Citation: Hui-Xin ZHANG, Meng-Yao ZHANG, Ying-Ying ZHANG, Yong-Fei ZENG, Gui-Yan LIU. Synthesis, Crystal Structure and Catalytic Activity of a Hexa-µ-chloro-tetrakis-(1-triphenylmethyltriazole)-µ4-oxo-tetracopper(Ⅱ)[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 482-486. doi: 10.14102/j.cnki.0254–5861.2011–2940 shu

Synthesis, Crystal Structure and Catalytic Activity of a Hexa-µ-chloro-tetrakis-(1-triphenylmethyltriazole)-µ4-oxo-tetracopper(Ⅱ)

  • Corresponding author: Yong-Fei ZENG, yfzeng@nankai.edu.cn Gui-Yan LIU, guiyanliu2013@163.com
  • Received Date: 10 July 2020
    Accepted Date: 9 October 2020

    Fund Project: the Natural Science Foundation of Tianjin 16JCYBJC19700the National Natural Science Foundation of China 21771138

Figures(2)

  • A new Cu(Ⅱ) complex, [Cu4Cl6O(1-TrTz)4] where 1-TrTz is 1-trityl-1H-[1,2,4]triazole, was synthesized by the reaction of 1-trityl-1H-[1,2,4]triazole with two hydrated cupric chlorides, and its structure was characterized by X-ray single-crystal diffraction. [Cu4Cl6O(1-TrTz)4] is of monoclinic system, space group P21/c, a = 12.5024(13), b = 26.400(3), c = 28.588(3) Å, β = 112.807(4)°, V = 8698.1(16) Å3, Z = 4, ρcalc = 1.411 g/cm3, μ = 1.265 mm–1, F(000) = 3772, the final R = 0.1293 and wR = 0.3644 for 55774 observed reflections (I > 2σ(I)), R(all data) = 0.1972, wR(all data) = 0.3989, completeness to theta of 25.242 is 99.9% and GOF = 1.103. In the structure of [Cu4Cl6O(1-TrTz)4], the central O atom is tetrahedral and is coordinated with four Cu atoms. The distance between copper and oxygen bond is 1.909(6) Å. In addition, the catalytic property of this complex was investigated and it could effectively catalyze the Ullmann coupling reaction of various (hetero)aryl chlorides with azoles.
  • Copper-catalyzed Ullmann coupling reactions play an important role in academia and industry due to its low cost and toxicity, and have been widely used in the synthesis of organic compounds[1-4]. Traditionally, the reaction usually required higher temperature. In recent years, with the development of various effective ligands, the reaction temperature is gradually moderate. However, most of the Ullmann coupling reactions still need expensive and active (hetero)aryl iodides or (hetero)aryl bromides, and high catalyst loading is also uneconomical[5]. Therefore, the development of efficient catalysts is still a challenge.

    Nitrogen-containing ligands are commonly used in Ullmann coupling reactions, which are mainly due to their non-toxic, cheap and stable to air and moisture. At present, the reported nitrogen-containing ligands are mainly diamines[6-11], phenanthroline[12-16], 8-hydroxyquinolines[17, 18], Schiff base[19], 2,2'-bipyridine[20] and other nitrogen-containing ligands[21, 22].

    Herein, 1-trityl-1H-[1,2,4]triazole was selected as a ligand to react with two hydrated cupric chlorides and a new hexa-µ-chloro-tetrakis-(1-triphenylmethyltriazole)-µ4-oxo-tetracopper(Ⅱ) was obtained. Furthermore, the catalytic activity of new complex for Ullmann coupling reaction was also investigated.

    Triphenylmethyl bromide, 1,2,4-triazole and triethylamine were purchased from Tianjin Heowns Biochemical Technology Co., Ltd (Tianjin, China). Dichloromethane was obtained from Tianjin Sixth Chemical Reagent Factory (Tianjin, China). X-ray diffraction data were collected on a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer. 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE Ⅲ 400MHz NMR at room temperature.

