Processing math: 100%

Citation: Zhen-Hai SHI, Yuan HUANG, Yu-Ze WU, Xiao-Li CHEN, Hua YANG. A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 495-500. doi: 10.14102/j.cnki.0254–5861.2011–2942 shu

A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties

  • Corresponding author: Hua YANG, yanghua_08@163.com
  • Received Date: 20 July 2020
    Accepted Date: 12 October 2020

    Fund Project: the Natural Science Foundation of Yan'an University YDY2017-08Innovation and Entrepreneurship Training Program of College Students of China S202010719031the Natural Science Foundation of Yulin CXY-2020-065the National Natural Science Foundation of China 21763028

Figures(3)

  • One hexanuclear cobalt cluster [Co2Co4(L)4(CH3COO)2(MeO)4]·MeOH (1) was synthesized by the reaction of H2L (H2L = 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol) and Co(OAc)2·4H2O in MeOH under solvothermal conditions. Complex 1 crystalizes in the triclinic space group P\begin{document}$ \overline 1 $\end{document} with a = 14.397(3), b = 16.625(3), c = 18.992(4) Å, α = 109.47(3)°, β = 99.24(3)°, γ = 112.37(3)°, Dc = 1.464 g/cm3, Z = 2, V = 3741.7(2) Å3, the final R = 0.0781 and wR = 0.1436 for 13051 observed reflections with I > 2σ(I). In the structure of 1, two cobalt ions are in 3+ oxidation states and four cobalt ions are in 2+ valence states. The six cobalt atoms are held together by six phenolate oxygen atoms from four L2– ligands, four oxygen atoms from two chelating acetates and four μ3-O atoms from four MeO groups. The six cobalt atoms are located at six corners of four defective cubanes. Thus, complex 1 displays tetracubane-like topology. Solid-state dc magnetic susceptibilities were measured for 1 in the 2.0~300 K range. Antiferromagnetic interactions were determined for 1.
  • Polynuclear transition-metal clusters have attracted increasing interest due to their aesthetically pleasing architectures[1-5] and diverse applications in magnetism[6-8], luminescence[9-11], and catalysis[12, 13]. Particularly, polynuclear cobalt clusters have gathered tremendous attention in recent years especially for the following two important reasons: (ⅰ) some cobalt clusters behave as single-molecule magnets (SMMs)[14-17], and could be potentially utilized in high-density information storage devices[18, 19]; (ⅱ) these clusters are also successfully used in many catalysis reactions, such as dioxygen reduction[20-22] and epoxidation of alkenes[23].

    A fertile route for the preparation of polynuclear cobalt clusters involves employing polydentate ligands containing several oxygen donors that could incorporate many cobalt ions into one molecular entity. In this work, we employed polydentate Schiff base H2L (H2L = 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol)[24] as a ligand to assemble polynuclear cobalt compound. The existence of two -OH groups renders H2L as a good ligand to generate polynuclear clusters. A hexanuclear cobalt compound with formula [Co2Co4(L)4(CH3COO)2(MeO)4]·MeOH (1) was prepared. Herein, we report the synthesis, structure and magnetic properties of complex 1.

    All manipulations were performed under aerobic and solvothermal conditions using reagents and solvents as received. The H2L ligand (H2L = 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol) was prepared according to the literature procedure[24].

    The C, H and N microanalyses were carried out with a Carlo-Erba EA1110 CHNO-S elemental analyser. FT-IR spectrum was recorded from KBr pellets in the range of 400~4000 cm–1 on a Nicolet MagNa-IR 500 spectrometer. Variable-temperature dc magnetic susceptibility data were collected using a Quantum Design MPMS-7 SQUID magnetometer.

    A mixture of H2L (0.0257 g, 0.1 mmol), Co(OAc)2·4H2O (0.0249 g, 0.1 mmol) and MeOH (1.5 mL) was sealed in a Pyrex-tube (10 mL). The tube was heated at 80 ℃ for 2 days under autogenous pressure. Cooling of the resultant solution to room temperature gave dark-red needle-like crystals. The crystals were collected by filtration, washed with MeOH (2 mL) and dried in air. Yield: 0.019 g (45% based on cobalt). Anal. Calcd. (%) for C70H78N4O22Co6 (Mr = 1672.94): C, 50.02; H, 4.68; N, 3.33. Found (%): C, 49.97; H, 4.65; N, 3.49. Selected IR data for 1 (cm−1): 1606 (s), 1529 (m), 1479 (m), 1446 (m), 1299 (w), 1251 (s), 1219 (s), 1165 (m), 1144 (m), 1122 (m), 1031 (m), 979 (m), 874 (w), 851 (w), 766 (w).

    The data collection for 1 were carried out on a Bruker Smart ApexⅡ diffractometer equipped with a graphite monochromator utilizing Mo radiation (λ = 0.71073 Å); the ω-2θ scan technique was applied. The crystal structure of complex 1 was solved with the Olex2 solve solution program[25] using Intrinsic Phasing and refined by full-matrix least-squares minimization with the ShelXL refinement package[26]. All non-hydrogen atoms were refined anisotropically. The collected crystal data for 1 are shown in Table S1. Selected bond lengths and bond angles of 1 are listed in Table 1 and Table S2.

