Citation: Qingyun Hu, Wei Wang, Junyuan Lu, He Zhu, Qi Liu, Yang Ren, Hong Wang, Jian Hui. High-throughput screening of high energy density LiMn1-xFexPO4 via active learning[J]. Chinese Chemical Letters, ;2025, 36(2): 110344. doi: 10.1016/j.cclet.2024.110344 shu

High-throughput screening of high energy density LiMn1-xFexPO4 via active learning

    * Corresponding authors.
    E-mail addresses: qiliu63@cityu.edu.hk (Q. Liu), hj20151107@sjtu.edu.cn (J. Hui).
  • Received Date: 18 May 2024
    Revised Date: 5 July 2024
    Accepted Date: 16 August 2024
    Available Online: 17 August 2024

Figures(5)

  • Lithium-ion batteries (LiBs) with high energy density have gained significant popularity in smart grids and portable electronics. LiMn1-xFexPO4 (LMFP) is considered a leading candidate for the cathode, with the potential to combine the low cost of LiFePO4 (LFP) with the high theoretical energy density of LiMnPO4 (LMP). However, quantitative investigation of the intricate coupling between the Fe/Mn ratio and the resulting energy density is challenging due to the parametric complexity. It is crucial to develop a universal approach for the rapid construction of multi-parameter mapping. In this work, we propose an active learning-guided high-throughput workflow for quantitatively predicting the Fe/Mn ratio and the energy density mapping of LMFP. An optimal composition (LiMn0.66Fe0.34PO4) was effectively screened from 81 cathode materials via only 5 samples. Model-guided electrochemical analysis revealed a nonlinear relationship between the Fe/Mn ratio and electrochemical properties, including ion mobility and impedance, elucidating the quantitative chemical composition-energy density map of LMFP. The results demonstrated the efficacy of the method in high-throughput screening of LiBs cathode materials.
    1. [1]

      B. Xu, D. Qian, Z. Wang, Y.S. Meng, Mater. Sci. Engin. R: Rep. 73 (2012) 51–65.

    2. [2]

      M. Tamaru, S.C. Chung, D. Shimizu, S.I. Nishimura, A. Yamada, Chem. Mater. 25 (2013) 2538–2543.  doi: 10.1021/cm4010739

    3. [3]

      Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 44 (2015) 5926–5940.

    4. [4]

      L. Yang, W. Deng, W. Xu, et al., J. Mater. Chem. A 9 (2021) 14214–14232.  doi: 10.1039/d1ta01526e

    5. [5]

      K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Science 311 (2006) 977–980.  doi: 10.1126/science.1122152

    6. [6]

      P. Zuo, L. Wang, W. Zhang, et al., Nanoscale 7 (2015) 11509–11514.

    7. [7]

      D. Choi, J. Xiao, Y.J. Choi, et al., Energy Environ. Sci. 4 (2011) 4560–4566.  doi: 10.1039/c1ee01501j

    8. [8]

      B. Kang, G. Ceder, Nature 458 (2009) 190–193.  doi: 10.1038/nature07853

    9. [9]

      P.F. Xiao, B. Ding, M.O. Lai, L. Lu, J. Electrochem. Soc. 160 (2013) A918–A926.  doi: 10.1149/2.116306jes

    10. [10]

      H. Yang, C. Fu, Y. Sun, L. Wang, T. Liu, Carbon 158 (2020) 102–109.

    11. [11]

      J. Li, C. Guo, Y. Qin, X. Ning, Mater. Technol. 35 (2020) 565–571.  doi: 10.1080/10667857.2020.1712533

    12. [12]

      J. Hong, F. Wang, X. Wang, J. Graetz, J. Power Sources 196 (2011) 3659–3663.

    13. [13]

      S. Oukahou, A. Elomrani, M. Maymoun, K. Sbiaai, A. Hasnaoui, Comp. Mater. Sci. 202 (2022) 111006.

    14. [14]

      Z. Wei, Q. He, Y. Zhao, J. Power Sources 549 (2022) 232125.

    15. [15]

      M. Berecibar, Nature 568 (2019) 325–326.  doi: 10.1038/d41586-019-01138-1

    16. [16]

      Z. Jiang, J. Li, Y. Yang, et al., Nat. Commun. 11 (2020) 2310.

    17. [17]

      L. Himanen, A. Geurts, A.S. Foster, P. Rinke, Adv. Sci. 6 (2019) 1900808.

    18. [18]

      J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, npj Comp. Mater. 5 (2019) 83.

