Citation: Dan WU, Yun-Long ZHONG, Shao-Yan LU, Chun-Juan GAO, Ze-Jiang WANG, Xi-Ping HUANG. Synthesis via Precursor Method and Shape Evolution of Basic Magnesium Carbonate[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 543-550. doi: 10.14102/j.cnki.0254–5861.2011–2456 shu

Synthesis via Precursor Method and Shape Evolution of Basic Magnesium Carbonate

  • Corresponding author: Dan WU, wudan_jay@126.com
  • Received Date: 14 May 2019
    Accepted Date: 11 November 2019

    Fund Project: Special Funds for Central Public Welfare Scientific Research Institutes K-JBYWF-2017-T06Tianjin Science and Technology Supports Key Projects 18YFZCSF00350

Figures(10)

  • Basic magnesium carbonate (4MgCO3·Mg(OH)2·4H2O) with spherical-like structure was synthesized through precursors thermal decomposition. The precursor of magnesium carbonate trihydrates (MgCO3·3H2O) was synthesized by brine and ammonium bicarbonate, and the thermal decomposition conditions were investigated in detail. The obtained particulate was characterized using SEM, XRD and laser particle analyzer. The result showed that it was easy to obtain spherical-like 4MgCO3·Mg(OH)2·4H2O by precursor thermal decomposition at 80~100 ℃ with thermal decomposition time 90 min, stirring time 15 min and the liquid initial concentration 0.1 mol/L, while rod-like 4MgCO3·Mg(OH)2·4H2O with a surface of "house of card" structure was more likely to be obtained at low temperature (55 ℃), and rosette-like products were obtained at a little higher temperature (80 ℃) by direct synthesis.
    1. [1]

      Zhang, Z.; Zheng, Y.; Zhang, J.; Zhang, Q.; Chen, J.; Liu, Z.; Liang, X. Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres. Cryst. Growth Des. 2007, 7, 337-342.  doi: 10.1021/cg060544y

    2. [2]

      Guo, M.; Li, Q.; Ye, X.; Wu, Z. Magnesium carbonate precipitation under the influence of polyacrylamide. Powder Technol. 2010, 200, 46-51.  doi: 10.1016/j.powtec.2010.02.006

    3. [3]

      Hou, K.; Gao, Z.; Da, M.; Li, Z.; Sun, H.; Li, J.; Xie, Y.; Kang, T.; Mijit, A. Oriented growth of urchin-like zinc oxide micro/nano-scale structures in aqueous solution. Mater. Res. Bull. 2012, 47, 1010-1015.  doi: 10.1016/j.materresbull.2012.01.006

    4. [4]

      Li, X.; Zhang, Y.; Zhang, Y.; Jin, Z.; Chang, P.; Liu, Y. Y. Preparation of active magnesium oxide with caustic calcined magnesia by ammonia circulation method. Adv. Powder Technol. 2016, 27, 1109-1114.  doi: 10.1016/j.apt.2016.03.020

    5. [5]

      Chen, Z.; Li, C.; Yang, Q.; Nan, Z. Transformation of novel morphologies and polymorphs of CaCO3 crystals induced by the anionic surfactant SDS. Mater. Chem. Phys. 2010, 123, 534-539.  doi: 10.1016/j.matchemphys.2010.05.010

    6. [6]

      Mitsuhashi, K.; Tagami, N.; Tanabe, K.; Ohkubo, T.; Sakai, H.; Koishi, M.; Abe, M. Synthesis of microtubes with a surface of ''house of cards'' structure via needlelike particles and control of their pore size. Langmuir. 2005, 21, 3659-3663.  doi: 10.1021/la047580o

    7. [7]

      Guo, H.; Qin, Z.; Qian, P.; Yu, P.; Cui, S.; Wang, W. Crystallization of aragonite CaCO3 with complex structures. Adv. Powder Technol. 2011, 22, 777-783.  doi: 10.1016/j.apt.2010.11.004

    8. [8]

      Li, X.; Shi, T. X.; Chang, P.; Hu, H.; Liu, Y. Y. Preparation of magnesium hydroxide flame retardant from light calcined powder by ammonia circulation method. Powder Technol. 2014, 260, 98-104.  doi: 10.1016/j.powtec.2014.03.051

    9. [9]

      Baidukova, O.; Ekaterina, V. S. Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium. Ultrason. Sonochem. 2016, 31, 423-428.  doi: 10.1016/j.ultsonch.2016.01.034

    10. [10]

      Ballirano, P.; Ferrini, D. V.; Mignardi, S. The thermal behavior and structural stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: new constraints on CO2 sequestration within minerals. J. Hazard. Mater. 2010, 178, 522-528.  doi: 10.1016/j.jhazmat.2010.01.113

    11. [11]