    A 25 mL round-bottom flask was charged with 1,2,4-triazole (500 mg, 7.25 mmol) and dichloromethane (DCM, 10.0 mL). Then, 2 mL triethylamine (TEA) and a solution of triphenylmethyl bromide (2.34 g, 7.25 mmol) in 10 mL DCM were added dropwise under an ice-water bath. After the mixture was stirred for 16 h, 10 mL water was added. The aqueous layer was extracted with DCM (2 × 20 mL) and combined organic phases were dried over Na2SO4. After the solvent was evaporated, the white powder was obtained. The crude product was purified by recrystallization from methanol to give pure compound 1 as a white powder. Yield: 2.14 g, 95%. 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 8.03 (s, 1H), 7.34 (s, 9H), 7.14~7.13 (m, 6H) ppm. 13C NMR (100 MHz, CDCl3) δ 151.6, 145.6, 141.9, 129.9, 128.3, 128.1, 78.1 ppm.

    A round-bottom flask was charged with compound 1 (40 mg, 0.128 mmol), CuCl2·2H2O (21.8 mg, 0.128 mmol), and methanol (3 mL). The mixture was heated at 60 ℃ for 5 h. After cooling to room temperature, the crude product was obtained by filtration. Then, the crude product was purified by recrystallization from dichloromethane to give complex 2 as a yellow crystal. Yield: 8.3 mg, 30%.

    A yellow single crystal of complex 2 (0.22mm × 0.21mm × 0.18mm) was selected on a glass fiber for measurement. The X-ray crystallographic data were collected on a Bruker SMART APEX Ⅱ CCD diffractometer with a graphitemonochromated Mo-Ka radiation (λ = 0.71073 Å) using a φ-ω scan technique in the range of 1.09≤θ≤26.50° at 296(2) K. The structure of complex 2 was solved by direct methods and refined by applying a full-matrix least-squares procedure based on F2 using values SHELXS-2014/7[24]. The non-hydrogen atoms were refined anisotropically and the hydrogen atoms bound to carbon atoms were positioned geometrically and refined using a riding model. The representative bond lengths and bond angles of complex 2 are listed in Table 1.

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°)
    DownLoad: CSV
    Bond Dist. Bond Dist. Bond Dist. Dist. Bond
    Cu(1)–O(1)Cu(1)–N(1) 1.909(6)1.953(9) Cu(2)–O(1)Cu(2)–N(4) 1.899(6)1.939(10) Cu(3)–O(1)Cu(3)–N(7) 1.878(6)1.931(8) Cu(4)–O(1)Cu(4)–N(10) 1.904(7)1.925(10)
    Angle (°) Angle (°) Angle (°) Angle (°)
    O(1)-Cu(1)-N(1) 176.0(4) O(1)-Cu(2)-N(4) 176.8(4) O(1)-Cu(3)-N(7) 177.6(4) O(1)-Cu(4)-N(10) 178.6(4)
    O(1)-Cu(1)-a(4) 86.9(2) O(1)-Cu(2)-Cl(5) 85.8(2) O(1)-Cu(3)-Cl(1) 85.9(2) O(1)-Cu(4)-Cl(2) 86.7(2)
    N(1)-Cu(1)-Cl(4) 91.2(3) N(4)-Cu(2)-Cl(5) 90.9(3) N(7)-Cu(3)-Cl(1) 94.7(3) N(10)-Cu(4)-Cl(2) 94.5(3)
    O(1)-Cu(1)-Cl(5) 84.6(2) O(1)-Cu(2)-Cl(3) 87.8(2) O(1)-Cu(3)-Cl(6) 87.4(2) O(1)-Cu(4)-Cl(4) 85.5(2)
    Cl(4)-Cu(1)-Cl(5) 122.27(14) Cl(5)-Cu(2)-Cl(6) 119.79(13) Cl(6)-Cu(3)-Cl(2) 116.5(10) Cl(2)-Cu(4)-Cl(4) 118.6(12)

    Compound 1 was synthesized according to the reported literature[23]. Reacting 1,2,4-triazole with triphenylmethyl bromide in DCM in the presence of TEA at room temperature gave compound 1 as a white powder. Complex 2 as a yellow crystal (30% yield) was obtained by the coordination of compound 1 with CuCl2.2H2O in methanol at 60 ℃.