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°) for 1
    DownLoad: CSV
    1
    Bond Dist. Bond Dist. Bond Dist.
    Co(1)–O(2) 1.905(4) Co(2)–O(2) 2.139(4) Co(4)–O(19) 2.199(4)
    Co(1)–O(13) 1.911(4) Co(3)–O(4) 1.933(4) Co(5)–O(9) 1.905(4)
    Co(1)–O(1) 1.912(4) Co(3)–O(5) 2.008(4) Co(5)–O(8) 1.906(4)
    Co(1)–N(4) 1.916(5) Co(3)–N(1) 2.011(5) Co(5)–N(3) 1.911(5)
    Co(1)–O(19) 1.925(4) Co(3)–O(1) 2.013(4) Co(5)–O(20) 1.925(4)
    Co(1)–O(17) 1.946(4) Co(3)–O(19) 2.212(4) Co(5)–O(16) 1.927(4)
    Co(2)–O(15) 2.049(4) Co(4)–O(10) 2.050(4) Co(5)–O(18) 1.941(4)
    Co(2)–O(14) 2.053(4) Co(4)–O(5) 2.058(4) Co(6)–O(11) 1.921(5)
    Co(2)–O(18) 2.068(4) Co(4)–O(18) 2.130(4) Co(6)–O(10) 1.995(4)
    Co(2)–O(17) 2.074(4) Co(4)–O(17) 2.138(4) Co(6)–N(2) 2.011(5)
    Co(2)–O(8) 2.132(4) Co(4)–O(20) 2.196(4) Co(6)–O(9) 2.025(4)
    Co(6)–O(20) 2.198(4)
    Angle (°) Angle (°) Angle (°)
    O(2)–Co(1)–O(13) 89.07(2) O(15)–Co(2)–O(17) 171.08(2) O(4)–Co(3)–O(19) 93.26(2)
    O(2)–Co(1)–O(1) 174.59(2) O(14)–Co(2)–O(17) 89.83(2) O(5)–Co(3)–O(19) 81.65(2)
    O(13)–Co(1)–O(1) 92.04(2) O(18)–Co(2)–O(17) 82.06(2) O(10)–Co(4)–O(5) 100.73(2)
    O(2)–Co(1)–N(4) 93.94(2) O(15)–Co(2)–O(8) 84.43(2) O(10)–Co(4)–O(18) 91.02(2)
    O(13)–Co(1)–N(4) 87.72(2) O(14)–Co(2)–O(8) 108.12(2) O(5)–Co(4)–O(18) 167.25(2)
    O(1)–Co(1)–N(4) 91.40(2) O(4)–Co(3)–O(5) 135.69(2) O(10)–Co(4)–O(17) 168.70(2)
    O(2)–Co(1)–O(19) 92.43(2) O(4)–Co(3)–N(1) 92.2(2) O(5)–Co(4)–O(17) 89.58(2)
    O(13)–Co(1)–O(19) 176.07(2) O(5)–Co(3)–N(1) 91.46(2) O(18)–Co(4)–O(17) 79.16(2)
    O(15)–Co(2)–O(14) 97.96(2) O(4)–Co(3)–O(1) 115.95(2) O(10)–Co(4)–O(20) 80.62(2)
    O(15)–Co(2)–O(18) 90.58(2) O(5)–Co(3)–O(1) 105.60(2) O(5)–Co(4)–O(20) 104.88(2)
    O(14)–Co(2)–O(18) 170.12(2) N(1)–Co(3)–O(1) 104.95(2) O(18)–Co(4)–O(20) 71.95(2)

    Complex 1 is prepared by mixing H2L and Co(OAc)2·4H2O in 1:1 ratio in MeOH under solvothermal conditions. This solvothermal reaction mode allows to crystallize complex 1 directly from the reaction solution.

    Several bands appear in the 1605~1445 cm–1 range (Fig. S1). Contributions from the carboxylic νas(CO2) and νs(CO2) vibrations would be expected in this region. The vibration of the C=N bonds is at 1445 cm–1. Several bands appear in the 1299~1121 cm–1 range, whilst the contributions from the vibrations of aromatic rings would be expected in this region. The overlap of the signals of aromatic rings with the vibrations of -CH3 and -CH2 groups makes assignments difficult. Several peaks in the 979~766 cm–1 range are found. They can be ascribed to the vibrations of C–H bonds.

