structures. Inorg. Chem. 2008, 47, 9314–9320.
doi: 10.1021/ic8009089
Ma, Y. S.; Xue, F. F.; Tang, X. Y.; Chen, B.; Yuan, R. X. A hexanuclear antiferromagnetic cobalt(Ⅱ) wheel: synthesis, structure and magnetic properties. Inorg. Chem. Commun. 2012, 15, 285–287.
doi: 10.1016/j.inoche.2011.11.003
Tudor, V.; Madalan, A.; Lupu, V.; Lloret, F.; Julve, M.; Andruh, M. A new mixed-valence hexanuclear cobalt complex, [Co4ⅡCo2Ⅲ(dea)2(Hdea)4(piv)4](ClO4)2·H2O: synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2010, 363, 823–826.
doi: 10.1016/j.ica.2009.12.006
Shiga, T.; Oshio, H. Syntheses, structures and magnetic properties of mixed-valence pentanuclear [Mn3ⅡMn2Ⅲ] and hexanuclear [Co4ⅡCo2Ⅲ] complexes derived from 3-formylsalicylic acid. Polyhedron 2007, 26, 1881–1884.
doi: 10.1016/j.poly.2006.09.026
Li, J.; Zhu, X. F.; Zhang, L. Y.; Chen, Z. N. Structures and luminescence properties of diethyldithiocarbamate-bridged polynuclear gold(I) cluster complexes with diphosphine/triphosphine. RSC Adv. 2015, 5, 34992–34998.
doi: 10.1039/C5RA01831E
Artemév, A. V.; Pritchina, E. A.; Rakhmanova, M. I.; Gritsan, N. P.; Bagryanskaya, I. Y.; Malysheva, S. F.; Belogorlova, N. A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: when size matters. Dalton Trans. 2019, 48, 2328–2337.
doi: 10.1039/C8DT04328K
Leng, J. D.; Xing, S. K.; Herchel, R.; Liu, J. L.; Tong, M. L. Disklike hepta- and tridecanuclear cobalt clusters. Synthesis, structures, magnetic properties, and DFT calculations. Inorg. Chem. 2014, 53, 5458–5466.
doi: 10.1021/ic403093r
Nesterov, D. S.; Nesterova, O. V. Polynuclear cobalt complexes as catalysts for light-driven water oxidation: a review of recent advances. Catalysts 2018, 8, 602/1–602/21.
Singha Mahapatra, T.; Basak, D.; Chand, S.; Lengyel, J.; Shatruk, M.; Bertolasi, V.; Ray, D. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Trans. 2016, 45, 13576–13589.
doi: 10.1039/C6DT02494G
Murrie, M. Cobalt(Ⅱ) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995.
doi: 10.1039/b913279c
Wang, X. T.; Wang, B. W.; Wang, Z. M.; Zhang, W.; Gao, S. Azide and oxo bridged ferromagnetic clusters: three face-shared tetracubane Ni(Ⅱ)/Co(Ⅱ) hexamers and a wheel-shaped SMM-like Co(Ⅱ) heptamer. Inorg. Chim. Acta 2008, 361, 3895–3902.
doi: 10.1016/j.ica.2008.03.020
Liu, Y. N.; Hou, J. L.; Wang, Z.; Gupta, R. K.; Jaglicic, Z.; Jagodic, M.; Wang, W. G.; Tung, C. H.; Sun, D. An octanuclear cobalt cluster protected by macrocyclic ligand: in situ ligand-transformation-assisted assembly and single-molecule magnet behavior. Inorg. Chem. 2020, 59, 5683–5693.
doi: 10.1021/acs.inorgchem.0c00449
Murrie, M.; Teat, S. J.; Stoeckli-Evans, H.; Guedel, H. U. Synthesis and characterization of a cobalt(Ⅱ) single-molecule magnet. Angew. Chem., Int. Ed. 2003, 42, 4653–4656.
