Citation: Hua ZHANG, Liu-Qing JI, Yu-Zhu SONG, Zhi-Guo KONG, Cong LI, Xiu-Yan WANG. Syntheses, Crystal Structures and Properties of Mn(II) and Co(II) Coordination Complexes Based on 1, 10-Phenanthroline Derivative[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 336-342. doi: 10.14102/j.cnki.0254–5861.2011–2901 shu

Syntheses, Crystal Structures and Properties of Mn(II) and Co(II) Coordination Complexes Based on 1, 10-Phenanthroline Derivative

  • Corresponding author: Xiu-Yan WANG, wangxiuyanjlnu2004@163.com
  • Received Date: 10 June 2020
    Accepted Date: 7 August 2020

    Fund Project: the National Natural Science Foundation of China 21805110

Figures(8)

  • Two new coordination complexes [Mn(L)2(DNSA)] (1) and [Co(L)(1, 4-bdc)]n (2) have been achieved under hydrothermal conditions (H2DNSA = 3, 5-dinitro-salicylic acid, 1, 4-bdc = 1, 4-benzenedicarboxylic acid and L = 2-(2-fluoro-6-fluorophenyl)-1H-imidazo[4, 5-f][1, 10]phenanthroline). 1 crystallizes in monoclinic, space group P21/c with a = 15.871(3), b = 17.274(4), c = 16.078(3) Å, β = 113.03(3)o, V = 4056.6(16) Å3, Z = 4, C45H22Cl2F2MnN10O7, Mr = 978.57, Dc = 1.602 g/cm3, F(000) = 1980, μ(MoKa) = 0.536 mm–1, R = 0.0437 and wR = 0.1065. 2 belongs to the monoclinic system, space group C2/c with a = 14.665(2), b = 30.856(4), c = 11.237(2) Å, β = 111.166(2)o, V = 4742.0(12) Å3, Z = 8, C27H14ClCoFN4O4, Mr = 517.80, Dc = 1.602 g/cm3, F(000) = 2312, μ(MoKa) = 0.889 mm–1, R = 0.0364 and wR = 0.0862. The central Mn(II) ion in 1 is six-coordinated by four nitrogen atoms from two L ligands and two oxygen atoms from one DNSA anion. In 2, the two kinds of 1, 4-bdc ligands link neighboring Co(II) atoms to yield a two-dimensional layer structure. The luminescence of 1 has been studied in detail. Moreover, thermal behaviors of 1 and 2 are also investigated.
  • Recently, the design and synthesis of new coordination complexes are currently attracting considerable attention due to their potential applications as functional materials[1-4]. It is well known that novel complexes can be specially designed under hydrothermal conditions by the selection of metal ions with preferred coordination geometries, in consideration of the structures of organic ligands and the effects of reaction conditions[5-7]. Therefore, great quantities of coordination complexes with fascinating topological structures and properties have been synthesized and reported so far[8-11]. As we know, covalent bonds and noncovalent intermolecular forces can be used to construct various supramolecular architectures[12]. Recent study indicates that 1, 10-phenanthro-line derivatives have been widely used to construct supramolecular architectures not only because of their excellent coordinating ability, but also of their large conjugated system and good accepter-donor system to form π-π interactions and hydrogen bonding interactions. Based on those factors, a number of coordination complexes have been prepared from zero-dimensional molecules or one-dimensional chains, generating extended two-dimensional layers or three-dimensional network supramolecular structures through π-π interactions and hydrogen bonding interactions[13, 14]. So, we selected 1, 10-phenanthroline derivative, 2-(2-fluoro-6-fluorophenyl)-1H-imidazo[4, 5-f][1, 10]phenanthroline (L), as a N-donor chelating ligand and two carboxylate ligands as organic linkers, yielding two coordination complexes, namely [Mn(L)2(DNSA)] (1) and [Co(L)(1, 4-bdc)]n (2).

    The commercially available reagents were used without further purification. Elemental analysis was measured on a Perkin-Elmer 240 CHN elemental analyzer. The powder X-ray diffractions (PXRD) were measured on a Rigaku Dmax 2000 X-ray diffractometer with graphite-monochromatized Cu radiation. The emission spectra were measured on a Renishaw inVia Raman Microscope. Thermal stability experiment was performed on a TG SDT2960 thermal analyzer under a nitrogen atmosphere.