    X-ray single-crystal analysis reveals that complex 1 crystallizes in the triclinic space group P¯1. The structure consists of six cobalt atoms, four L2– ligands, two acetate ions, two MeO ions and two solvent molecules (Fig. 1). Bond valence calculation[27, 28] indicated that two cobalt atoms (Co(1), Co(5) are in 3+ valence states while the other metal centers (Co(2), Co(3), Co(4) and Co(6)) are in 2+ oxidation states (Table 2). The presence of two Co ions is possibly due to the aerial oxidation of Co to Co. This phenomenon was observed in many polynuclear CoⅡ/Ⅲ clusters[29, 30]. The six cobalt atoms are located at six corners of a defective tetracubane. Two cubanes share one face and each misses one vertex (Fig. 1), and the Co(4) atom is shared by four cubanes. Thus, complex 1 looks like a butterfly (Fig. 1). In this hexanuclear compound, Co(1), Co(2), Co(4) and Co(5) atoms are hexa-coordinated, while Co(3) and Co(6) atoms are penta-coordinated. The six cobalt atoms are held together by six phenolate oxygen atoms from four L2– ligands, four oxygen atoms from two chelating acetates and four μ3-O atoms from four MeO groups. The coordination environments of Co(3) and Co(6) atoms are identical (NO4), and they are coordinated by two oxygen atoms and one nitrogen atom from one L2– ligand, one oxygen atom from a MeO- unit and one phenolate oxygen atom from another L2– ligand. The coordination environments of Co(1) and Co(5) atoms are the same (NO(5)). The six coordination atoms are from one L2– ligand (NO(2)), two MeO units and one acetate. The coordination spheres of Co(2) and Co(4) atoms are distinct. Co(4) atom is coordinated by four oxygen atoms of four MeO units and two oxygen atoms from two L2– ligands. Co(2) atom is coordinated by two oxygen atoms of two acetates, two oxygen atoms of two MeO ions and two oxygen atoms from two L2– ligands. The L2– ligand displays μ2: ɳ2, ɳ1, ɳ1, ɳ0 and μ3: ɳ0, ɳ2, ɳ1, ɳ2 chelating modes.

    Figure 1

    Figure 1.  (a) Molecular structure of 1 looking like a butterfly. (b) Coordination polyhedral of cobalt atoms. (c) Defect tetracubane structure of metal core. H atoms are omitted for clarity

    Table 2

    Table 2.  Oxidation States of Cobalt Atoms Obtained by Bond Valence Calculations[27, 28]
    DownLoad: CSV
    Atom Valence Atom Valence
    Co(1) 3.57 Co(4) 1.88
    Co(2) 2.06 Co(5) 3.29
    Co(3) 2.24 Co(6) 2.28

    Complex 1 is a member of a big family of hexanuclear cobalt clusters. These complexes display various structures including cage[31], hexameric ring[2, 21], and giant wheel[22]. The examples of hexanuclear Co/ clusters which exhibit defect tetracubane core are very rare[29].

    There are many Co7 clusters that show disc-like configuration, in which the seven cobalt centers are almost coplanar and occupy the vertexes of the six defect cubanes[32-41]. Compared the structure of complex 1 with those of Co7 clusters, complex 1 can be regarded as obtained by removing one of seven vertexes of the six cubanes.

    Direct current (dc) magnetic susceptibilities for complex 1 were determined at an applied magnetic field of 1000 Oe in the temperature range of 2~300 K. The χMT value of 1 at 300 K is 12.08 cm3·mol–1·K (Fig. 2), which is much larger than the spin-only value of 7.50 cm3·mol–1·K expected for four S = 3/2 uncoupled spins, probably due to the orbital contributions of the metal ions[42, 43]. As the temperature is lowered, the χMT value decreases gradually to a minimum value of 4.53 cm3·mol–1·K at 2 K. This behavior is indicative of the presence of antiferromagnetic exchange interactions between the metal ions. The relationship between 1/χM and temperature of 2~300 K obeys the Curie-Weiss Law of 1/χM = (Tθ)/C. The Curie constant C = 14.28 cm3·mol–1·K and Weiss constant θ = –49.84 K were obtained. The negative θ value confirms the antiferromagnetic exchange interactions.

    Figure 2

    Figure 2.  Temperature dependence of magnetic susceptibilities in the forms of χMT vs. T (a) and 1/χM vs. T (b) for 1 at 1 kOe. The red solid line corresponds to the best fit of the magnetic data

    In order to study the magnetic dynamic behavior of 1, the ac magnetic susceptibilities for complex 1 at 1000 Hz under a zero dc field were determined (Fig. 3). The χ ''susceptibilities do not increase with the decrease of temperature or no peaks were observed, which indicate that complex 1 is not a single-molecule magnet.

    Figure 3

    Figure 3.  Temperature dependence of the in-phase (χ') (a) and out-of-phase (χ'') (b) susceptibilities for 1 in the range of 2 to 25 K. The susceptibilities at 1000 Hz frequency under zero dc field

    A mixed-valence hexanuclear cobalt complex [Co2Co4(L)4(CH3COO)2(MeO)4]·2MeOH (1) supported by a Schiff base ligand H2L was synthesized. Complex 1 exhibits defect tetracubane-type architecture. Four cobalt atoms are hexa-coordinated and two cobalt atoms are penta-coordinated. The dc magnetic property measurements reveal the existence of antiferromagnetic interactions.