    19. [19]

      M. Zhong, K. Tran, Y. Min, et al., Nature 581 (2020) 178–183.  doi: 10.1038/s41586-020-2242-8

    20. [20]

      A.G. Kusne, H. Yu, C. Wu, H. Zhang, et al., Nat. Commun. 11 (2020) 5966.

    21. [21]

      J. Winz, S. Engell, Optimization based sampling for gray-box modeling using a modified upper confidence bound acquisition function, in: 31st European Symposium on Computer Aided Process Engineering, 2021, pp. 953–958.

    22. [22]

      F. Pedregosa, G. Varoquaux, A. Gramfort, et al., J. Machine Learning Res. 12 (2011) 2825–2830.

    23. [23]

      B.H. Toby, R.B. Von Dreele, J. Appl. Crystal. 46 (2013) 544–549.

    24. [24]

      S. Greenhill, S. Rana, S. Gupta, P. Vellanki, S. Venkatesh, IEEE Access 8 (2020) 13937–13948.  doi: 10.1109/access.2020.2966228

    25. [25]

      G. Kobayashi, A. Yamada, S.I. Nishimura, et al., J. Power Sources 189 (2009) 397–401.

    26. [26]

      S.P. Chen, D. Lv, J. Chen, Y.H. Zhang, F.N. Shi, Energy Fuels 36 (2022) 1232–1251.  doi: 10.1021/acs.energyfuels.1c03757

    27. [27]

      S. Li, H. Zhang, Y. Liu, L. Wang, X. He, Adv. Funct. Mater. 34 (2024) 2310057.

    28. [28]

      A. Yamada, Y. Kudo, K.Y. Liu, J. Electrochem. Soc. 148 (2001) A1153.

    29. [29]

      D.B. Ravnsbæk, K. Xiang, W. Xing, et al., Nano Lett. 16 (2016) 2375–2380.  doi: 10.1021/acs.nanolett.5b05146

    30. [30]

      S. Wi, J. Park, S. Lee, et al., Nano Energy 31 (2017) 495–503.

    1. [1]

      B. Xu, D. Qian, Z. Wang, Y.S. Meng, Mater. Sci. Engin. R: Rep. 73 (2012) 51–65.

    2. [2]

      M. Tamaru, S.C. Chung, D. Shimizu, S.I. Nishimura, A. Yamada, Chem. Mater. 25 (2013) 2538–2543.  doi: 10.1021/cm4010739

    3. [3]

      Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 44 (2015) 5926–5940.

    4. [4]

      L. Yang, W. Deng, W. Xu, et al., J. Mater. Chem. A 9 (2021) 14214–14232.  doi: 10.1039/d1ta01526e

    5. [5]

      K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Science 311 (2006) 977–980.  doi: 10.1126/science.1122152

    6. [6]

      P. Zuo, L. Wang, W. Zhang, et al., Nanoscale 7 (2015) 11509–11514.

    7. [7]

      D. Choi, J. Xiao, Y.J. Choi, et al., Energy Environ. Sci. 4 (2011) 4560–4566.  doi: 10.1039/c1ee01501j

    8. [8]

      B. Kang, G. Ceder, Nature 458 (2009) 190–193.  doi: 10.1038/nature07853

    9. [9]

      P.F. Xiao, B. Ding, M.O. Lai, L. Lu, J. Electrochem. Soc. 160 (2013) A918–A926.  doi: 10.1149/2.116306jes

    10. [10]

      H. Yang, C. Fu, Y. Sun, L. Wang, T. Liu, Carbon 158 (2020) 102–109.

    11. [11]

      J. Li, C. Guo, Y. Qin, X. Ning, Mater. Technol. 35 (2020) 565–571.  doi: 10.1080/10667857.2020.1712533

    12. [12]