    A mixture of H2DNSA (0.30 mmol), MnSO4 (0.30 mmol) and L (0.25 mmol) was dissolved in 12 mL water. When the pH value of the mixture was adjusted to ca. 7.5 with KOH, the solution was put into a 25-mL Teflon-lined Parr and heated in an autoclave at 150 ℃ for 4 days, obtaining yellow crystals of 1 in 31% yield based on L. Anal. Calcd. for C45H22Cl2F2MnN10O7 (%): C, 55.23; H, 2.27; N, 14.31. Found (%): C, 55.09; H, 2.23; N, 14.19.

    The pH value of a mixture of 1, 4-H2bdc (0.30 mmol), Co(NO3)2∙6H2O (0.10 mmol) and L (0.05 mmol) in 10 mL water distilled water was adjusted to 5.7 with KOH. The resultant solution was heated at 185 ℃ in a 25-mL Teflon-lined stainless-steel autoclave for 4 days, resulting in brown crystals of 2 with the yield of 42% based on L. Anal. Calcd. for C27H14ClCoFN4O4 (%): C, 56.71; H, 2.47; N, 9.80. Found (%): C, 56.43; H, 2.41; N, 9.72.

    A crystal of 1 suitable for X-ray diffraction was chosen and mounted on a Bruker P4 diffractometer equipped with graphite-monochromatized Mo (λ = 0.71073 Å) radiation by using an ω scan method at 293(2) K. And a crystal of 2 was selected for data collection performed on a Rigaku RAXIS-RAPID CCD detector diffractometer equipped with graphite-monochromatic Mo radiation (λ = 0.71073 Å) with an ω-φ scan mode at 293(2) K. The crystal structures were solved by direct methods with SIR2014 (Burla et al., 2014)[15] and refined with SHELXL2018/3 (Sheldrick, 2015)[16] by full-matrix least-squares techniques on F2. The non-hydrogen atoms of the complex were refined with anisotropic temperature parameters. All H atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

    Selected bond lengths and bond angles of 1 and 2 are given in Table 1, and hydrogen bond lengths and bond angles of 1 in Table 2. The asymmetric unit of 1 consists of one Mn(II) atom, two L ligands and one DNSA anion (Fig. 1). Each Mn(II) atom is six-coordinated by two oxygen atoms (O(1) and O(2)) from one DNSA anion, and four nitrogen atoms (N(1), N(2), N(5) and N(6) are from two L ligands in a distorted octahedral coordination sphere. The atoms N(1), N(2), N(5) and O(1) constitute the basal plane of the octahedron, while N(6) and O(2) are located at the axial positions. The Mn–O bond lengths range from 2.100(2) to 2.118(2) Å, and the Mn–N distances vary from 2.256(2) to 2.303(2) Å. The carboxylate group of DNSA anion shows a η1: η0 monodentate mode, whereas each DNSA anion chelates one Mn(II) atom in a bidentate mode. The adjacent [Mn(L)2(DNSA)] molecules form a bimolecular structure through N–H∙∙∙O (N(3)–H(3A)∙∙∙O(2)ii, N(3)–H(3A)∙∙∙O(3)ii, symmetric code: ii x–1, y, z–1, as shown in Table 2) hydrogen-bonding interactions (Fig. 2). Furthermore, the bimolecular structures are linked into a two-dimensional supramolecular layer structure by N–H∙∙∙N (N(7)–H(7A)∙∙∙N(4)v, symmetric code: v x–1/2, –y+1/2, z+1/2, as illustrated in Table 2) hydrogen-bonding interactions between the adjacent bimolecular structures (Fig. 2).