    1. [1]

      Han, S. D.; Song, W. C.; Zhao, J. P.; Yang, Q.; Liu, S. J.; Li, Y.; Bu, X. H. Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co24] macrocycles. Chem. Commun. 2013, 49, 871–873.  doi: 10.1039/C2CC37593A

    2. [2]

      Guo, L. Y.; Zeng, S. Y.; Jaglicic, Z.; Hu, Q. D.; Wang, S. X.; Wang, Z.; Sun, D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 2016, 55, 9006–9011.  doi: 10.1021/acs.inorgchem.6b01468

    3. [3]

      Guo, Z. Y.; Su, S. G.; Deng, R. P.; Zhang, H. J. An unprecedented ten-connected 3D metal-organic framework based on hexanuclear cobalt(Ⅱ) cluster building blocks. Inorg. Chem. Commun. 2015, 51, 9–12.  doi: 10.1016/j.inoche.2014.10.030

    4. [4]

      Liu, W.; Liu, M.; Du, S. C.; Li, Y. F.; Liao, W. P. Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4, 4'-bipyridyl. J. Mol. Stru. 2014, 1060, 58–62.  doi: 10.1016/j.molstruc.2013.12.044

    5. [5]

      Zhao, J. J.; Xu, J. C.; King, R. B. Hexanuclear cobalt carbonyl carbide clusters: the interplay between octahedral and trigonal prismatic structures. Inorg. Chem. 2008, 47, 9314–9320.  doi: 10.1021/ic8009089

    6. [6]

      Ma, Y. S.; Xue, F. F.; Tang, X. Y.; Chen, B.; Yuan, R. X. A hexanuclear antiferromagnetic cobalt(Ⅱ) wheel: synthesis, structure and magnetic properties. Inorg. Chem. Commun. 2012, 15, 285–287.  doi: 10.1016/j.inoche.2011.11.003

    7. [7]

      Tudor, V.; Madalan, A.; Lupu, V.; Lloret, F.; Julve, M.; Andruh, M. A new mixed-valence hexanuclear cobalt complex, [Co4Co2(dea)2(Hdea)4(piv)4](ClO4)2·H2O: synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2010, 363, 823–826.  doi: 10.1016/j.ica.2009.12.006

    8. [8]

      Shiga, T.; Oshio, H. Syntheses, structures and magnetic properties of mixed-valence pentanuclear [Mn3Mn2] and hexanuclear [Co4Co2] complexes derived from 3-formylsalicylic acid. Polyhedron 2007, 26, 1881–1884.  doi: 10.1016/j.poly.2006.09.026

    9. [9]

      Li, J.; Zhu, X. F.; Zhang, L. Y.; Chen, Z. N. Structures and luminescence properties of diethyldithiocarbamate-bridged polynuclear gold(I) cluster complexes with diphosphine/triphosphine. RSC Adv. 2015, 5, 34992–34998.  doi: 10.1039/C5RA01831E

    10. [10]

      Artemév, A. V.; Pritchina, E. A.; Rakhmanova, M. I.; Gritsan, N. P.; Bagryanskaya, I. Y.; Malysheva, S. F.; Belogorlova, N. A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: when size matters. Dalton Trans. 2019, 48, 2328–2337.  doi: 10.1039/C8DT04328K

    11. [11]

      Leng, J. D.; Xing, S. K.; Herchel, R.; Liu, J. L.; Tong, M. L. Disklike hepta- and tridecanuclear cobalt clusters. Synthesis, structures, magnetic properties, and DFT calculations. Inorg. Chem. 2014, 53, 5458–5466.  doi: 10.1021/ic403093r

    12. [12]

      Nesterov, D. S.; Nesterova, O. V. Polynuclear cobalt complexes as catalysts for light-driven water oxidation: a review of recent advances. Catalysts 2018, 8, 602/1–602/21.

    13. [13]

      Singha Mahapatra, T.; Basak, D.; Chand, S.; Lengyel, J.; Shatruk, M.; Bertolasi, V.; Ray, D. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Trans. 2016, 45, 13576–13589.  doi: 10.1039/C6DT02494G

    14. [14]

      Murrie, M. Cobalt(Ⅱ) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995.  doi: 10.1039/b913279c

    15. [15]

      Wang, X. T.; Wang, B. W.; Wang, Z. M.; Zhang, W.; Gao, S. Azide and oxo bridged ferromagnetic clusters: three face-shared tetracubane Ni(Ⅱ)/Co(Ⅱ) hexamers and a wheel-shaped SMM-like Co(Ⅱ) heptamer. Inorg. Chim. Acta 2008, 361, 3895–3902.  doi: 10.1016/j.ica.2008.03.020

    16. [16]

      Liu, Y. N.; Hou, J. L.; Wang, Z.; Gupta, R. K.; Jaglicic, Z.; Jagodic, M.; Wang, W. G.; Tung, C. H.; Sun, D. An octanuclear cobalt cluster protected by macrocyclic ligand: in situ ligand-transformation-assisted assembly and single-molecule magnet behavior. Inorg. Chem. 2020, 59, 5683–5693.  doi: 10.1021/acs.inorgchem.0c00449

    17. [17]

