Synthesis, Crystal Structure and Magnetic Properties of Two Ribbon-shaped Chalcogenidometalate Complexes (Butyl-Sn)4S8M2(TEPA)2 (M = Mn, Ni)
- Corresponding author: Qi-Pu LIN, linqipu@fjirsm.ac.cn
Citation:
Heng-Dong LAI, Qi-Pu LIN. Synthesis, Crystal Structure and Magnetic Properties of Two Ribbon-shaped Chalcogenidometalate Complexes (Butyl-Sn)4S8M2(TEPA)2 (M = Mn, Ni)[J]. Chinese Journal of Structural Chemistry,
;2020, 39(8): 1503-1508.
doi:
10.14102/j.cnki.0254–5861.2011–2625
In the latest decade, metallochalcogenides have attracted great attention owing to their peculiar attributes, such as luminescence, semiconduction, ion-exchange, magnetism, and uranium removal[1-10]. For instance, ZnIn2S4[11] and oxidized SnS2[12] sheets exhibit high-efficiency carbon dioxide (CO2) reduction performances under visible-light illumination. Among them, unlike dense and bulky phase materials as three-dimensional CdS or layered MoS2, open-framework chalcogenidometalates, mainly constructed from supertetra-hedral clusters (denoted as Tn, Cn, Pn, Tp, q, OTn and so on by Feng et al.)[13], have unique cooperative effects combining absorption-based capture, optoelectronic nature, and quantum-dot structure, which could lead to new applications and currently are being intensively investigated[14, 15]. Up to now, a huge number of supertetrahedral metallochalcogenides and their open-frameworks have been obtained. However, to our knowledge, quite few organometal chalcogenides were reported[16, 17]. Herein, we have attained linear {Butyl-Sn4S8} tetramer, which could serve as linker to coordinate with two metal complexes (Mn-TEPA or Ni-TEPA, where TEPA = tetraethylenepentamine), constructing a ribbon-like hexameric structure ((butyl-Sn)4S8M2(TEPA)2, denoted as 1 and 2, when M = Mn and Ni, respectively). Magnetic measurements were conducted to show that both 1 and 2 show ferromagnetic-like behavior, with the Weiss (θ) values and the intradimer coupling constants (J) up to 8.5 K and 6.8 cm-1 for 1 and 21.1 K and 17.2 cm-1 for 2, respectively.
All reagents were obtained from commercial sources and used without further purification. Elemental analyses (EA) for C, H, and N were carried out on a German Elementary Vario EL III instrument. Infrared (IR) spectra were collected on a PerkinElmer spectrometer with KBr pellets (range, 500~4000 cm-1). Ultraviolet-visible (UV-Vis) diffuse reflection spectra (DRS) were recorded on a PerkinElmer Lamda-950 UV spectrophotometer with BaSO4 substrates (range, 200~800 nm). Energy dispersive X-ray (EDX) spectra were acquired by a JSM-6700F scanning electron microscope. Thermogravimetric analyses (TGA) were measured on a NETZSCH STA 449F5 thermal analyzer under N2 atmosphere (range, 30~800 ℃; heating rate, 10 ℃∙min-1). Powder X-ray diffraction (PXRD) data were performed on a Rigaku miniFlex II diffractometer with Cu-Kα (λ = 1.54056 Å) in the 2θ range of 3~50° (scan speed, 1 °∙min-1). Variable-temperature and field-dependent magnetization data were conducted on a Quantum Design MPMS-XL magnetometer (temperature range, 2~300 K; magnetic field range, 0~50 kOe; experimental susceptibilities were corrected for the diamagnetism of the constituent atoms by use of Pascal's tables).
1-(butyl-Sn)4S8Mn2 (TEPA)2 was synthesized from solvothermal method by adding methanol (MeOH, 2 mL), n-butylSnCl3 (50 μL) and tetraethylenepentamine (TEPA, 2.5 mL) into a mixture of Mn(OAc)2·4H2O (221.2 mg, 0.91 mmol) and sulfur (S, 32 mg, 1 mmol) in a 20 mL vial, and heated to 80 ℃ for 7 days. Light-yellow block-shaped crystals were collected after cooling to room in ca. 43% yield based on S. EA data for C32H82N10S8Sn4Mn2 (1): Calcd. (%): C, 26.57; H, 4.46; N, 9.69. Found (%): C, 26.55; H, 5.53; N, 9.66. IR (KBr, cm-1): 3290(m), 3224(m), 3162(m), 2952(m), 2908(m), 2854(m), 2349(w), 2160(w), 2096(w), 1963(w), 1660(m), 1581(m), 1458(m), 1365(m), 1286(m), 1242(m), 1207(m), 1174(m), 1116(m), 1085(m), 995(s), 939(s), 871(m), 821(m), 682(m), 574(m), 493(s).