    X-ray single-crystal diffraction showed complex 2 crystallized in monoclinic space group P21/c. X-ray single-crystal structure of complex 2 is shown in Fig. 1. The tetranuclear complex molecule is composed of four Cu atoms and a central O atom to form a tetrahedral structure. Each Cu atom is connected to the other three Cu atoms by bridging Cl atoms, and to the 1-trityl-1H-[1,2,4]triazole ligand by N atoms. According to the graph and data analysis, the tetrahedral Cu4O has a very slight deformation (three Cu–O–Cu bond angles are about 110o, two Cu–O–Cu bond angles are 108o, and another is 109o). The Cu–O bond lengths fall in the range of 1.878~1.909 Å, the Cu–Cl distances vary from 2.394 to 2.528 Å, and the angles around Cu are in the 176.0~178.6º region.

    Figure 1

    Figure 1.  X-ray single-crystal structure of complex 2. All hydrogen atoms are omitted for clarity. Symmetry code: 1 – x, 0.5 + y, 0.5 – z

    Complex 2 was analyzed by PLATON Windows Taskbar crystal software and no classical hydrogen bonds were found. However, a three-dimensional (3D) supramolecular network was constructed by connecting plentiful non-classical intermolecular hydrogen bonds (C–H⋯Cl bonds), as shown in Fig. 2. The distances between the acceptors and donors for C(40)–H(40)⋯Cl(4), C(62)–H(62)⋯Cl(5) and C(83)– H(83)⋯Cl(5) hydrogen bonds are 2.851, 2.846, and 2.567 Å, respectively (Table 2).

    Table 2

    Table 2.  Hydrogen Bonds for Complex 3 (Å, °)
    DownLoad: CSV
    D–H⋯A d(D–H) d(H⋯A) d(D⋯A) ∠DHA Symmetry code
    C(40)–H(40)⋯Cl(4) 0.93 2.85 3.782(12) 130 1–x, 0.5 + y, 0.5 – z
    C(62) –H(62)⋯Cl(5) 0.93 2.84 3.776(12) 129 2 – x, 0.5 + y, 0.5 – z
    C(83) –H(83)⋯Cl(5) 0.93 2.56 3.497(14) 151 2 – x, 0.5 – y, 0.5 + z

    Figure 2

    Figure 2.  View of the 3D supramolecular network formed by hydrogen bonds (dashed lines)

    The catalytic property of complex 2 was investigated by using it to catalyze the Ullmann coupling reactions of various (hetero)aryl chlorides with azoles. The reactions were carried out under the following conditions: (hetero)aryl chlorides (1 equiv), azoles (1.2 equiv), and Cs2CO3 (2 equiv) in DMF in the presence of 2 at 80 ℃ for 48 h, and the results are shown in Table 3. Imidazole, benzimidazole, 1,2,4-triazole, 4-phenyl-1H-imidazole and 2-methylimidazole all react well with p-chloronitrobenzene and gave the corresponding coupling products in high to excellent yield (98%, 98%, 98%, 95% and 80%, respectively) within 48 h (entries 1~5). However, for 2-methylimidazole and 2-methylbenzoimidazole, the coupling reactions didn't go smoothly and the yields of the products were moderate (50% and 40%, respectively) (entries 6 and 7). Meanwhile, 2-chloroquinoline and 2-chloropyridine also used as substrates. Both 2-chloroquinoline and 2-chloropyridine could couple with imidazole and got good yields (85% and 80%). Meanwhile, 2-chloropyridine also reacted well with 4-phenyl-1H-imidazole with a yield of 78%.

    Table 3

    Table 3.  Coupling of Various (Hetero)aryl chlorides with Azolesa
    DownLoad: CSV

    In summary, a new tetranuclear copper complex [Cu4Cl6O(1-TrTz)4] was constructed via the reaction of 1-trityl-1H-[1,2,4]triazole with two hydrated cupric chlorides, and its structure was characterized by X-ray single-crystal diffraction. The tetranuclear copper complex molecule was connected into a 3D network via plentiful weak non-classical C–H⋯Cl hydrogen bonds. Furthermore, complex 2 could be used as a catalyst to effectively catalyze the Ullmann coupling reaction of various (hetero)aryl chlorides with azoles under mild conditions.