      Wang, Y.; Li, Z.; Demopoulos, G. P. Controlled precipitation of nesquehonite by the reaction of MgCl2 and (NH4)2CO3. J. Cryst. Growth 2008, 310, 1220-1227.  doi: 10.1016/j.jcrysgro.2008.01.002

    12. [12]

      Guo, H. F.; Pei, Y. S.; Wang, Z.; Yang, Y. D.; Wang, K. K.; Liu, Y. Y. Preparation of Mg(OH)2 with caustic calcined magnesia through ammonium acetate circulation. Hydrometall. 2015, 152, 13-19.  doi: 10.1016/j.hydromet.2014.12.008

    13. [13]

      Li, X.; Ma, C.; Zhao, J. Y.; Li, Z. T.; Xu, S. B.; Liu, Y. Y. Preparation of magnesium hydroxide nanoplates using a bubbling setup. Powder Technol. 2010, 198, 292-297.  doi: 10.1016/j.powtec.2009.11.024

    14. [14]

      Yang, C.; Song, X. F.; Sun, S. Y.; Sun, Z.; Yu, J. G. Effects of sodium dodecyl sulfate on the oriented growth of nesquehonite whiskers. Adv. Powder Technol. 2013, 24, 585-592.  doi: 10.1016/j.apt.2012.10.005

    15. [15]

      Fernandez, A. S.; Gomez-villalba, L. S.; Milosevic, O.; Forta, R.; Rabanal, M. E. Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram. Int. 2014, 40, 12285-12292.  doi: 10.1016/j.ceramint.2014.04.073

    16. [16]

      Qi, Z. X.; Yu, J.; Wang, H.; Ying, H. Q.; Zhang, J. J. Theoretical study of the dehydration process of MgCl2·4H2O to MgCl2·2H2O. Chin. J. Struct. Chem. 2017, 36, 387-395.

    17. [17]

      Wu, D.; Wang, Y. Q.; Wu, H. H.; Ma, L. B.; Luo, B. J.; Zhang, Q. Research on preparation and morphology evolution of magnesium carbonate tri-hydrate. J. Synth. Cryst. 2014, 3, 606-613.

    18. [18]

      Tang, X. J.; Guo, L.; Liu, Q.; Li, Y. Y.; Li, T.; Zhu, Y. M. Morphology analysis of magnesium hydroxide prepared by magnesium oxide hydration within seawater. Cryst. Res. Technol. 2015, 50, 203-209.  doi: 10.1002/crat.201400122

    19. [19]

      Yan, X. X.; Li, Y. F.; Xue, D. F. Bonding analysis on the crystallization of magnesium carbonate hydrates. J. Synth. Cryst. 2007, 36, 991-999.

    20. [20]

      Hao, Z. H.; Pan, J.; Du, F. L. Synthesis of basic magnesium carbonate microrods with a surface of "house of cards" structure. Mater. Lett. 2009, 63, 985-988.  doi: 10.1016/j.matlet.2009.01.029

    1. [1]

      Zhang, Z.; Zheng, Y.; Zhang, J.; Zhang, Q.; Chen, J.; Liu, Z.; Liang, X. Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres. Cryst. Growth Des. 2007, 7, 337-342.  doi: 10.1021/cg060544y

    2. [2]

      Guo, M.; Li, Q.; Ye, X.; Wu, Z. Magnesium carbonate precipitation under the influence of polyacrylamide. Powder Technol. 2010, 200, 46-51.  doi: 10.1016/j.powtec.2010.02.006

    3. [3]

      Hou, K.; Gao, Z.; Da, M.; Li, Z.; Sun, H.; Li, J.; Xie, Y.; Kang, T.; Mijit, A. Oriented growth of urchin-like zinc oxide micro/nano-scale structures in aqueous solution. Mater. Res. Bull. 2012, 47, 1010-1015.  doi: 10.1016/j.materresbull.2012.01.006

    4. [4]

      Li, X.; Zhang, Y.; Zhang, Y.; Jin, Z.; Chang, P.; Liu, Y. Y. Preparation of active magnesium oxide with caustic calcined magnesia by ammonia circulation method. Adv. Powder Technol. 2016, 27, 1109-1114.  doi: 10.1016/j.apt.2016.03.020

    5. [5]

      Chen, Z.; Li, C.; Yang, Q.; Nan, Z. Transformation of novel morphologies and polymorphs of CaCO3 crystals induced by the anionic surfactant SDS. Mater. Chem. Phys. 2010, 123, 534-539.  doi: 10.1016/j.matchemphys.2010.05.010

    6. [6]

      Mitsuhashi, K.; Tagami, N.; Tanabe, K.; Ohkubo, T.; Sakai, H.; Koishi, M.; Abe, M. Synthesis of microtubes with a surface of ''house of cards'' structure via needlelike particles and control of their pore size. Langmuir. 2005, 21, 3659-3663.  doi: 10.1021/la047580o