2-(butyl-Sn)4S8Ni2(TEPA)2 was synthesized from solvother-mal method by adding distilled water (2 mL), n-butylSnCl3 (50 μL) and TEPA (2.5 mL) into a mixture of Ni(OAc)2·4H2O (223.1 mg, 0.91 mmol) and sulfur (S, 33.1 mg, 1 mmol) in a 20 mL vial and heated to 80 ℃ for 7 days. Light-purple block-shaped crystals were collected after cooling to room in ca. 57% yield based on S. EA data for C32H82N10S8Sn4Ni2 (2): Calcd. (%): C, 25.88; H, 4.31; N, 9.74. Found (%): C, 26.37; H, 5.73; N, 9.60. IR (KBr, cm-1): 3332(m), 3245(m), 3157(m), 3120(m), 2948(m), 2898(m), 2852(m), 1714(w), 1629(m), 1579(m), 1456(m), 1373(m), 1340(m), 1286(m), 1243(m), 1143(m), 1083(m), 1054(m), 1008(m), 941(s), 881(m), 767(m), 678(m), 563(m), 486(m), 422(m).
Single crystals of suitable size were selected and mounted on a glass fiber. Single-crystal X-ray diffraction (SCXRD) data were collected on a Rigaku Saturn724+ diffractometer equipped with graphite-monochromatized Mo-Kα radiation (λ = 0.71073 Å) at 298 K. Absorption corrections by the multi-scan method were applied. The structures were solved by direct methods with SHELXS-97 program and refined on F2 by full-matrix least-squares methods using SHELXL-2014 program package embedded in OLEX2. All non-hydrogen atoms were located with successive difference Fourier technique and refined anisotropically. Hydrogen atoms were added in the idealized positions and refined with isotropic parameters. The final R = 0.0629, wR = 0.1285 for 12855 observed reflections (I > 2σ(I), w = 1/[σ2(Fo2) + (0.0333P)2 + 0.0412P], where P = (Fo2 + 2Fc2)/3), S = 1.001, (Δ/σ)max = 0.001, (Δρ)max = 1.63 and (Δρ)min = –0.88 e·Å-3 for 1-(butyl-Sn)4S8Mn2. The final R = 0.0464, wR = 0.1185 for 9267 observed reflections (I > 2σ(I), w = 1/[σ2(Fo2) + (0.0333P)2 + 0.0412P], where P = (Fo2 + 2Fc2)/3), S = 1.017, (Δ/σ)max = 0.001, (Δρ)max = 1.19 and (Δρ)min = –0.87 e·Å-3 for 2-(butyl-Sn)4S8Ni2. Selected bond lengths and bond angles from X-ray structure analyses are listed in Table S2~S5 (SI).
SCXRD analyses revealed that both compounds 1 and 2 crystallize in the triclinic P
Confirmed by PXRD (Fig. 3a and 4a), we can conclude that phase purities of 1-(butyl-Sn)4S8Mn2 and 2-(butyl-Sn)4S8Ni2 are quite good since the experimental patterns match well with the simulated ones. As shown in Fig. 3b and 4b, structures 1 and 2 could be stable up to 200 ℃ under N2 atmosphere. Calculated by the extrapolation of the linear part of [Ahv]2 plot of the transformed Kubelka-Munk spectra in Fig. 3c and 4c, their band gaps are 3.097 and 3.325 eV for 1 and 2, respectively. From the FT-IR spectra collected in Fig. 3d and 4d, all the significant peaks could be attributable to the stretching vibration of TEPA, butyl, and the related solvents. EDX spectroscopy was also used to testify the chemical composition of 1 and 2, as shown in Fig. 5.