    1. [1]

      Ley, S. V.; Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation. Angew. Chem., Int. Ed. 2003, 42, 5400–49.  doi: 10.1002/anie.200300594

    2. [2]

      Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev. 2008, 108, 3054–3131.  doi: 10.1021/cr8002505

    3. [3]

      Ma, D.; Cai, Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc. Chem. Soc. 2008, 41, 1450–1460.  doi: 10.1021/ar8000298

    4. [4]

      Surry, D. S.; Buchwald, S. L. Diamine ligands in copper-catalyzed reactions. Chem. Sci. 2010, 1, 13–31.  doi: 10.1039/c0sc00107d

    5. [5]

      Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359–1470.  doi: 10.1021/cr000664r

    6. [6]

      Klapars, A.; Antilla, J. C.; Huang, X. H.; Buchwald, S. L. A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles. J. Am. Chem. Soc. 2001, 123, 7727–7729.  doi: 10.1021/ja016226z

    7. [7]

      Klapars, A.; Huang, X. H.; Buchwald, S. L. A general and efficient copper catalyst for the amidation of aryl halides. J. Am. Chem. Soc. 2002, 124, 7421–7428.  doi: 10.1021/ja0260465

    8. [8]

      Antilla, J. C.; Klapars, A.; Buchwald, S. L. The copper-catalyzed N-arylation of indoles. J. Am. Chem. Soc. 2002, 124, 11684–11688.  doi: 10.1021/ja027433h

    9. [9]

      Larsson, P. F.; Correa, A.; Carril, M.; Norrby, P. O.; Bolm, C. Copper-catalyzed cross-couplings with part-per-million catalyst loadings. Angew. Chem., Int. Ed. 2009, 48, 5691–5693.  doi: 10.1002/anie.200902236

    10. [10]

      Zhou, W.; Fan, M. Y.; Yin, J. L.; Jiang, Y. W.; Ma, D. W. CuI/oxalic diamide catalyzed coupling reaction of (hetero)aryl chlorides and amines. J. Am. Chem. Soc. 2015, 137, 11942–11945.  doi: 10.1021/jacs.5b08411

    11. [11]

      Pawar, G. G.; Wu, H. B.; De, S.; Ma, D. W. Copper(I) oxide/N, N'-bis[(2-furyl)methyl]oxalamide-catalyzed coupling of (hetero)aryl halides and nitrogen heterocycles at low catalytic loading. Adv. Synth. Catal. 2017, 359, 1631–1636.  doi: 10.1002/adsc.201700026

    12. [12]

      Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett. 1999, 40, 2657–2660.  doi: 10.1016/S0040-4039(99)00291-9

    13. [13]

      Altman, R. A.; Buchwald, S. L. 4, 7-Dimethoxy-1, 10-phenanthroline: an excellent ligand for the Cu-catalyzed N-arylation of imidazoles. Org. Lett. 2006, 8, 2779–2782.  doi: 10.1021/ol0608505

    14. [14]

      Altman, R. A.; Koval, E. D.; Buchwald, S. L. Copper-catalyzed N-arylation of imidazoles and benzimidazoles. J. Org. Chem. 2007, 72, 6190–6199.  doi: 10.1021/jo070807a

    15. [15]

      Engel-Andreasen, J.; Shimpukade, B.; Ulven, T. Selective copper catalysed aromatic N-arylation in water. Green Chem. 2013, 15, 336–340.  doi: 10.1039/C2GC36589H

    16. [16]

      Zhao, Y. Y.; Wang, X. Y.; Kodama, K.; Hirose, T. Copper-catalyzed coupling reactions of aryl halides and phenols by 4, 4'-dimethoxy-2, 2'-bipyridine and 4, 7-dimethoxy-1, 10-phenanthroline. ChemistrySelect. 2018, 3, 12620–12624.  doi: 10.1002/slct.201802278

    17. [17]

      Liu, L. B.; Frohn, M.; Xi, N.; Dominguez, C.; Hungate, R.; Reider, P. J. A soluble base for the copper-catalyzed imidazole N-arylations with aryl halides. J. Org. Chem. 2005, 70, 10135–10138.  doi: 10.1021/jo051640t

    18. [18]

      Ueda, S.; Buchwald, S. L. Catalyst-controlled chemoselective arylation of 2-aminobenzimidazoles. Angew. Chem., Int. Ed. 2012, 51, 10364–10367.  doi: 10.1002/anie.201204710