      Murrie, M.; Teat, S. J.; Stoeckli-Evans, H.; Guedel, H. U. Synthesis and characterization of a cobalt(Ⅱ) single-molecule magnet. Angew. Chem., Int. Ed. 2003, 42, 4653–4656.  doi: 10.1002/anie.200351753

    18. [18]

      Mannini, M.; Pineider, F.; Danieli, C.; Totti, F.; Sorace, L.; Sainctavit, P.; Arrio, M. A.; Otero, E.; Joly, L.; Cezar, J. C.; Cornia, A.; Sessoli, R. Quantum tunneling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 2010, 468, 417–421.  doi: 10.1038/nature09478

    19. [19]

      Ariciu, A. M.; Woen, D. H.; Huh, D. N.; Nodaraki, L. E.; Kostopoulos, A. K.; Goodwin, C. A. P.; Chilton, N. F.; Mclnnes, E. J. L.; Winpenny, R. E. P.; Evans, W. J.; Tuna, F. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 2019, 10, 3330–3337.  doi: 10.1038/s41467-019-11309-3

    20. [20]

      Chandra, A.; Mebs, S.; Kundu, S.; Kuhlmann, U.; Hildebrandt, P.; Dau, H.; Ray, K. Catalytic dioxygen reduction mediated by a tetranuclear cobalt complex supported on a stannoxane core. Dalton Trans. 2020, 49, 6065–6073.  doi: 10.1039/D0DT00475H

    21. [21]

      Lin, J. Q.; Meng, X. Y.; Zheng, M.; Ma, B. C.; Ding, Y. Insight into a hexanuclear cobalt complex: strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Cataly. B-Environ. 2019, 241, 351–358.  doi: 10.1016/j.apcatb.2018.09.052

    22. [22]

      Monte-Perez, I.; Kundu, S.; Chandra, A.; Craigo, K. E.; Chernev, P.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Greco, C.; Van Stappen, C.; Lehnert, N.; Ray, K. Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex J. Am. Chem. Soc. 2017, 139, 15033–15042.  doi: 10.1021/jacs.7b07127

    23. [23]

      Gao, J. K.; Bai, L. L.; Zhang, Q.; Li, Y. X.; Rakesh, G.; Lee, J. M.; Yang, Y. H.; Zhang, Q. C. Co6(µ3-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Trans. 2014, 43, 2559–2565.  doi: 10.1039/C3DT52562G

    24. [24]

      Huang, Y.; Qin, Y. R.; Ge, Y.; Cui, Y. F.; Zhang, X. M.; Li, Y. H.; Yao, J. L. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42- and Cr2O72-. New J. Chem. 2019, 43, 19344–19354.  doi: 10.1039/C9NJ04893F

    25. [25]

      Sheldrick, G. M. A. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    26. [26]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    27. [27]

      Brown, I. D.; Altermat, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244–247.

    28. [28]

      Brese, N. E.; O'keeffe, M. Bond-valence parameters for solids. Acta Cryst. 1991. B47, 192–197.

    29. [29]

      Alley, K. G.; Bircher, R.; Waldmann, O.; Ochsenbein, S. T.; Gudel, H. U.; Moubaraki, B.; Murray, K. S.; Fernandez-Alonso, F.; Abrahams, B. F.; Boskovic, C. Mixed-valent cobalt spin clusters: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta- and mononuclear fragments. Inorg. Chem. 2006, 45, 8950–8957.  doi: 10.1021/ic060938e

    30. [30]

      Cao, Y. Y.; Chen, Y. M.; Li, L.; Gao, D. D.; Liu, W.; Hu, H. L.; Li, W.; Li, Y. H. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid. Dalton Trans. 2013, 42, 10912–10918.  doi: 10.1039/c3dt51140e

    31. [31]

      Sánchez, R. H.; Champsaur, A. M.; Choi, B.; Wang, S. G.; Bu, W.; Roy, X.; Chen, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Paley, D. W. Electron cartography in clusters. Angew. Chem. Int. Ed. 2018, 57, 13815–13820.  doi: 10.1002/anie.201806426

    32. [32]

      Ferguson, A.; Parkin, A.; Sanchez-Benitez, J.; Kamenev, K.; Wernsdorfer, W.; Murrie, M. A mixed-valence Co7 single-molecule magnet with C3 symmetry. Chem. Commun. 2007, 3473–3475.

    33. [33]

      Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixed-valence Co3Co4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.  doi: 10.1021/ja8029416

    34. [34]

      Zhang, S. H.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co(Ⅱ) cluster and a heterometallic cubanic Co(Ⅱ) cluster. CrystEngComm. 2009, 11, 865–872.  doi: 10.1039/b815675a

    35. [35]

      Zhou, Y. L.; Zeng, M. H.; Wei, L. Q.; Li, B. W.; Kurmoo, M. Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk clusters and their magnetic properties. Chem. Mater. 2010, 22, 4295–4303.  doi: 10.1021/cm1011229

    36. [36]

      Wei, L. Q.; Li, B. W.; Hua, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-Co clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510–516.  doi: 10.1039/C0CE00085J

    37. [37]