The temperature dependences of the magnetic susceptibility of 1-(butyl-Sn)4S8Mn2 and 2-(butyl-Sn)4S8Ni2 in the 2~300 K temperature range are plotted in Fig. 6. For 1, the experiment χMT value at 300 K is 8.29 cm3∙K∙mol-1, close to the spin-only value (8.75 cm3∙K∙mol-1, S = 5/2) expected for two isolated Mn2+ ions. As the temperature is lowered, χMT value first increases smoothly to 8.74 cm3∙K∙mol-1 at 48 K, indicating a dominant ferromagnetic interaction of the Mn2+ ions, then decreases down to 6.54 cm3∙K∙mol-1 at 2 K. The reciprocal susceptibility χM-1 vs. temperature curve above 50 K obeys the Curie-Weiss law, with the Curie value (C) of 8.15 cm3∙K∙mol-1 and Weiss constant (θ) being 8.5 K, indicating an overall ferromagnetic behavior in 1. Sample 2 exhibits the same magnetic phenomenon as 1. The χMT value at 300 K is 1.93 cm3∙K∙mol-1, which is also close to the spin-only value (2.00 cm3∙K∙mol-1, S = 1) expected for two isolated Ni2+ ions. As the temperature is lowered, the χMT value first rises to 2.22 cm3∙K∙mol-1 at 36 K, and then drops upon further cooling. In addition, its C and θ values were calculated to be 1.87 cm3∙K∙mol-1 and 21.1 K, respectively. Based on the structural feature, the magnetic susceptibility data of 1 and 2 could be analyzed by using a dinuclear model (isotropic Hamiltonian equation of Ĥ = –2JSA∙SB, where J is for the intradimer coupling constant), in which the contribution of the intermolecular interaction (zJ') is also taken into account. The least-squares fitting of the magnetic susceptibility data gives the following parameters: J = 6.8(7) cm–1, zJ' = –0.3(5) cm–1, g = 2.02(3) and R = 1.5 × 10–4 for 1; J = 17.2(8) cm–1, zJ' = –0.8(4) cm–1, g = 2.07(4) and R = 2.1 × 10–4 for 2, respectively. These values further confirm the ferromagnetic interaction character between the Mn2+ or Ni2+ ions via the tetrameric {butyl-Sn4S8} bridges.
In summary, we report herein the synthesis, structure and magnetic properties of two organotin-sulfide-spaced dimers {Mn2} (1) and {Ni2} (2) terminated by TEPA. Both 1 and 2 feature similar structures of tetrameric {butyl-Sn4S8}, which further connects two Mn-TEPA (1) or Ni-TEPA complexes (2), respectively. Notably, complexes 1 and 2 exhibit an overall ferromagnetic-like behavior.
Liu, D. L.; Liu, Y.; Huang, P.; Zhu, C.; Kang, Z. H.; Shu, J.; Chen, M. Z.; Zhu, X.; Guo, J.; Zhuge, L. J.; Bu, X. H.; Feng, P. Y.; Wu, T. Highly tunable heterojunctions from multimetallic sulfide nanoparticles and silver nanowires. Angew. Chem. Int. Ed. 2018, 57, 5374–5378.
doi: 10.1002/anie.201800848
Wang, K. Y.; Feng, M. L.; Li, J. R.; Huang, X. Y. [NH3CH3]4[In4SbS9SH]: a novel methylamine-directed indium thioantimonate with Rb+ ion-exchange property. J. Mater. Chem. A 2013, 1, 1709–1705.
doi: 10.1039/C2TA00710J
Nie, L. N.; Xie, J.; Liu, G. F.; Hao, S. J.; Xu, Z. C. J.; Xu, R.; Zhang, Q. C. Crystalline In–Sb–S framework for highly-performed lithium/sodium storage. J. Mater. Chem. A 2017, 5, 14198–14205.
doi: 10.1039/C7TA03334F
Feng, M. L.; Sarma, D.; Qi, X. H.; Du, K. Z.; Huang, X. Y.; Kanatzidis, M. G. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J. Am. Chem. Soc. 2016, 138, 12578–12875.
doi: 10.1021/jacs.6b07351
Rosemann, N. W.; Eußner, J. P.; Dornsiepen, E.; Chatterjee, S.; Dehnen, S. Organotetrel chalcogenide clusters: between strong second-harmonic and white-light continuum generation. J. Am. Chem. Soc. 2016, 138, 16224–16227.
doi: 10.1021/jacs.6b10738
Chi, Y.; Sun, J.; Guo, S. P. Synthesis, crystal structure and magnetic property of ternary neodymium zirconium sulfide, Nd2ZrS5. Chin. J. Struct. Chem. 2016, 35, 713–717.
Shen, N. N.; Hu, B.; Cheng, C. C.; Zou, G. D.; Hu, Q. Q.; Du, C. F.; Li, J. R.; Huang, X. Y. Discrete supertetrahedral T3 InQ clusters (Q = S, S/Se, Se, Se/Te): ionothermal syntheses and tunable optical and photodegradation properties. Cryst. Growth & Des. 2018, 18, 962–968.