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°) for 1 and 2
    DownLoad: CSV
    1
    Bond Dist. Bond Dist. Bond Dist.
    Mn(1)–N(1) 2.273(2) Mn(1)–N(5) 2.278(2) Mn(1)–O(1) 2.100(2)
    Mn(1)–N(2) 2.303(2) Mn(1)–N(6) 2.256(2) Mn(1)–O(2) 2.118(2)
    Angle (°) Angle (°) Angle (°)
    O(1)–Mn(1)–O(2) 81.91(7) N(6)–Mn(1)–N(1) 107.66(8) O(1)–Mn(1)–N(2) 90.03(8)
    O(1)–Mn(1)–N(6) 90.68(7) O(1)–Mn(1)–N(5) 107.28(8) O(2)–Mn(1)–N(2) 108.05(8)
    O(2)–Mn(1)–N(6) 157.26(8) O(2)–Mn(1)–N(5) 88.80(8) N(6)–Mn(1)–N(2) 93.35(8)
    O(1)–Mn(1)–N(1) 154.86(8) N(6)–Mn(1)–N(5) 72.85(8) N(1)–Mn(1)–N(2) 72.28(7)
    O(2)–Mn(1)–N(1) 86.70(8) N(1)–Mn(1)–N(5) 94.75(8) N(5)–Mn(1)–N(2) 157.61(8)
    2
    Bond Dist. Bond Dist. Bond Dist.
    N(1)–Co(1) 2.134(2) N(2)–Co(1) 2.147(2) O(1)–Co(1) 2.362(2)
    O(2)–Co(1) 2.1231(18) O(3)–Co(1) 2.0481(18) O(4)–Co(1)iii 2.0304(18)
    Angle (°) Angle (°) Angle (°)
    O(4)iii–Co(1)–O(3) 89.82(8) O(4)iii–Co(1)–O(2) 96.64(7) O(3)–Co(1)–O(2) 101.94(7)
    O(4)iii–Co(1)–N(1) 121.30(8) O(3)–Co(1)–N(1) 101.66(8) O(2)–Co(1)–N(1) 134.87(7)
    O(4)iii–Co(1)–N(2) 86.11(8) O(3)–Co(1)–N(2) 173.73(8) O(2)–Co(1)–N(2) 83.29(8)
    N(1)–Co(1)–N(2) 76.52(8) O(4)iii–Co(1)–O(1) 154.25(7) O(3)–Co(1)–O(1) 91.90(7)
    O(2)–Co(1)–O(1) 57.89(7) N(1)–Co(1)–O(1) 83.45(7) N(2)–Co(1)–O(1) 93.84(8)
    Symmetry transformation used to generate the equivalent atoms: 2 (i)–x+ 1, y, –z+ 1/2; (ii)–x, –y+ 1, –z+ 1; (iii)–x, y, –z+ 1/2

    Table 2

    Table 2.  Hydrogen Bond Lengths (Å) and Bond Angles (°) for 1
    DownLoad: CSV
    Crystal D–H∙∙∙A d(D–H) d(H∙∙∙A) d(D∙∙∙A) ∠DHA
    1 N(3)–H(3A)∙∙∙O(2)iiN(3)–H(3A)∙∙∙O(3)iiN(7)–H(7A)∙∙∙N(4)v 0.860.860.86 2.621.872.23 3.219(3)2.731(3)3.054(3) 127175160
    Symmetry transformation: 1 (i) x– 1/2, –y+ 1/2, z– 1/2; (ii)–x+ 1, –y, –z+ 1; (iii)–x+ 1/2, y– 1/2, –z+ 3/2; (iv)–x+ 1/2, y+ 1/2, –z+ 1/2; (v) x– 1/2, –y+ 1/2, z+ 1/2

    Figure 1

    Figure 1.  View of the molecular structure of 1

    Figure 2

    Figure 2.  View of the layer structure of 1 formed by hydrogen-bonding interactions (N–H···O and N–H···N)

    As can be observed in Fig. 3, there are one Co(II) atom, one L ligand, and two halves of 1, 4-bdc anions in the asymmetric unit of 2. The 1, 4-bdc anion resides on an inversion center. Each Co(II) atom is six-coordinated by two nitrogen atoms from one L ligand (Co(1)–N(1) = 2.134(2), Co(1)–N(2) = 2.147(2) Å), and four carboxylate oxygen atoms from three different 1, 4-bdc anions (Co(1)–O(1) = 2.362(2), Co(1)–O(2) = 2.1231(18) Å, Co(1)–O(3) = 2.0481(18), Co(1)–O(4)iii = 2.0304(18) Å, symmetric code: iiix, y, –z+1/2). In particular, the two 1, 4-bdc anions show different coordination modes (Fig. 3). For convenience, the 1, 4-bdc anions containing the oxygen atoms labeled O(1) and O(3) are designated 1, 4-bdc1 and 1, 4-bdc2, respectively. Each carboxylate group of 1, 4-bdc2 bridges two Co(II) atoms in a bis-bridging mode, whereas each carboxylate group of 1, 4-bdc1 anion chelates one Co(II) atom in a bis-chelating mode to yield a dimer. The distance between the Co(II) atoms in the dimer is about 10.879 Å. Most interestingly, the binuclear units are bridged by the backbones of 1, 4-bdc2 ligands to form a chain structure (Fig. 4) and are further connected by the 1, 4-bdc2 ligands in bis-chelating modes to give rise to a layer structure (Fig. 4). The L ligands are attached to both sides of the layer structures, which allow the formation of π-π stacking between the two pyridine rings of the L ligands with the centroid-to-centroid distance of 3.764(2) Å and face-to-face distance of 3.387(1) Å, and the dihedral angle between the two planes is ca. 0.0(1)o (Two pyridine rings are composed of N(1)/C(1)~C(5) and N(1)iv/C(1)iv~C(5)iv, respectively; symmetry code: ivx + 1/2, –y + 1/2, –z + 1) (Fig. 6). These π-π stacking interactions linked the adjacent layers into a 3D supramolecular architecture (Fig. 4).