      Zhang, S. H.; Ma, L. F.; Zou, H. H.; Wang, Y. G.; Liang, H.; Zeng, M. H. Anion induced diversification from heptanuclear to tetranuclear clusters: syntheses, structures and magnetic properties. Dalton Trans. 2011, 40, 11402–11409.  doi: 10.1039/c1dt10517e

    38. [38]

      Kitos, A. A.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Nastopoulos, V.; Tasiopoulos, A. J.; Manos, M. J.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P. The search for cobalt single-molecule magnets: a disk-like CoCo6 cluster with a ligand derived from a novel transformation of 2-acetylpyridine. Polyhedron 2011, 30, 2987–2996.  doi: 10.1016/j.poly.2011.02.013

    39. [39]

      Meally, S. T.; McDonald, C.; Kealy, P.; Taylor, S. M.; Brechin, E. K.; Jones, L. F. Investigating the solid state hosting abilities of homo- and hetero-valent [Co7] metallocalix[6]arenes. Dalton Trans. 2012, 41, 5610–5616.  doi: 10.1039/c2dt12229d

    40. [40]

      Zhang, S. H.; Zou, H. H.; Wang, Y. G.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and magnetic behavior of a Schiff base heptanuclear cobalt cluster. J. Cluster Sci. 2014, 25, 357–365.  doi: 10.1007/s10876-013-0614-z

    41. [41]

      Zhang, S. H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; Liang, H. Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(Ⅱ) cluster. J. Coord. Chem. 2014, 67, 3155–3166.  doi: 10.1080/00958972.2014.964221

    42. [42]

      Boudalis, A. K.; Raptopoulou, C. P.; Abarca, B.; Ballesteros, R.; Chadlaoui, M.; Tuchagues, J. P.; Terzis, A. Co chemistry of 2, 6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co cluster exhibiting superparamagnetic relaxation. Angew. Chem., Int. Ed. 2006, 45, 432–435.  doi: 10.1002/anie.200502519

    43. [43]

      Cheng, X. N.; Zhang, W. X.; Zheng, Y. Z.; Chen, X. M. The slow magnetic relaxation observed in a mixed carboxylate/hydroxide-bridged compound [Co2Na(4-cpa)2(μ3-OH)(H2O)] featuring magnetic Δ-chains. Chem. Commun. 2006, 34, 3603–3605.

    1. [1]

      Han, S. D.; Song, W. C.; Zhao, J. P.; Yang, Q.; Liu, S. J.; Li, Y.; Bu, X. H. Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co24] macrocycles. Chem. Commun. 2013, 49, 871–873.  doi: 10.1039/C2CC37593A

    2. [2]

      Guo, L. Y.; Zeng, S. Y.; Jaglicic, Z.; Hu, Q. D.; Wang, S. X.; Wang, Z.; Sun, D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 2016, 55, 9006–9011.  doi: 10.1021/acs.inorgchem.6b01468

    3. [3]

      Guo, Z. Y.; Su, S. G.; Deng, R. P.; Zhang, H. J. An unprecedented ten-connected 3D metal-organic framework based on hexanuclear cobalt(Ⅱ) cluster building blocks. Inorg. Chem. Commun. 2015, 51, 9–12.  doi: 10.1016/j.inoche.2014.10.030

    4. [4]

      Liu, W.; Liu, M.; Du, S. C.; Li, Y. F.; Liao, W. P. Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4, 4'-bipyridyl. J. Mol. Stru. 2014, 1060, 58–62.  doi: 10.1016/j.molstruc.2013.12.044

    5. [5]

      Zhao, J. J.; Xu, J. C.; King, R. B. Hexanuclear cobalt carbonyl carbide clusters: the interplay between octahedral and trigonal prismatic structures. Inorg. Chem. 2008, 47, 9314–9320.  doi: 10.1021/ic8009089

    6. [6]

      Ma, Y. S.; Xue, F. F.; Tang, X. Y.; Chen, B.; Yuan, R. X. A hexanuclear antiferromagnetic cobalt(Ⅱ) wheel: synthesis, structure and magnetic properties. Inorg. Chem. Commun. 2012, 15, 285–287.  doi: 10.1016/j.inoche.2011.11.003

    7. [7]

      Tudor, V.; Madalan, A.; Lupu, V.; Lloret, F.; Julve, M.; Andruh, M. A new mixed-valence hexanuclear cobalt complex, [Co4Co2(dea)2(Hdea)4(piv)4](ClO4)2·H2O: synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2010, 363, 823–826.  doi: 10.1016/j.ica.2009.12.006

    8. [8]

      Shiga, T.; Oshio, H. Syntheses, structures and magnetic properties of mixed-valence pentanuclear [Mn3Mn2] and hexanuclear [Co4Co2] complexes derived from 3-formylsalicylic acid. Polyhedron 2007, 26, 1881–1884.  doi: 10.1016/j.poly.2006.09.026

    9. [9]

      Li, J.; Zhu, X. F.; Zhang, L. Y.; Chen, Z. N. Structures and luminescence properties of diethyldithiocarbamate-bridged polynuclear gold(I) cluster complexes with diphosphine/triphosphine. RSC Adv. 2015, 5, 34992–34998.  doi: 10.1039/C5RA01831E