    19. [19]

      Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chem. Eur. J. 2004, 10, 5607–5622.  doi: 10.1002/chem.200400582

    20. [20]

      Zhang, C.; Huang, B.; Bao, A. Q.; Li, X.; Guo, S. N.; Zhang, J. Q.; Xu, J. Z.; Zhang, R. H.; Cui, D. M. Copper-catalyzed arylation of biguanide derivatives via C–N cross-coupling reactions. Org. Biomol. Chem. 2015, 13, 11432–11437.  doi: 10.1039/C5OB01258A

    21. [21]

      Liu, G. Y.; Xu, Y.; Liu, C. X. Synthesis, structural characterization and catalytic activity of copper(I) complexes with triphenylphosphine and pyridine derivatives. Chin. J. Struct. Chem. 2016, 35, 740–746.

    22. [22]

      Zhang, M. Y.; Zhang, H. X.; Zhang, Y. Y.; Zeng, Y. F.; Liu, G. Y. Synthesis, crystal structure and catalytic activity of a dichlorobridged dimeric Cu(Ⅱ) complex bearing 2, 2'-(1H-1, 2, 4-triazole-1, 3-diyl)dipyridine ligands. Chin. J. Struct. Chem. 2020, 9, 1723–1728.

    23. [23]

      Ramirez, S. M.; Layman, J. M.; Bissel, P.; Long, T. E. Ring-opening polymerization of imidazole epoxides for the synthesis of imidazole-substituted poly(ethylene oxides). Macromolecules. 2009, 42, 8010–8012.  doi: 10.1021/ma901745d

    24. [24]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal structure determination. Acta Crystallographica. Section A, Foundations and Advances 2015, 71, 3–8.  doi: 10.1107/S2053273314026370

    1. [1]

      Ley, S. V.; Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation. Angew. Chem., Int. Ed. 2003, 42, 5400–49.  doi: 10.1002/anie.200300594

    2. [2]

      Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev. 2008, 108, 3054–3131.  doi: 10.1021/cr8002505

    3. [3]

      Ma, D.; Cai, Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc. Chem. Soc. 2008, 41, 1450–1460.  doi: 10.1021/ar8000298

    4. [4]

      Surry, D. S.; Buchwald, S. L. Diamine ligands in copper-catalyzed reactions. Chem. Sci. 2010, 1, 13–31.  doi: 10.1039/c0sc00107d

    5. [5]

      Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359–1470.  doi: 10.1021/cr000664r

    6. [6]

      Klapars, A.; Antilla, J. C.; Huang, X. H.; Buchwald, S. L. A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles. J. Am. Chem. Soc. 2001, 123, 7727–7729.  doi: 10.1021/ja016226z

    7. [7]

      Klapars, A.; Huang, X. H.; Buchwald, S. L. A general and efficient copper catalyst for the amidation of aryl halides. J. Am. Chem. Soc. 2002, 124, 7421–7428.  doi: 10.1021/ja0260465

    8. [8]

      Antilla, J. C.; Klapars, A.; Buchwald, S. L. The copper-catalyzed N-arylation of indoles. J. Am. Chem. Soc. 2002, 124, 11684–11688.  doi: 10.1021/ja027433h

    9. [9]

      Larsson, P. F.; Correa, A.; Carril, M.; Norrby, P. O.; Bolm, C. Copper-catalyzed cross-couplings with part-per-million catalyst loadings. Angew. Chem., Int. Ed. 2009, 48, 5691–5693.  doi: 10.1002/anie.200902236

    10. [10]

      Zhou, W.; Fan, M. Y.; Yin, J. L.; Jiang, Y. W.; Ma, D. W. CuI/oxalic diamide catalyzed coupling reaction of (hetero)aryl chlorides and amines. J. Am. Chem. Soc. 2015, 137, 11942–11945.  doi: 10.1021/jacs.5b08411

    11. [11]

      Pawar, G. G.; Wu, H. B.; De, S.; Ma, D. W. Copper(I) oxide/N, N'-bis[(2-furyl)methyl]oxalamide-catalyzed coupling of (hetero)aryl halides and nitrogen heterocycles at low catalytic loading. Adv. Synth. Catal. 2017, 359, 1631–1636.  doi: 10.1002/adsc.201700026

