Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater
-
* Corresponding author.
E-mail address: sili@cau.edu.cn (S. Li).
Citation:
Huijuan Li, Zhu Wang, Jiagen Geng, Ruiping Song, Xiaoyin Liu, Chaochen Fu, Si Li. Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater[J]. Chinese Chemical Letters,
;2025, 36(4): 110138.
doi:
10.1016/j.cclet.2024.110138
Quinoxalin-2(1H)-one, as a significant heterocyclic unit, has been found important applications in synthetic chemistry, materials, natural products and pharmaceuticals because of their innate outstanding biological activities and excellent chemical characters [1], and their biological activities can be significantly influenced if the substituents is introduced into the N1- and C3-positions of the quinoxalin-2(1H)-one [2]. In particular, 3-substituted quinoxalin-2(1H)-ones have been developed into powerful drugs due to their strong pharmacological effects [3], such as ataquimast, antinicrobial, anticancer, Fxa coagulation inhibitors and glycogen phosphorylase inhibitor (Fig. 1) [4]. Therefore, a number of methods have been developed for their synthesis [5]. Generally, they are synthesized by cyclization of derivatives of aniline or 1, 2-diaminobenzene with suitable partners. However, the disadvantages including pre-functionalization of the partners and multi-step synthesis limit its application [6]. In recent years, direct C-H bond functionalization at the C3-position of quinoxalin-2(1H)-one has become a straightforward access to the 3-substituted quinoxalin-2(1H)-one derivatives, and various remarkable work has been achieved [7-12]. For instances, our group in 2019 reported a first example of oxidative C-H fluoroalkoxylation of quinoxalinones with fluoroalkyl alcohols under transition-metal and solvent-free conditions [8b]. This method can also be extended to the facile and efficient synthesis of histamine-4 receptor. The same year, Sun's group presented an efficient electrochemical approach for the C(sp2)–H phosphonation of quinoxalin-2(1H)-ones and C(sp3)–H phosphonation of xanthenes [9a]. More interestingly, the group of Pan disclosed a photocatalyst-free visible-light-promoted sulfenylation of quinoxalinones with thiols via cross-dehydrogenative coupling [10b]. Shortly after this discovery, He's group demonstrated a visible-light-promoted amidation of quinoxalin-2(1H)-ones [11b]. In a very recent contribution, a mild and eco-friendly visible-light-induced decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo carboxylic acids using ambient air as the sole oxidant at room temperature was also established by the same group [12a]. In sharp contrast, the alkenylation of quinoxalin-2(1H)-ones was rarely reported.
Photocatalysis has become a powerful strategy for organic synthesis due to the advantages of low energy consumption and environmental protection [13]. For example, MacMillan et al. in 2016 reported a photocatalyzed C-H arylation of aliphatic amines with aryl bromides, providing a complement to existing cross-coupling technologies [13a]. In 2021, He' group developed the first example of visible-light induced one-pot tandem reaction of arylacrylamides, CHF2CO2H and PhI(OAc)2, affording an eco-friendly and practical method to access various difluoromethylated oxindoles [13b]. The same year, Jin and coworkers developed photocatalyst-free radical tandem cyclization of quinazolinones containing an unactivated alkene moiety with difluoro bromides under illumination, giving a practical method for the synthesis of fluorine-containing ring-fused quinazolinones [13f]. In recent years, with increasing attention to renewable energy, considerable efforts have been switched to the development of photocatalytic reactions that excited by the sunlight, which is known as a renewable and simple accessible light source [14]. Our research interests focus on the development of novel and effective methodologies for the direct modification ofN-containing heterocycles [15], herein, we demonstrated a direct alkenylation reaction between quinoxalin-2(1H)-ones and methyl ketones. Compared with our previous work [15a], this transformation was achieved through a combination of Mannich-type reaction and solar photocatalysis, which could be completed within 15min, providing a green and efficient solution for the synthesis of potentially bioactive compounds that containing a 3, 4-dihydroquinoxalin-2(1H)-one structure (Scheme 1b).