    10. [10]

      Artemév, A. V.; Pritchina, E. A.; Rakhmanova, M. I.; Gritsan, N. P.; Bagryanskaya, I. Y.; Malysheva, S. F.; Belogorlova, N. A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: when size matters. Dalton Trans. 2019, 48, 2328–2337.  doi: 10.1039/C8DT04328K

    11. [11]

      Leng, J. D.; Xing, S. K.; Herchel, R.; Liu, J. L.; Tong, M. L. Disklike hepta- and tridecanuclear cobalt clusters. Synthesis, structures, magnetic properties, and DFT calculations. Inorg. Chem. 2014, 53, 5458–5466.  doi: 10.1021/ic403093r

    12. [12]

      Nesterov, D. S.; Nesterova, O. V. Polynuclear cobalt complexes as catalysts for light-driven water oxidation: a review of recent advances. Catalysts 2018, 8, 602/1–602/21.

    13. [13]

      Singha Mahapatra, T.; Basak, D.; Chand, S.; Lengyel, J.; Shatruk, M.; Bertolasi, V.; Ray, D. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Trans. 2016, 45, 13576–13589.  doi: 10.1039/C6DT02494G

    14. [14]

      Murrie, M. Cobalt(Ⅱ) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995.  doi: 10.1039/b913279c

    15. [15]

      Wang, X. T.; Wang, B. W.; Wang, Z. M.; Zhang, W.; Gao, S. Azide and oxo bridged ferromagnetic clusters: three face-shared tetracubane Ni(Ⅱ)/Co(Ⅱ) hexamers and a wheel-shaped SMM-like Co(Ⅱ) heptamer. Inorg. Chim. Acta 2008, 361, 3895–3902.  doi: 10.1016/j.ica.2008.03.020

    16. [16]

      Liu, Y. N.; Hou, J. L.; Wang, Z.; Gupta, R. K.; Jaglicic, Z.; Jagodic, M.; Wang, W. G.; Tung, C. H.; Sun, D. An octanuclear cobalt cluster protected by macrocyclic ligand: in situ ligand-transformation-assisted assembly and single-molecule magnet behavior. Inorg. Chem. 2020, 59, 5683–5693.  doi: 10.1021/acs.inorgchem.0c00449

    17. [17]

      Murrie, M.; Teat, S. J.; Stoeckli-Evans, H.; Guedel, H. U. Synthesis and characterization of a cobalt(Ⅱ) single-molecule magnet. Angew. Chem., Int. Ed. 2003, 42, 4653–4656.  doi: 10.1002/anie.200351753

    18. [18]

      Mannini, M.; Pineider, F.; Danieli, C.; Totti, F.; Sorace, L.; Sainctavit, P.; Arrio, M. A.; Otero, E.; Joly, L.; Cezar, J. C.; Cornia, A.; Sessoli, R. Quantum tunneling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 2010, 468, 417–421.  doi: 10.1038/nature09478

    19. [19]

      Ariciu, A. M.; Woen, D. H.; Huh, D. N.; Nodaraki, L. E.; Kostopoulos, A. K.; Goodwin, C. A. P.; Chilton, N. F.; Mclnnes, E. J. L.; Winpenny, R. E. P.; Evans, W. J.; Tuna, F. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 2019, 10, 3330–3337.  doi: 10.1038/s41467-019-11309-3

    20. [20]

      Chandra, A.; Mebs, S.; Kundu, S.; Kuhlmann, U.; Hildebrandt, P.; Dau, H.; Ray, K. Catalytic dioxygen reduction mediated by a tetranuclear cobalt complex supported on a stannoxane core. Dalton Trans. 2020, 49, 6065–6073.  doi: 10.1039/D0DT00475H

    21. [21]

      Lin, J. Q.; Meng, X. Y.; Zheng, M.; Ma, B. C.; Ding, Y. Insight into a hexanuclear cobalt complex: strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Cataly. B-Environ. 2019, 241, 351–358.  doi: 10.1016/j.apcatb.2018.09.052

    22. [22]

      Monte-Perez, I.; Kundu, S.; Chandra, A.; Craigo, K. E.; Chernev, P.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Greco, C.; Van Stappen, C.; Lehnert, N.; Ray, K. Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex J. Am. Chem. Soc. 2017, 139, 15033–15042.  doi: 10.1021/jacs.7b07127

    23. [23]

      Gao, J. K.; Bai, L. L.; Zhang, Q.; Li, Y. X.; Rakesh, G.; Lee, J. M.; Yang, Y. H.; Zhang, Q. C. Co6(µ3-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Trans. 2014, 43, 2559–2565.  doi: 10.1039/C3DT52562G

    24. [24]

      Huang, Y.; Qin, Y. R.; Ge, Y.; Cui, Y. F.; Zhang, X. M.; Li, Y. H.; Yao, J. L. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42- and Cr2O72-. New J. Chem. 2019, 43, 19344–19354.  doi: 10.1039/C9NJ04893F

    25. [25]

      Sheldrick, G. M. A. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    26. [26]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    27. [27]

      Brown, I. D.; Altermat, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244–247.