    Figure 3

    Figure 3.  Coordination environment of 2 (Symmetric codes: (i) –x + 1, y, –z + 1/2; (ii) –x, –y + 1, –z + 1; (iii) –x, y, –z + 1/2)

    Figure 4

    Figure 4.  Three-dimensional supramolecular architecture of the title complex constructed by π-π interactions

    The powder X-ray diffraction (PXRD) patterns for complexes 1 and 2 were recorded at room temperature to confirm their phase purity (Fig. 5). The experimental PXRD patterns of 1 and 2 well correspond to the simulated ones of 1 and 2, respectively, indicating the synthesized bulk materials and the measured single crystals are the same. The UV-vis absorption spectra of 1 were registered from the crystalline state at r. t. (Fig. 6). The energy bands of 1 from 200 to 560 nm can be assigned as metal-to-ligand charge-transfer (MLCT) transitions[17]. The above analysis is consistent with the crystal structure determination.

    Figure 5

    Figure 5.  Experimental and simulated PXRD patterns of 1 and 2

    Figure 6

    Figure 6.  UV-vis absorption spectrum of 1

    The luminescent properties of the free organic ligands and complex 1 have been studied in the solid state at room temperature (Fig. 7). The main emission peaks of H2DNSA and L are located at about 548 (λex = 325 nm) and 404 nm (λex = 325 nm), respectively, which may be attributed to π* → n or π* → π transition[18]. Complex 1 shows an emission band at 545 nm (λex = 325 nm). This emission is similar to that of H2DNSA (λem = 545 nm). Therefore, the emission of 1 should originate from the H2DNSA ligand.

    Figure 7

    Figure 7.  Solid state emission spectra of 1, 2, 3-H2DNSA, L and 1 at room temperature

    The stabilities of 1 and 2 were evaluated by thermo-gravimetric analysis (TGA). As depicted in Fig. 8, the TGA curve of 1 shows two main steps of weight loss. The first step of 21.4% from 202 to 310 ℃ corresponds to the release of the organic group C7H2N2O6 of DNSA anions (calcd. 21.5%), and the second step of 71.2% in the range of 317~572 ℃ to the elimination of L ligands (calcd.: 71.3%). The anhydrous complex 2 begins to decompose at 227 ℃ and ends above 632 ℃. The weight loss is attributed to both L ligands and the organic group C8H4O3 of 1, 4-bdc anions (obsd. 86.8%, calcd. 86.9%). However, it is difficult to determine this weight loss accurately as these processes are overlapped with the weight loss due to the dissociation of organic fractions.

    Figure 8

    Figure 8.  TGA curves of complexes 1 and 2

    Two new coordination complexes, [Mn(L)2(DNSA)] (1) and [Co(L)(1, 4-bdc)]n (2), have been successfully synthesized by the reaction of two transition metal ions, different aromatic carboxylic ligands and 2-(2-fluoro-6-fluorophenyl)-1H-imidazo[4, 5-f][1, 10]phenanthroline (L) with different architectures under hydrothermal conditions. The difference of the structures indicates that carboxylic ligands and metal cations play important roles in the formation of complexes. 1 shows weak emission in the solid state at room temperature. The thermal behaviors of 1 and 2 have been studied. We believe that more metal complexes containing L ligand with interesting structures and physical properties will be synthesized in the future.