1-Methylquinoxalin-2(1H)-one (1a) and acetone (2a) were chosen as starting materials to screen the reaction conditions. The target product (3a) was obtained in 80% yield when the reaction was performed by using 25mol% of CH3SO3H as a catalyst under the irradiation of sunlight for 15min (Table 1, entry 1). Other acid catalyst, such as CF3COOH and HBF4 gave the relative lower yield under the same conditions (Table 1, entries 2 and 3). No product was obtained in the absence of any acid catalyst (Table 1, entry 4). When used MeCN or DMF as solvent and 2.0 equiv. of acetone as substrate, 76% or 52% yield was obtained respectively (Table 1, entries 5 and 6). Extended reaction time to 30min did not enhanced product yield (Table 1, entry 7). There was no desired product generated when the reaction was carried out under dark condition (Table 1, entry 8).
With the optimum reaction conditions in hands, we then examined the substrate scope of the reaction by employing various quinoxalin-2(1H)-ones (1) with acetone (2a) (Scheme 2). Firstly, the N-substituted groups such as N-methyl, N-ethyl, N-cyclopropylmethyl, N-keto and N-ester were well compatible under the standard conditions, giving the desired products (3a-e) in 72%–80% yields. It is worth mentioning that quinoxalin-2(1H)-one with a sensitive allyl group, which could be further functionalized, also could give the product (3f) in 69% yield. A wide range of quinoxalin-2(1H)-ones with different benzyl groups, bearing both electron-donating and electron-withdrawing substituents at ortho-, meta-, or para-position could undergo the reaction smoothly, affording the corresponding products (3g–n) in 40%–72% yields. Importantly, the N-free quinoxalin-2(1H)-one could undergo the reaction smoothly, providing the product (3o) in 45% yield. Besides, plenty of quinoxalin-2(1H)-ones that bear the functional groups including methyl, halogen, tert-butyl, methoxy or trifluoromethyl at C5-, C6- or C7-position also gave the desired products in satisfactory yield (3p-3w). To expand the substrate scope of N-heterocycles, we also tested quinoline, isoquinoline, quinoxaline, benzimidazole and benzothiazole under standard conditions, however, no corresponding product was obtained (see Supporting information).
Subsequently, we evaluated the substrate scope of methyl ketones for the reaction (Scheme 3). To reduce the dosage of reactant, the reactions were performed with 2.0 equiv. of methyl ketones by using acetonitrile as solvent. To our delight, both long-chain and cycloalkyl methyl ketones could undergo the reaction smoothly, giving the corresponding products (3x–3ad) in 58%–79% yields. The molecular structure of 3y was confirmed by X-ray crystallographic analysis (CCDC: 2060383). It was found that the molecular structure was more stable in (Z)-configuration probably because the effect of hydrogen bond interaction between amine and carbonyl group. Then, we found that cyclopentanone skeleton could also react with quinoxalin-2(1H)-one smoothly to deliver the target products (3ae and 3af) in moderate yield. The subsequent exploration found that the aryl methyl ketones, such as acetophenone, 1-(furan-2-yl)ethan-1-one and 1-(thiophen-2-yl)ethan-1-one were also could be converted into target products (3ag-3ai) in acceptable yields. Unfortunately, the substrates like ethyl acetate, acetonitrile, nitromethane, ethyl acetoacetate, and acetylacetone were not compatible under standard conditions (Supporting information).
To show the synthetic utility of this protocol, a gram-scale synthesis experiment was performed to give the target product (3a) in 75% yield (Scheme 4). Interestingly, the anticancer compound (3aj) and antimicrobial compound (3ak) were obtained in moderate yields by using our strategy [16]. Moreover, since the molecules that bearing a 3, 4 dihydroquinoxalin-2(1H)-one framework are a promising class of biologically active compounds, in this regard, several bioactive molecules such as naproxen derivative, frambinone, ibuprofen derivative, vanillylacetone, nabumetone and pregnenolone acetate were selected to react with 1-methylquinoxalin-2(1H)-one directly, providing the potentially active molecules (3al-3aq) in 52%–70% yields.
To study the reaction mechanism, a series of control experiments were carried out. Product 4 was generated instead of target product 3a when the reaction was performed under nitrogen atmosphere (Scheme 5). This result showed that oxygen in air was included in the subsequent oxidation process. To confirm the assumption, the oxidation process of compound 4 was studied. First, target product 3 was formed in 0%, 79% and 82% yields when the reaction performed under nitrogen, air or oxygen atmosphere respectively (Scheme 5). Second, the reaction was inhibited when singlet oxygen inhibitor (NaN3) was involved in the transformation (Scheme 5). Furthermore, compound 4 could not be converted into target product 3 when the reaction was performed in dark condition (Scheme 5). These experimental results strongly supported that the singlet oxygen 1O2, which was generated from triplet oxygen 3O2 through photocatalysis, serves as the real oxidant.