    28. [28]

      Brese, N. E.; O'keeffe, M. Bond-valence parameters for solids. Acta Cryst. 1991. B47, 192–197.

    29. [29]

      Alley, K. G.; Bircher, R.; Waldmann, O.; Ochsenbein, S. T.; Gudel, H. U.; Moubaraki, B.; Murray, K. S.; Fernandez-Alonso, F.; Abrahams, B. F.; Boskovic, C. Mixed-valent cobalt spin clusters: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta- and mononuclear fragments. Inorg. Chem. 2006, 45, 8950–8957.  doi: 10.1021/ic060938e

    30. [30]

      Cao, Y. Y.; Chen, Y. M.; Li, L.; Gao, D. D.; Liu, W.; Hu, H. L.; Li, W.; Li, Y. H. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid. Dalton Trans. 2013, 42, 10912–10918.  doi: 10.1039/c3dt51140e

    31. [31]

      Sánchez, R. H.; Champsaur, A. M.; Choi, B.; Wang, S. G.; Bu, W.; Roy, X.; Chen, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Paley, D. W. Electron cartography in clusters. Angew. Chem. Int. Ed. 2018, 57, 13815–13820.  doi: 10.1002/anie.201806426

    32. [32]

      Ferguson, A.; Parkin, A.; Sanchez-Benitez, J.; Kamenev, K.; Wernsdorfer, W.; Murrie, M. A mixed-valence Co7 single-molecule magnet with C3 symmetry. Chem. Commun. 2007, 3473–3475.

    33. [33]

      Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixed-valence Co3Co4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.  doi: 10.1021/ja8029416

    34. [34]

      Zhang, S. H.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co(Ⅱ) cluster and a heterometallic cubanic Co(Ⅱ) cluster. CrystEngComm. 2009, 11, 865–872.  doi: 10.1039/b815675a

    35. [35]

      Zhou, Y. L.; Zeng, M. H.; Wei, L. Q.; Li, B. W.; Kurmoo, M. Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk clusters and their magnetic properties. Chem. Mater. 2010, 22, 4295–4303.  doi: 10.1021/cm1011229

    36. [36]

      Wei, L. Q.; Li, B. W.; Hua, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-Co clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510–516.  doi: 10.1039/C0CE00085J

    37. [37]

      Zhang, S. H.; Ma, L. F.; Zou, H. H.; Wang, Y. G.; Liang, H.; Zeng, M. H. Anion induced diversification from heptanuclear to tetranuclear clusters: syntheses, structures and magnetic properties. Dalton Trans. 2011, 40, 11402–11409.  doi: 10.1039/c1dt10517e

    38. [38]

      Kitos, A. A.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Nastopoulos, V.; Tasiopoulos, A. J.; Manos, M. J.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P. The search for cobalt single-molecule magnets: a disk-like CoCo6 cluster with a ligand derived from a novel transformation of 2-acetylpyridine. Polyhedron 2011, 30, 2987–2996.  doi: 10.1016/j.poly.2011.02.013

    39. [39]

      Meally, S. T.; McDonald, C.; Kealy, P.; Taylor, S. M.; Brechin, E. K.; Jones, L. F. Investigating the solid state hosting abilities of homo- and hetero-valent [Co7] metallocalix[6]arenes. Dalton Trans. 2012, 41, 5610–5616.  doi: 10.1039/c2dt12229d

    40. [40]

      Zhang, S. H.; Zou, H. H.; Wang, Y. G.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and magnetic behavior of a Schiff base heptanuclear cobalt cluster. J. Cluster Sci. 2014, 25, 357–365.  doi: 10.1007/s10876-013-0614-z

    41. [41]

      Zhang, S. H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; Liang, H. Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(Ⅱ) cluster. J. Coord. Chem. 2014, 67, 3155–3166.  doi: 10.1080/00958972.2014.964221

    42. [42]

      Boudalis, A. K.; Raptopoulou, C. P.; Abarca, B.; Ballesteros, R.; Chadlaoui, M.; Tuchagues, J. P.; Terzis, A. Co chemistry of 2, 6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co cluster exhibiting superparamagnetic relaxation. Angew. Chem., Int. Ed. 2006, 45, 432–435.  doi: 10.1002/anie.200502519

    43. [43]

      Cheng, X. N.; Zhang, W. X.; Zheng, Y. Z.; Chen, X. M. The slow magnetic relaxation observed in a mixed carboxylate/hydroxide-bridged compound [Co2Na(4-cpa)2(μ3-OH)(H2O)] featuring magnetic Δ-chains. Chem. Commun. 2006, 34, 3603–3605.

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    9. [9]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    12. [12]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    13. [13]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    14. [14]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    15. [15]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    16. [16]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    17. [17]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    18. [18]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    19. [19]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    20. [20]

      Kun YangAnhui LiPeng ZhangGuilin LiuLiusai HuangYumeng FoLuyuan YangXiangyang JiJian LiuWeiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663

Metrics
  • PDF Downloads(1)
  • Abstract views(519)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return