    1. [1]

      Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Modular chemistry:   secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.  doi: 10.1021/ar000034b

    2. [2]

      Yoshii, Y.; Sakai, K.; Hoshino, N.; Takeda, T.; Noro, S.; Nakamura, T.; Akutagawa, T. Crystal-to-crystal structural transformation of hydrogen-bonding molecular crystals of (imidazolium)(3-hydroxy-2-quinoxalinecarboxylate) through H2O adsorption-desorption. CrystEngComm. 2015, 17, 5962–5969.  doi: 10.1039/C4CE02519A

    3. [3]

      Kong, Z. G.; Guo, S. N.; Zhao, X. Y.; An, X. An unusual 2D → 3D polythreading framework based on (4)-c sql networks with arms: synthesis, structure and luminescence. Mendeleev Commun. 2016, 26, 52−53.  doi: 10.1016/j.mencom.2016.01.020

    4. [4]

      Zheng, B. S.; Luo, X.; Wang, Z. X.; Zhang, S. W.; Yun, R. R.; Huang, L.; Zeng, W. J.; Liu, W. L. An unprecedented water stable acylamide-functionalized metal-organic framework for highly efficient CH4/CO2 gas storage/separation and acid-base cooperative catalytic activity. Inorg. Chem. Front. 2018, 5, 2355–2363.  doi: 10.1039/C8QI00662H

    5. [5]

      Sebastian, H.; Andreas, S.; Shobhna, K.; Roland, W.; Roland, A. F. Zinc-1, 4-benzenedicarboxylate-bipyridineframeworks-linker functionalization impacts network topology during solvothermal synthesis. J. Mater. Chem. 2012, 22, 909–918.  doi: 10.1039/C1JM14791A

    6. [6]

      Han, X.; Xu, Y. X.; Yang, J.; Xu, X.; Li, C. P.; Ma, J. F. Metal-assembled, resorcin[4]arene-based molecular trimer for efficient removal of toxic dichromate pollutants and knoevenagel condensation Reaction. ACS Appl. Mater. Inter. 2019, 11, 15591–15597.  doi: 10.1021/acsami.9b02068

    7. [7]

      Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480.  doi: 10.1039/C7CS00109F

    8. [8]

      Martin, B. D.; Suzanne, M. N.; Stuart, R. B. Variable length ligands: a new class of bridging ligands for supramolecular chemistry and crystal engineering. Chem. Commun. 2009, 37, 5579–5581.

    9. [9]

      Wang, X. Y.; Li, G. T.; Wang, H.; Song, Y.; Liu, D. X; Xu, Z. L. Crystal structure, thermal behavior and luminescence of a new copper coordination polymer constructed with 4-(carboxymethoxy)-benzoic acid. Chin. J. Struct. Chem. 2019, 38, 629–634.

    10. [10]

      Mala, N.; Pramendra, K. S. Chemistry and applications of organotin(IV) complexes of Schiff bases. Dalton Trans. 2011, 40, 7077–7121.  doi: 10.1039/c0dt01426e

    11. [11]

      Lin, Z. J.; Lü, J.; Hong, M. C.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895.  doi: 10.1039/C3CS60483G

    12. [12]

      Ferey, G. Microporous solids: from organically templated inorganic skeletons to hybrid frameworks∙∙∙ecumenism in chemistry. Chem. Mater. 2001, 13, 3084–3098.  doi: 10.1021/cm011070n

    13. [13]

      Wang, X. Y.; He, Y.; Zhao, L. N.; Kong, Z. G. An unusual 2D → 3D polythreading framework based on a long 1, 10-phenanthroline derivative ligand. Inorg. Chem. Commun. 2011, 14, 1186–1189.  doi: 10.1016/j.inoche.2011.04.024

    14. [14]

      Kong, Z. G.; Han, Q.; Zhang, L.; Liu, D. X.; Hu, B.; Wang, X. Y. A new Cd(II) coordination polymer constructed by 1, 10-phenanthroline derivative: syntheses, structure, physical properties and theoretical calculation. Chin. J. Struct. Chem. 2019, 38, 2141–2147.

    15. [15]

      Burla, M. C.; Caliandro, R.; Carrozzini, B.; Cascarano, G. L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309.  doi: 10.1107/S1600576715001132

    16. [16]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    17. [17]

      Chen, X. M.; Liu, G. F. Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions. Chem. Eur. J. 2002, 8, 4811–4817.  doi: 10.1002/1521-3765(20021018)8:20<4811::AID-CHEM4811>3.0.CO;2-R

    18. [18]

      Zhang, S. H.; Feng, C. Microwave-assisted synthesis, crystal structure and fluorescence of novel coordination complexes with Schiff base ligands. J. Mol. Struct. 2010, 997, 62–66.