doi: 10.1002/anie.200351753
Mannini, M.; Pineider, F.; Danieli, C.; Totti, F.; Sorace, L.; Sainctavit, P.; Arrio, M. A.; Otero, E.; Joly, L.; Cezar, J. C.; Cornia, A.; Sessoli, R. Quantum tunneling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 2010, 468, 417–421.
doi: 10.1038/nature09478
Ariciu, A. M.; Woen, D. H.; Huh, D. N.; Nodaraki, L. E.; Kostopoulos, A. K.; Goodwin, C. A. P.; Chilton, N. F.; Mclnnes, E. J. L.; Winpenny, R. E. P.; Evans, W. J.; Tuna, F. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 2019, 10, 3330–3337.
doi: 10.1038/s41467-019-11309-3
Chandra, A.; Mebs, S.; Kundu, S.; Kuhlmann, U.; Hildebrandt, P.; Dau, H.; Ray, K. Catalytic dioxygen reduction mediated by a tetranuclear cobalt complex supported on a stannoxane core. Dalton Trans. 2020, 49, 6065–6073.
doi: 10.1039/D0DT00475H
Lin, J. Q.; Meng, X. Y.; Zheng, M.; Ma, B. C.; Ding, Y. Insight into a hexanuclear cobalt complex: strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Cataly. B-Environ. 2019, 241, 351–358.
doi: 10.1016/j.apcatb.2018.09.052
Monte-Perez, I.; Kundu, S.; Chandra, A.; Craigo, K. E.; Chernev, P.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Greco, C.; Van Stappen, C.; Lehnert, N.; Ray, K. Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex J. Am. Chem. Soc. 2017, 139, 15033–15042.
doi: 10.1021/jacs.7b07127
Gao, J. K.; Bai, L. L.; Zhang, Q.; Li, Y. X.; Rakesh, G.; Lee, J. M.; Yang, Y. H.; Zhang, Q. C. Co6(µ3-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Trans. 2014, 43, 2559–2565.
doi: 10.1039/C3DT52562G
Huang, Y.; Qin, Y. R.; Ge, Y.; Cui, Y. F.; Zhang, X. M.; Li, Y. H.; Yao, J. L. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42- and Cr2O72-. New J. Chem. 2019, 43, 19344–19354.
doi: 10.1039/C9NJ04893F
Sheldrick, G. M. A. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.
doi: 10.1107/S0108767307043930
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.
doi: 10.1107/S2053229614024218
Brown, I. D.; Altermat, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244–247.
Brese, N. E.; O'keeffe, M. Bond-valence parameters for solids. Acta Cryst. 1991. B47, 192–197.
Alley, K. G.; Bircher, R.; Waldmann, O.; Ochsenbein, S. T.; Gudel, H. U.; Moubaraki, B.; Murray, K. S.; Fernandez-Alonso, F.; Abrahams, B. F.; Boskovic, C. Mixed-valent cobalt spin clusters: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta- and mononuclear fragments. Inorg. Chem. 2006, 45, 8950–8957.
doi: 10.1021/ic060938e
Cao, Y. Y.; Chen, Y. M.; Li, L.; Gao, D. D.; Liu, W.; Hu, H. L.; Li, W.; Li, Y. H. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid. Dalton Trans. 2013, 42, 10912–10918.
doi: 10.1039/c3dt51140e
Sánchez, R. H.; Champsaur, A. M.; Choi, B.; Wang, S. G.; Bu, W.; Roy, X.; Chen, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Paley, D. W. Electron cartography in clusters. Angew. Chem. Int. Ed. 2018, 57, 13815–13820.
doi: 10.1002/anie.201806426
Ferguson, A.; Parkin, A.; Sanchez-Benitez, J.; Kamenev, K.; Wernsdorfer, W.; Murrie, M. A mixed-valence Co7 single-molecule magnet with C3 symmetry. Chem. Commun. 2007, 3473–3475.
Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixed-valence Co3ⅡCo4Ⅲ heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.
doi: 10.1021/ja8029416
Zhang, S. H.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co(Ⅱ) cluster and a heterometallic cubanic Co(Ⅱ) cluster. CrystEngComm. 2009, 11, 865–872.
doi: 10.1039/b815675a
Zhou, Y. L.; Zeng, M. H.; Wei, L. Q.; Li, B. W.; Kurmoo, M. Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk clusters and their magnetic properties. Chem. Mater. 2010, 22, 4295–4303.
doi: 10.1021/cm1011229
Wei, L. Q.; Li, B. W.; Hua, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-CoⅡ clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510–516.
doi: 10.1039/C0CE00085J
Zhang, S. H.; Ma, L. F.; Zou, H. H.; Wang, Y. G.; Liang, H.; Zeng, M. H. Anion induced diversification from heptanuclear to tetranuclear clusters: syntheses, structures and magnetic properties. Dalton Trans. 2011, 40, 11402–11409.
doi: 10.1039/c1dt10517e
Kitos, A. A.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Nastopoulos, V.; Tasiopoulos, A. J.; Manos, M. J.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P. The search for cobalt single-molecule magnets: a disk-like CoⅢCo6Ⅱ cluster with a ligand derived from a novel transformation of 2-acetylpyridine. Polyhedron 2011, 30, 2987–2996.
doi: 10.1016/j.poly.2011.02.013
Meally, S. T.; McDonald, C.; Kealy, P.; Taylor, S. M.; Brechin, E. K.; Jones, L. F. Investigating the solid state hosting abilities of homo- and hetero-valent [Co7] metallocalix[6]arenes. Dalton Trans. 2012, 41, 5610–5616.
doi: 10.1039/c2dt12229d
Zhang, S. H.; Zou, H. H.; Wang, Y. G.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and magnetic behavior of a Schiff base heptanuclear cobalt cluster. J. Cluster Sci. 2014, 25, 357–365.
doi: 10.1007/s10876-013-0614-z
Zhang, S. H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; Liang, H. Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(Ⅱ) cluster. J. Coord. Chem. 2014, 67, 3155–3166.
doi: 10.1080/00958972.2014.964221
Boudalis, A. K.; Raptopoulou, C. P.; Abarca, B.; Ballesteros, R.; Chadlaoui, M.; Tuchagues, J. P.; Terzis, A. CoⅡ chemistry of 2, 6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co cluster exhibiting superparamagnetic relaxation. Angew. Chem., Int. Ed. 2006, 45, 432–435.
doi: 10.1002/anie.200502519
Cheng, X. N.; Zhang, W. X.; Zheng, Y. Z.; Chen, X. M. The slow magnetic relaxation observed in a mixed carboxylate/hydroxide-bridged compound [Co2Na(4-cpa)2(μ3-OH)(H2O)]∞ featuring magnetic Δ-chains. Chem. Commun. 2006, 34, 3603–3605.
Han, S. D.; Song, W. C.; Zhao, J. P.; Yang, Q.; Liu, S. J.; Li, Y.; Bu, X. H. Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co24] macrocycles. Chem. Commun. 2013, 49, 871–873.
doi: 10.1039/C2CC37593A
Guo, L. Y.; Zeng, S. Y.; Jaglicic, Z.; Hu, Q. D.; Wang, S. X.; Wang, Z.; Sun, D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 2016, 55, 9006–9011.
doi: 10.1021/acs.inorgchem.6b01468
Guo, Z. Y.; Su, S. G.; Deng, R. P.; Zhang, H. J. An unprecedented ten-connected 3D metal-organic framework based on hexanuclear cobalt(Ⅱ) cluster building blocks. Inorg. Chem. Commun. 2015, 51, 9–12.