Liu, F.; Wulan, G.; Da, L.; Bao, Y. S.; Baiyin, M. Syntheses and structural characterization of multi-component chalcogenide compounds based on pyridine/1, 2-ethanedithiol solvent. Chin. J. Struct. Chem. 2016, 35, 946–952.
Wang, Y.; Shi, Y. F.; Li, X. B.; Zou, X. C.; He, Y. C.; Wang, X. Structure and luminescent property of a tetrahedral silver(I) cluster complex based on phosphor and sulphur mixed-ligand system. Chin. J. Struc. Chem. 2019, 38, 1216–1222.
Du, K. Z.; Qi, X. H.; Feng, M. L.; Li, J. R.; Wang, X. Z.; Du, C. F.; Zou, G. D.; Wang, M.; Huang, X. Y. Synthesis, structure, band gap, and near-infrared photosensitivity of a new chalcogenide crystal, (NH4)4Ag12Sn7Se22. Inorg. Chem. 2016, 55, 5110–5112.
doi: 10.1021/acs.inorgchem.6b00803
Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y.; Xie, Y. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594
doi: 10.1021/jacs.7b02290
Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S.; Lin, Y.; Xie, Y. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.
doi: 10.1021/jacs.7b10287
Bu, X. H.; Zheng, N. F.; Feng, P. Y. Tetrahedral chalcogenide clusters and open frameworks. Chem. -Eur. J. 2004, 10, 3356–3362.
doi: 10.1002/chem.200306041
Feng, P. Y.; Bu, X. H.; Zheng, N. F. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Acc. Chem. Res. 2005, 38, 293–303.
doi: 10.1021/ar0401754
Huang, S. L.; He, L.; Chen, E. X.; Lai, H. D.; Zhang, J.; Lin, Q. P. A wide pH-range stable crystalline framework based on the largest tin-oxysulfide cluster [Sn20O10S34]. Chem. Commun. 2019, 55, 11083–11086.
doi: 10.1039/C9CC05736F
Liang, J. J.; Chen, J. F.; Zhao, J.; Pan, Y. L.; Zhang, Y.; Jia, D. X. Effects of lanthanide metal size and amino ligand denticity on the solvothermal systems Ln/Sn/Se/en and Ln/Sn/Se/dien (Ln = lanthanide). Dalton Trans. 2011, 40, 2631–2637.
doi: 10.1039/c0dt01424a
Hilbert, J.; Näther, C.; Weihrich, R.; Bensch, W. Room-temperature synthesis of thiostannates from {[Ni(tren)]2[Sn2S6]}n. Inorg. Chem. 2016, 55, 7859–7865.
doi: 10.1021/acs.inorgchem.6b00625
Liu, D. L.; Liu, Y.; Huang, P.; Zhu, C.; Kang, Z. H.; Shu, J.; Chen, M. Z.; Zhu, X.; Guo, J.; Zhuge, L. J.; Bu, X. H.; Feng, P. Y.; Wu, T. Highly tunable heterojunctions from multimetallic sulfide nanoparticles and silver nanowires. Angew. Chem. Int. Ed. 2018, 57, 5374–5378.
doi: 10.1002/anie.201800848
Wang, K. Y.; Feng, M. L.; Li, J. R.; Huang, X. Y. [NH3CH3]4[In4SbS9SH]: a novel methylamine-directed indium thioantimonate with Rb+ ion-exchange property. J. Mater. Chem. A 2013, 1, 1709–1705.
doi: 10.1039/C2TA00710J
Nie, L. N.; Xie, J.; Liu, G. F.; Hao, S. J.; Xu, Z. C. J.; Xu, R.; Zhang, Q. C. Crystalline In–Sb–S framework for highly-performed lithium/sodium storage. J. Mater. Chem. A 2017, 5, 14198–14205.
doi: 10.1039/C7TA03334F
Feng, M. L.; Sarma, D.; Qi, X. H.; Du, K. Z.; Huang, X. Y.; Kanatzidis, M. G. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J. Am. Chem. Soc. 2016, 138, 12578–12875.
doi: 10.1021/jacs.6b07351
Rosemann, N. W.; Eußner, J. P.; Dornsiepen, E.; Chatterjee, S.; Dehnen, S. Organotetrel chalcogenide clusters: between strong second-harmonic and white-light continuum generation. J. Am. Chem. Soc. 2016, 138, 16224–16227.
doi: 10.1021/jacs.6b10738
Chi, Y.; Sun, J.; Guo, S. P. Synthesis, crystal structure and magnetic property of ternary neodymium zirconium sulfide, Nd2ZrS5. Chin. J. Struct. Chem. 2016, 35, 713–717.