    7. [7]

      Guo, H.; Qin, Z.; Qian, P.; Yu, P.; Cui, S.; Wang, W. Crystallization of aragonite CaCO3 with complex structures. Adv. Powder Technol. 2011, 22, 777-783.  doi: 10.1016/j.apt.2010.11.004

    8. [8]

      Li, X.; Shi, T. X.; Chang, P.; Hu, H.; Liu, Y. Y. Preparation of magnesium hydroxide flame retardant from light calcined powder by ammonia circulation method. Powder Technol. 2014, 260, 98-104.  doi: 10.1016/j.powtec.2014.03.051

    9. [9]

      Baidukova, O.; Ekaterina, V. S. Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium. Ultrason. Sonochem. 2016, 31, 423-428.  doi: 10.1016/j.ultsonch.2016.01.034

    10. [10]

      Ballirano, P.; Ferrini, D. V.; Mignardi, S. The thermal behavior and structural stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: new constraints on CO2 sequestration within minerals. J. Hazard. Mater. 2010, 178, 522-528.  doi: 10.1016/j.jhazmat.2010.01.113

    11. [11]

      Wang, Y.; Li, Z.; Demopoulos, G. P. Controlled precipitation of nesquehonite by the reaction of MgCl2 and (NH4)2CO3. J. Cryst. Growth 2008, 310, 1220-1227.  doi: 10.1016/j.jcrysgro.2008.01.002

    12. [12]

      Guo, H. F.; Pei, Y. S.; Wang, Z.; Yang, Y. D.; Wang, K. K.; Liu, Y. Y. Preparation of Mg(OH)2 with caustic calcined magnesia through ammonium acetate circulation. Hydrometall. 2015, 152, 13-19.  doi: 10.1016/j.hydromet.2014.12.008

    13. [13]

      Li, X.; Ma, C.; Zhao, J. Y.; Li, Z. T.; Xu, S. B.; Liu, Y. Y. Preparation of magnesium hydroxide nanoplates using a bubbling setup. Powder Technol. 2010, 198, 292-297.  doi: 10.1016/j.powtec.2009.11.024

    14. [14]

      Yang, C.; Song, X. F.; Sun, S. Y.; Sun, Z.; Yu, J. G. Effects of sodium dodecyl sulfate on the oriented growth of nesquehonite whiskers. Adv. Powder Technol. 2013, 24, 585-592.  doi: 10.1016/j.apt.2012.10.005

    15. [15]

      Fernandez, A. S.; Gomez-villalba, L. S.; Milosevic, O.; Forta, R.; Rabanal, M. E. Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram. Int. 2014, 40, 12285-12292.  doi: 10.1016/j.ceramint.2014.04.073

    16. [16]

      Qi, Z. X.; Yu, J.; Wang, H.; Ying, H. Q.; Zhang, J. J. Theoretical study of the dehydration process of MgCl2·4H2O to MgCl2·2H2O. Chin. J. Struct. Chem. 2017, 36, 387-395.

    17. [17]

      Wu, D.; Wang, Y. Q.; Wu, H. H.; Ma, L. B.; Luo, B. J.; Zhang, Q. Research on preparation and morphology evolution of magnesium carbonate tri-hydrate. J. Synth. Cryst. 2014, 3, 606-613.

    18. [18]

      Tang, X. J.; Guo, L.; Liu, Q.; Li, Y. Y.; Li, T.; Zhu, Y. M. Morphology analysis of magnesium hydroxide prepared by magnesium oxide hydration within seawater. Cryst. Res. Technol. 2015, 50, 203-209.  doi: 10.1002/crat.201400122

    19. [19]

      Yan, X. X.; Li, Y. F.; Xue, D. F. Bonding analysis on the crystallization of magnesium carbonate hydrates. J. Synth. Cryst. 2007, 36, 991-999.

    20. [20]

      Hao, Z. H.; Pan, J.; Du, F. L. Synthesis of basic magnesium carbonate microrods with a surface of "house of cards" structure. Mater. Lett. 2009, 63, 985-988.  doi: 10.1016/j.matlet.2009.01.029

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    3. [3]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    4. [4]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    5. [5]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    6. [6]

      Zhen-Zhen DongJin-Hao ZhangLin ZhuXiao-Zhong FanZhen-Guo LiuYi-Bo YanLong Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    10. [10]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    11. [11]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    12. [12]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    13. [13]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    14. [14]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    15. [15]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    16. [16]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    17. [17]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    18. [18]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    19. [19]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    20. [20]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

Metrics
  • PDF Downloads(4)
  • Abstract views(685)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return