    1. [1]

      Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Modular chemistry:   secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.  doi: 10.1021/ar000034b

    2. [2]

      Yoshii, Y.; Sakai, K.; Hoshino, N.; Takeda, T.; Noro, S.; Nakamura, T.; Akutagawa, T. Crystal-to-crystal structural transformation of hydrogen-bonding molecular crystals of (imidazolium)(3-hydroxy-2-quinoxalinecarboxylate) through H2O adsorption-desorption. CrystEngComm. 2015, 17, 5962–5969.  doi: 10.1039/C4CE02519A

    3. [3]

      Kong, Z. G.; Guo, S. N.; Zhao, X. Y.; An, X. An unusual 2D → 3D polythreading framework based on (4)-c sql networks with arms: synthesis, structure and luminescence. Mendeleev Commun. 2016, 26, 52−53.  doi: 10.1016/j.mencom.2016.01.020

    4. [4]

      Zheng, B. S.; Luo, X.; Wang, Z. X.; Zhang, S. W.; Yun, R. R.; Huang, L.; Zeng, W. J.; Liu, W. L. An unprecedented water stable acylamide-functionalized metal-organic framework for highly efficient CH4/CO2 gas storage/separation and acid-base cooperative catalytic activity. Inorg. Chem. Front. 2018, 5, 2355–2363.  doi: 10.1039/C8QI00662H

    5. [5]

      Sebastian, H.; Andreas, S.; Shobhna, K.; Roland, W.; Roland, A. F. Zinc-1, 4-benzenedicarboxylate-bipyridineframeworks-linker functionalization impacts network topology during solvothermal synthesis. J. Mater. Chem. 2012, 22, 909–918.  doi: 10.1039/C1JM14791A

    6. [6]

      Han, X.; Xu, Y. X.; Yang, J.; Xu, X.; Li, C. P.; Ma, J. F. Metal-assembled, resorcin[4]arene-based molecular trimer for efficient removal of toxic dichromate pollutants and knoevenagel condensation Reaction. ACS Appl. Mater. Inter. 2019, 11, 15591–15597.  doi: 10.1021/acsami.9b02068

    7. [7]

      Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480.  doi: 10.1039/C7CS00109F

    8. [8]

      Martin, B. D.; Suzanne, M. N.; Stuart, R. B. Variable length ligands: a new class of bridging ligands for supramolecular chemistry and crystal engineering. Chem. Commun. 2009, 37, 5579–5581.

    9. [9]

      Wang, X. Y.; Li, G. T.; Wang, H.; Song, Y.; Liu, D. X; Xu, Z. L. Crystal structure, thermal behavior and luminescence of a new copper coordination polymer constructed with 4-(carboxymethoxy)-benzoic acid. Chin. J. Struct. Chem. 2019, 38, 629–634.

    10. [10]

      Mala, N.; Pramendra, K. S. Chemistry and applications of organotin(IV) complexes of Schiff bases. Dalton Trans. 2011, 40, 7077–7121.  doi: 10.1039/c0dt01426e

    11. [11]

      Lin, Z. J.; Lü, J.; Hong, M. C.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895.  doi: 10.1039/C3CS60483G

    12. [12]

      Ferey, G. Microporous solids: from organically templated inorganic skeletons to hybrid frameworks∙∙∙ecumenism in chemistry. Chem. Mater. 2001, 13, 3084–3098.  doi: 10.1021/cm011070n

    13. [13]

      Wang, X. Y.; He, Y.; Zhao, L. N.; Kong, Z. G. An unusual 2D → 3D polythreading framework based on a long 1, 10-phenanthroline derivative ligand. Inorg. Chem. Commun. 2011, 14, 1186–1189.  doi: 10.1016/j.inoche.2011.04.024

    14. [14]

      Kong, Z. G.; Han, Q.; Zhang, L.; Liu, D. X.; Hu, B.; Wang, X. Y. A new Cd(II) coordination polymer constructed by 1, 10-phenanthroline derivative: syntheses, structure, physical properties and theoretical calculation. Chin. J. Struct. Chem. 2019, 38, 2141–2147.

    15. [15]

      Burla, M. C.; Caliandro, R.; Carrozzini, B.; Cascarano, G. L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309.  doi: 10.1107/S1600576715001132

    16. [16]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    17. [17]

      Chen, X. M.; Liu, G. F. Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions. Chem. Eur. J. 2002, 8, 4811–4817.  doi: 10.1002/1521-3765(20021018)8:20<4811::AID-CHEM4811>3.0.CO;2-R

    18. [18]

      Zhang, S. H.; Feng, C. Microwave-assisted synthesis, crystal structure and fluorescence of novel coordination complexes with Schiff base ligands. J. Mol. Struct. 2010, 997, 62–66.

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    5. [5]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    11. [11]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    19. [19]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(1)
  • Abstract views(518)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return