On the basis of above results and previous reports [8-12], we proposed a possible mechanism for this reaction (Scheme 6). Firstly, substrate 1a was transformed into intermediate A through a protonation process. Meanwhile, acetone 2a was converted to the enol form B under acidic condition. Then, a Mannich-type reaction took place between intermediates A and B to give the intermediate C, which underwent a deprotonation process to provide the key compound 4. It was found that organic molecules that containing a quinoxalin-2(1H)-one skeleton could act as a photosensitizer to generate 1O2 from O2 under the irradiation of visible light [12p]. In this regard, compounds1a, 4 or 3a was excited by visible light to provide the excited-species 1a*, 4* or 3a*, which acted as a photosensitizer and underwent an energy transfer (ET) process with O2 to give 1O2, along with the regeneration of ground-state compounds 1a, 4 or 3a. Finally, compound 4 underwent the single-electron-transfer (SET) process with 1O2 to give the desired product with the generation of H2O2, which was detected by H2O2 test paper (Supporting information) [12a] [17]. We proposed that the electron-withdrawing effects of carbonyl group that exists in quinoxalin-2(1H)-one skeleton lower down the electron cloud density of the enamine moiety, making it difficult to be oxidized and can survive under this H2O2 oxidation conditions.
In conclusion, this study described a novel strategy for the olefination of quinoxalin-2(1H)-ones with methyl ketones. Various substrates were compatible under standard condition, providing the corresponding products in moderate to good yields. Control experiments revealed that a Mannich-type reaction and oxidative process were involved in the transformation.
The authors declare that they have no conflict of interest.
We thank the Natural Science Foundation of Zhejiang Province (No. LY21B060009) and the National Natural Science Foundation of China (No. 21871071) for financial support.
Supplementary material related to this article can befound, in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.04.016.
S. Bhatt, S. Chatterjee, Environ. Pollut. 315 (2022) 120440.
E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E3463–E3470.
D. Schar, E.Y. Klein, R. Laxminarayan, et al., Sci. Rep. 10 (2020) 21878.
doi: 10.1038/s41598-020-78849-3
Q.Q. Zhang, G.G. Ying, C.G. Pan, et al., Environ. Sci. Technol. 49 (2015) 6772–6782.
doi: 10.1021/acs.est.5b00729
I.T. Carvalho, L. Santos, Environ. Int. 94 (2016) 736–757.
X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Sci. Total Environ. 500 (2014) 250–269.
M. Zou, W. Tian, J. Zhao, et al., Process Saf. Environ. Prot. 160 (2022) 116–129.
doi: 10.1016/j.psep.2022.02.013
S. Li, W. Shi, W. Liu, et al., Sci. Total Environ. 615 (2018) 906–917.
doi: 10.1016/j.scitotenv.2017.09.328
S. Li, Y. Liu, Y. Wu, et al., Natl. Sci. Open. 1 (2022) 20220029.
doi: 10.1360/nso/20220029
E.M. Golet, A.C. Alder, W. Giger, Environ. Sci. Technol. 36 (2002) 3645–3651.