    12. [12]

      Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett. 1999, 40, 2657–2660.  doi: 10.1016/S0040-4039(99)00291-9

    13. [13]

      Altman, R. A.; Buchwald, S. L. 4, 7-Dimethoxy-1, 10-phenanthroline: an excellent ligand for the Cu-catalyzed N-arylation of imidazoles. Org. Lett. 2006, 8, 2779–2782.  doi: 10.1021/ol0608505

    14. [14]

      Altman, R. A.; Koval, E. D.; Buchwald, S. L. Copper-catalyzed N-arylation of imidazoles and benzimidazoles. J. Org. Chem. 2007, 72, 6190–6199.  doi: 10.1021/jo070807a

    15. [15]

      Engel-Andreasen, J.; Shimpukade, B.; Ulven, T. Selective copper catalysed aromatic N-arylation in water. Green Chem. 2013, 15, 336–340.  doi: 10.1039/C2GC36589H

    16. [16]

      Zhao, Y. Y.; Wang, X. Y.; Kodama, K.; Hirose, T. Copper-catalyzed coupling reactions of aryl halides and phenols by 4, 4'-dimethoxy-2, 2'-bipyridine and 4, 7-dimethoxy-1, 10-phenanthroline. ChemistrySelect. 2018, 3, 12620–12624.  doi: 10.1002/slct.201802278

    17. [17]

      Liu, L. B.; Frohn, M.; Xi, N.; Dominguez, C.; Hungate, R.; Reider, P. J. A soluble base for the copper-catalyzed imidazole N-arylations with aryl halides. J. Org. Chem. 2005, 70, 10135–10138.  doi: 10.1021/jo051640t

    18. [18]

      Ueda, S.; Buchwald, S. L. Catalyst-controlled chemoselective arylation of 2-aminobenzimidazoles. Angew. Chem., Int. Ed. 2012, 51, 10364–10367.  doi: 10.1002/anie.201204710

    19. [19]

      Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chem. Eur. J. 2004, 10, 5607–5622.  doi: 10.1002/chem.200400582

    20. [20]

      Zhang, C.; Huang, B.; Bao, A. Q.; Li, X.; Guo, S. N.; Zhang, J. Q.; Xu, J. Z.; Zhang, R. H.; Cui, D. M. Copper-catalyzed arylation of biguanide derivatives via C–N cross-coupling reactions. Org. Biomol. Chem. 2015, 13, 11432–11437.  doi: 10.1039/C5OB01258A

    21. [21]

      Liu, G. Y.; Xu, Y.; Liu, C. X. Synthesis, structural characterization and catalytic activity of copper(I) complexes with triphenylphosphine and pyridine derivatives. Chin. J. Struct. Chem. 2016, 35, 740–746.

    22. [22]

      Zhang, M. Y.; Zhang, H. X.; Zhang, Y. Y.; Zeng, Y. F.; Liu, G. Y. Synthesis, crystal structure and catalytic activity of a dichlorobridged dimeric Cu(Ⅱ) complex bearing 2, 2'-(1H-1, 2, 4-triazole-1, 3-diyl)dipyridine ligands. Chin. J. Struct. Chem. 2020, 9, 1723–1728.

    23. [23]

      Ramirez, S. M.; Layman, J. M.; Bissel, P.; Long, T. E. Ring-opening polymerization of imidazole epoxides for the synthesis of imidazole-substituted poly(ethylene oxides). Macromolecules. 2009, 42, 8010–8012.  doi: 10.1021/ma901745d

    24. [24]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal structure determination. Acta Crystallographica. Section A, Foundations and Advances 2015, 71, 3–8.  doi: 10.1107/S2053273314026370

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    3. [3]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    4. [4]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    5. [5]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    6. [6]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    7. [7]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    8. [8]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    9. [9]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    10. [10]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    11. [11]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    12. [12]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    13. [13]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    14. [14]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    15. [15]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    16. [16]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    17. [17]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    18. [18]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    19. [19]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    20. [20]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

Metrics
  • PDF Downloads(2)
  • Abstract views(538)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return