doi: 10.1016/j.inoche.2014.10.030
Liu, W.; Liu, M.; Du, S. C.; Li, Y. F.; Liao, W. P. Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4, 4'-bipyridyl. J. Mol. Stru. 2014, 1060, 58–62.
doi: 10.1016/j.molstruc.2013.12.044
Zhao, J. J.; Xu, J. C.; King, R. B. Hexanuclear cobalt carbonyl carbide clusters: the interplay between octahedral and trigonal prismatic structures. Inorg. Chem. 2008, 47, 9314–9320.
doi: 10.1021/ic8009089
Ma, Y. S.; Xue, F. F.; Tang, X. Y.; Chen, B.; Yuan, R. X. A hexanuclear antiferromagnetic cobalt(Ⅱ) wheel: synthesis, structure and magnetic properties. Inorg. Chem. Commun. 2012, 15, 285–287.
doi: 10.1016/j.inoche.2011.11.003
Tudor, V.; Madalan, A.; Lupu, V.; Lloret, F.; Julve, M.; Andruh, M. A new mixed-valence hexanuclear cobalt complex, [Co4ⅡCo2Ⅲ(dea)2(Hdea)4(piv)4](ClO4)2·H2O: synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2010, 363, 823–826.
doi: 10.1016/j.ica.2009.12.006
Shiga, T.; Oshio, H. Syntheses, structures and magnetic properties of mixed-valence pentanuclear [Mn3ⅡMn2Ⅲ] and hexanuclear [Co4ⅡCo2Ⅲ] complexes derived from 3-formylsalicylic acid. Polyhedron 2007, 26, 1881–1884.
doi: 10.1016/j.poly.2006.09.026
Li, J.; Zhu, X. F.; Zhang, L. Y.; Chen, Z. N. Structures and luminescence properties of diethyldithiocarbamate-bridged polynuclear gold(I) cluster complexes with diphosphine/triphosphine. RSC Adv. 2015, 5, 34992–34998.
doi: 10.1039/C5RA01831E
Artemév, A. V.; Pritchina, E. A.; Rakhmanova, M. I.; Gritsan, N. P.; Bagryanskaya, I. Y.; Malysheva, S. F.; Belogorlova, N. A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: when size matters. Dalton Trans. 2019, 48, 2328–2337.
doi: 10.1039/C8DT04328K
Leng, J. D.; Xing, S. K.; Herchel, R.; Liu, J. L.; Tong, M. L. Disklike hepta- and tridecanuclear cobalt clusters. Synthesis, structures, magnetic properties, and DFT calculations. Inorg. Chem. 2014, 53, 5458–5466.
doi: 10.1021/ic403093r
Nesterov, D. S.; Nesterova, O. V. Polynuclear cobalt complexes as catalysts for light-driven water oxidation: a review of recent advances. Catalysts 2018, 8, 602/1–602/21.
Singha Mahapatra, T.; Basak, D.; Chand, S.; Lengyel, J.; Shatruk, M.; Bertolasi, V.; Ray, D. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Trans. 2016, 45, 13576–13589.
doi: 10.1039/C6DT02494G
Murrie, M. Cobalt(Ⅱ) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995.
doi: 10.1039/b913279c
Wang, X. T.; Wang, B. W.; Wang, Z. M.; Zhang, W.; Gao, S. Azide and oxo bridged ferromagnetic clusters: three face-shared tetracubane Ni(Ⅱ)/Co(Ⅱ) hexamers and a wheel-shaped SMM-like Co(Ⅱ) heptamer. Inorg. Chim. Acta 2008, 361, 3895–3902.
doi: 10.1016/j.ica.2008.03.020
Liu, Y. N.; Hou, J. L.; Wang, Z.; Gupta, R. K.; Jaglicic, Z.; Jagodic, M.; Wang, W. G.; Tung, C. H.; Sun, D. An octanuclear cobalt cluster protected by macrocyclic ligand: in situ ligand-transformation-assisted assembly and single-molecule magnet behavior. Inorg. Chem. 2020, 59, 5683–5693.