      J. Hong, F. Wang, X. Wang, J. Graetz, J. Power Sources 196 (2011) 3659–3663.

    13. [13]

      S. Oukahou, A. Elomrani, M. Maymoun, K. Sbiaai, A. Hasnaoui, Comp. Mater. Sci. 202 (2022) 111006.

    14. [14]

      Z. Wei, Q. He, Y. Zhao, J. Power Sources 549 (2022) 232125.

    15. [15]

      M. Berecibar, Nature 568 (2019) 325–326.  doi: 10.1038/d41586-019-01138-1

    16. [16]

      Z. Jiang, J. Li, Y. Yang, et al., Nat. Commun. 11 (2020) 2310.

    17. [17]

      L. Himanen, A. Geurts, A.S. Foster, P. Rinke, Adv. Sci. 6 (2019) 1900808.

    18. [18]

      J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, npj Comp. Mater. 5 (2019) 83.

    19. [19]

      M. Zhong, K. Tran, Y. Min, et al., Nature 581 (2020) 178–183.  doi: 10.1038/s41586-020-2242-8

    20. [20]

      A.G. Kusne, H. Yu, C. Wu, H. Zhang, et al., Nat. Commun. 11 (2020) 5966.

    21. [21]

      J. Winz, S. Engell, Optimization based sampling for gray-box modeling using a modified upper confidence bound acquisition function, in: 31st European Symposium on Computer Aided Process Engineering, 2021, pp. 953–958.

    22. [22]

      F. Pedregosa, G. Varoquaux, A. Gramfort, et al., J. Machine Learning Res. 12 (2011) 2825–2830.

    23. [23]

      B.H. Toby, R.B. Von Dreele, J. Appl. Crystal. 46 (2013) 544–549.

    24. [24]

      S. Greenhill, S. Rana, S. Gupta, P. Vellanki, S. Venkatesh, IEEE Access 8 (2020) 13937–13948.  doi: 10.1109/access.2020.2966228

    25. [25]

      G. Kobayashi, A. Yamada, S.I. Nishimura, et al., J. Power Sources 189 (2009) 397–401.

    26. [26]

      S.P. Chen, D. Lv, J. Chen, Y.H. Zhang, F.N. Shi, Energy Fuels 36 (2022) 1232–1251.  doi: 10.1021/acs.energyfuels.1c03757

    27. [27]

      S. Li, H. Zhang, Y. Liu, L. Wang, X. He, Adv. Funct. Mater. 34 (2024) 2310057.

    28. [28]

      A. Yamada, Y. Kudo, K.Y. Liu, J. Electrochem. Soc. 148 (2001) A1153.

    29. [29]

      D.B. Ravnsbæk, K. Xiang, W. Xing, et al., Nano Lett. 16 (2016) 2375–2380.  doi: 10.1021/acs.nanolett.5b05146

    30. [30]

      S. Wi, J. Park, S. Lee, et al., Nano Energy 31 (2017) 495–503.

  • 加载中
    1. [1]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    2. [2]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    3. [3]

      Zixing XuRuiying ChenChuanming HaoQionghong XieChunhui DengNianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975

    4. [4]

      Xiangyue LiDexin ZhuKunmin PanXiaoye ZhouJiaming ZhuYingxue WangYongpeng RenHong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870

    5. [5]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

    6. [6]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    7. [7]

      Xiaoxiao WangBolun WangFenfen JiJie YanJiacheng FangDoudou ZhangJi XuJing JiXinran HaoHemi LuanYanjun HongShulan QiuMin LiZhu YangWenlan LiuXiaodong CaiZongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653

    8. [8]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    9. [9]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    10. [10]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    11. [11]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    14. [14]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    15. [15]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    16. [16]

      Yao-Hua GuYu ChenQing LiNeng-Bin XieXue XingJun XiongMin HuTian-Zhou LiKe-Yu YuanYu LiuTang TangFan HeBi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627

    17. [17]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    18. [18]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    19. [19]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(5)
  • Abstract views(586)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return