Shen, N. N.; Hu, B.; Cheng, C. C.; Zou, G. D.; Hu, Q. Q.; Du, C. F.; Li, J. R.; Huang, X. Y. Discrete supertetrahedral T3 InQ clusters (Q = S, S/Se, Se, Se/Te): ionothermal syntheses and tunable optical and photodegradation properties. Cryst. Growth & Des. 2018, 18, 962–968.
Liu, F.; Wulan, G.; Da, L.; Bao, Y. S.; Baiyin, M. Syntheses and structural characterization of multi-component chalcogenide compounds based on pyridine/1, 2-ethanedithiol solvent. Chin. J. Struct. Chem. 2016, 35, 946–952.
Wang, Y.; Shi, Y. F.; Li, X. B.; Zou, X. C.; He, Y. C.; Wang, X. Structure and luminescent property of a tetrahedral silver(I) cluster complex based on phosphor and sulphur mixed-ligand system. Chin. J. Struc. Chem. 2019, 38, 1216–1222.
Du, K. Z.; Qi, X. H.; Feng, M. L.; Li, J. R.; Wang, X. Z.; Du, C. F.; Zou, G. D.; Wang, M.; Huang, X. Y. Synthesis, structure, band gap, and near-infrared photosensitivity of a new chalcogenide crystal, (NH4)4Ag12Sn7Se22. Inorg. Chem. 2016, 55, 5110–5112.
doi: 10.1021/acs.inorgchem.6b00803
Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y.; Xie, Y. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594
doi: 10.1021/jacs.7b02290
Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S.; Lin, Y.; Xie, Y. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.
doi: 10.1021/jacs.7b10287
Bu, X. H.; Zheng, N. F.; Feng, P. Y. Tetrahedral chalcogenide clusters and open frameworks. Chem. -Eur. J. 2004, 10, 3356–3362.
doi: 10.1002/chem.200306041
Feng, P. Y.; Bu, X. H.; Zheng, N. F. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Acc. Chem. Res. 2005, 38, 293–303.
doi: 10.1021/ar0401754
Huang, S. L.; He, L.; Chen, E. X.; Lai, H. D.; Zhang, J.; Lin, Q. P. A wide pH-range stable crystalline framework based on the largest tin-oxysulfide cluster [Sn20O10S34]. Chem. Commun. 2019, 55, 11083–11086.
doi: 10.1039/C9CC05736F
Liang, J. J.; Chen, J. F.; Zhao, J.; Pan, Y. L.; Zhang, Y.; Jia, D. X. Effects of lanthanide metal size and amino ligand denticity on the solvothermal systems Ln/Sn/Se/en and Ln/Sn/Se/dien (Ln = lanthanide). Dalton Trans. 2011, 40, 2631–2637.
doi: 10.1039/c0dt01424a
Hilbert, J.; Näther, C.; Weihrich, R.; Bensch, W. Room-temperature synthesis of thiostannates from {[Ni(tren)]2[Sn2S6]}n. Inorg. Chem. 2016, 55, 7859–7865.
doi: 10.1021/acs.inorgchem.6b00625
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Yimin Guo , Yiting Luo , Shuwen Hua , Chuan-Fan Ding , Yinghua Yan . Application of magnetic nanomaterials in peptidomics: A review in the past decade. Chinese Chemical Letters, 2025, 36(6): 110070-. doi: 10.1016/j.cclet.2024.110070
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
Bowen Song , Chenxu Shi , Yinghao Qu , Hongjun Liu , Hui Yang , Xiaoming Wu , Xijun Liu . The electrical properties and charge transport mechanism of MXenes. Chinese Chemical Letters, 2025, 36(6): 110823-. doi: 10.1016/j.cclet.2025.110823
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
Hongdao LI , Shengjian ZHANG , Hongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Mengyuan Li , Xitong Ren , Yanmei Gao , Mengyao Mu , Shiping Zhu , Shufang Tian , Minghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699
Zhao-Bo Hu , Ling-Ao Gui , Long-He Li , Tong-Tong Xiao , Adam T. Hand , Pagnareach Tin , Mykhaylo Ozerov , Yan Peng , Zhongwen Ouyang , Zhenxing Wang , Zi-Ling Xue , You Song . CoⅡ single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872