doi: 10.1021/acs.inorgchem.0c00449
Murrie, M.; Teat, S. J.; Stoeckli-Evans, H.; Guedel, H. U. Synthesis and characterization of a cobalt(Ⅱ) single-molecule magnet. Angew. Chem., Int. Ed. 2003, 42, 4653–4656.
doi: 10.1002/anie.200351753
Mannini, M.; Pineider, F.; Danieli, C.; Totti, F.; Sorace, L.; Sainctavit, P.; Arrio, M. A.; Otero, E.; Joly, L.; Cezar, J. C.; Cornia, A.; Sessoli, R. Quantum tunneling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 2010, 468, 417–421.
doi: 10.1038/nature09478
Ariciu, A. M.; Woen, D. H.; Huh, D. N.; Nodaraki, L. E.; Kostopoulos, A. K.; Goodwin, C. A. P.; Chilton, N. F.; Mclnnes, E. J. L.; Winpenny, R. E. P.; Evans, W. J.; Tuna, F. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 2019, 10, 3330–3337.
doi: 10.1038/s41467-019-11309-3
Chandra, A.; Mebs, S.; Kundu, S.; Kuhlmann, U.; Hildebrandt, P.; Dau, H.; Ray, K. Catalytic dioxygen reduction mediated by a tetranuclear cobalt complex supported on a stannoxane core. Dalton Trans. 2020, 49, 6065–6073.
doi: 10.1039/D0DT00475H
Lin, J. Q.; Meng, X. Y.; Zheng, M.; Ma, B. C.; Ding, Y. Insight into a hexanuclear cobalt complex: strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Cataly. B-Environ. 2019, 241, 351–358.
doi: 10.1016/j.apcatb.2018.09.052
Monte-Perez, I.; Kundu, S.; Chandra, A.; Craigo, K. E.; Chernev, P.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Greco, C.; Van Stappen, C.; Lehnert, N.; Ray, K. Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex J. Am. Chem. Soc. 2017, 139, 15033–15042.
doi: 10.1021/jacs.7b07127
Gao, J. K.; Bai, L. L.; Zhang, Q.; Li, Y. X.; Rakesh, G.; Lee, J. M.; Yang, Y. H.; Zhang, Q. C. Co6(µ3-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Trans. 2014, 43, 2559–2565.
doi: 10.1039/C3DT52562G
Huang, Y.; Qin, Y. R.; Ge, Y.; Cui, Y. F.; Zhang, X. M.; Li, Y. H.; Yao, J. L. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42- and Cr2O72-. New J. Chem. 2019, 43, 19344–19354.
doi: 10.1039/C9NJ04893F
Sheldrick, G. M. A. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.
doi: 10.1107/S0108767307043930
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.
doi: 10.1107/S2053229614024218
Brown, I. D.; Altermat, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244–247.
Brese, N. E.; O'keeffe, M. Bond-valence parameters for solids. Acta Cryst. 1991. B47, 192–197.
Alley, K. G.; Bircher, R.; Waldmann, O.; Ochsenbein, S. T.; Gudel, H. U.; Moubaraki, B.; Murray, K. S.; Fernandez-Alonso, F.; Abrahams, B. F.; Boskovic, C. Mixed-valent cobalt spin clusters: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta- and mononuclear fragments. Inorg. Chem. 2006, 45, 8950–8957.
doi: 10.1021/ic060938e
Cao, Y. Y.; Chen, Y. M.; Li, L.; Gao, D. D.; Liu, W.; Hu, H. L.; Li, W.; Li, Y. H. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid. Dalton Trans. 2013, 42, 10912–10918.
doi: 10.1039/c3dt51140e
Sánchez, R. H.; Champsaur, A. M.; Choi, B.; Wang, S. G.; Bu, W.; Roy, X.; Chen, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Paley, D. W. Electron cartography in clusters. Angew. Chem. Int. Ed. 2018, 57, 13815–13820.
doi: 10.1002/anie.201806426
Ferguson, A.; Parkin, A.; Sanchez-Benitez, J.; Kamenev, K.; Wernsdorfer, W.; Murrie, M. A mixed-valence Co7 single-molecule magnet with C3 symmetry. Chem. Commun. 2007, 3473–3475.
Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixed-valence Co3ⅡCo4Ⅲ heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.
doi: 10.1021/ja8029416
Zhang, S. H.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co(Ⅱ) cluster and a heterometallic cubanic Co(Ⅱ) cluster. CrystEngComm. 2009, 11, 865–872.
doi: 10.1039/b815675a
Zhou, Y. L.; Zeng, M. H.; Wei, L. Q.; Li, B. W.; Kurmoo, M. Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk clusters and their magnetic properties. Chem. Mater. 2010, 22, 4295–4303.
doi: 10.1021/cm1011229
Wei, L. Q.; Li, B. W.; Hua, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-CoⅡ clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510–516.
doi: 10.1039/C0CE00085J
Zhang, S. H.; Ma, L. F.; Zou, H. H.; Wang, Y. G.; Liang, H.; Zeng, M. H. Anion induced diversification from heptanuclear to tetranuclear clusters: syntheses, structures and magnetic properties. Dalton Trans. 2011, 40, 11402–11409.
doi: 10.1039/c1dt10517e
Kitos, A. A.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Nastopoulos, V.; Tasiopoulos, A. J.; Manos, M. J.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P. The search for cobalt single-molecule magnets: a disk-like CoⅢCo6Ⅱ cluster with a ligand derived from a novel transformation of 2-acetylpyridine. Polyhedron 2011, 30, 2987–2996.
doi: 10.1016/j.poly.2011.02.013
Meally, S. T.; McDonald, C.; Kealy, P.; Taylor, S. M.; Brechin, E. K.; Jones, L. F. Investigating the solid state hosting abilities of homo- and hetero-valent [Co7] metallocalix[6]arenes. Dalton Trans. 2012, 41, 5610–5616.
doi: 10.1039/c2dt12229d
Zhang, S. H.; Zou, H. H.; Wang, Y. G.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and magnetic behavior of a Schiff base heptanuclear cobalt cluster. J. Cluster Sci. 2014, 25, 357–365.
doi: 10.1007/s10876-013-0614-z
Zhang, S. H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; Liang, H. Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(Ⅱ) cluster. J. Coord. Chem. 2014, 67, 3155–3166.
doi: 10.1080/00958972.2014.964221
Boudalis, A. K.; Raptopoulou, C. P.; Abarca, B.; Ballesteros, R.; Chadlaoui, M.; Tuchagues, J. P.; Terzis, A. CoⅡ chemistry of 2, 6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co cluster exhibiting superparamagnetic relaxation. Angew. Chem., Int. Ed. 2006, 45, 432–435.
doi: 10.1002/anie.200502519
Cheng, X. N.; Zhang, W. X.; Zheng, Y. Z.; Chen, X. M. The slow magnetic relaxation observed in a mixed carboxylate/hydroxide-bridged compound [Co2Na(4-cpa)2(μ3-OH)(H2O)]∞ featuring magnetic Δ-chains. Chem. Commun. 2006, 34, 3603–3605.
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
Gaofeng WANG , Shuwen SUN , Yanfei ZHAO , Lixin MENG , Bohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Yinling HOU , Jia JI , Hong YU , Xiaoyun BIAN , Xiaofen GUAN , Jing QIU , Shuyi REN , Ming FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
Guoying Han , Qazi Mohammad Junaid , Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Kun Yang , Anhui Li , Peng Zhang , Guilin Liu , Liusai Huang , Yumeng Fo , Luyuan Yang , Xiangyang Ji , Jian Liu , Weiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663