doi: 10.1021/es0256212
M. Sturini, A. Speltini, F. Maraschi, et al., Chemosphere 134 (2015) 313–318.
doi: 10.1016/j.chemosphere.2015.04.081
Z. Li, J. Wang, J. Chang, et al., Sci. Total Environ. 857 (2023) 159172.
doi: 10.1016/j.scitotenv.2022.159172
R. Anjali, S. Shanthakumar, J. Environ. Manage. 246 (2019) 51–62.
doi: 10.1016/j.jenvman.2019.05.090
Y. Zhang, Y.G. Zhao, F. Maqbool, Y. Hu, J. Water Process. Eng. 45 (2022) 102496.
doi: 10.1016/j.jwpe.2021.102496
Y. Chuang, S. Chen, C. Chinn, W. Mitch, Environ. Sci. Technol. 51 (2017) 13859–13868.
doi: 10.1021/acs.est.7b03570
C. Wang, N. Moore, K. Bircher, et al., Water Res. 161 (2019) 448–458.
doi: 10.1016/j.watres.2019.06.033
J. Rodriguez-Chueca, S. Varella della Giustina, J. Rocha, et al., Sci. Total Environ. 652 (2019) 1051–1061.
doi: 10.1016/j.scitotenv.2018.10.223
J. Rodríguez-Chueca, E. Laski, C. García-Cañibano, et al., Sci. Total Environ. 630 (2018) 1216–1225.
doi: 10.1016/j.scitotenv.2018.02.279
Y. Chen, J. Yang, L. Zeng, M. Zhu, Crit. Rev. Environ. Sci. Technol. 52 (2022) 1401–1448.
doi: 10.1080/10643389.2020.1859289
S. Shurbaji, P.T. Huong, T.M. Altahtamouni, Catalysts 11 (2021) 437.
doi: 10.3390/catal11040437
Y. Gou, P. Chen, L. Yang, et al., Chemosphere 270 (2021) 129481.
doi: 10.1016/j.chemosphere.2020.129481
X. Liu, Y. Zhou, J. Zhang, et al., Chem. Eng. J. 347 (2018) 379–397.
doi: 10.1016/j.cej.2018.04.142
T. Song, G. Li, R. Hu, et al., Catalysts 12 (2022) 1025.
doi: 10.3390/catal12091025
Z. Lu, Y. Ling, W. Sun, et al., Environ. Pollut. 308 (2022) 119673.
doi: 10.1016/j.envpol.2022.119673
X. Luo, B. Zhang, Y. Lu, et al., J. Hazard. Mater. 421 (2022) 126682.
doi: 10.1016/j.jhazmat.2021.126682
H.D.M. Tran, S. Boivin, H. Kodamatani, et al., Chemosphere 286 (2022) 131682.
doi: 10.1016/j.chemosphere.2021.131682
R. Shankar, W.J. Shim, J.G. An, U.H. Yim, Water Res. 68 (2015) 304–315.
doi: 10.1016/j.watres.2014.10.012
W. Qiu, M. Zheng, J. Sun, et al., Sci. Total Environ. 651 (2019) 1457–1468.
doi: 10.1016/j.scitotenv.2018.09.315
Y. Zhang, K. Huang, Y. Zhu, et al., RSC Adv. 12 (2022) 10088–10096.
doi: 10.1039/d2ra00199c
X. Zeng, Y. Meng, X. Sun, et al., J. Environ. Chem. Eng. 9 (2021) 106608.
doi: 10.1016/j.jece.2021.106608
X. Ao, W. Wang, W. Sun, et al., Water Res. 203 (2021) 117458.
doi: 10.1016/j.watres.2021.117458
K. Guo, Z. Wu, S. Yan, et al., Water Res. 147 (2018) 184–194.
doi: 10.1016/j.watres.2018.08.048
H. Milh, X. Yu, D. Cabooter, R. Dewil, Sci. Total Environ. 764 (2021) 144510.
doi: 10.1016/j.scitotenv.2020.144510
H. Yang, Y. Li, Y. Chen, et al., Water Environ. Res. 91 (2019) 1576–1588.
doi: 10.1002/wer.1144
H. Xue, S. Gao, N. Zheng, et al., Water Sci. Technol. 79 (2019) 2387–2394.
doi: 10.2166/wst.2019.240
C.C. Lin, H.Y. Lin, Desalin. Water Treat. 167 (2019) 170–175.
doi: 10.5004/dwt.2019.24602
J. Deng, G. Wu, S. Yuan, et al., J. Photochem. Photobiol. A: Chem. 371 (2019) 151–158.
doi: 10.1016/j.jphotochem.2018.10.043
X. Zhang, K. Guo, Y. Wang, et al., Chem. Eng. J. 400 (2020) 125222.
doi: 10.1016/j.cej.2020.125222
J. Lu, J. Li, J. Xu, et al., J. Water Process Eng. 44 (2021) 102324.
doi: 10.1016/j.jwpe.2021.102324
H. Liu, Y. Gao, J. Wang, et al., Chemosphere 276 (2021) 130220.
doi: 10.1016/j.chemosphere.2021.130220
D. Krakko, A. Illes, V. Licul-Kucera, et al., Chemosphere 275 (2021) 130080.
doi: 10.1016/j.chemosphere.2021.130080
Q. Ping, T. Yan, L. Wang, et al., Water Res. 210 (2022) 118019.
doi: 10.1016/j.watres.2021.118019
Q. Wu, Z. Que, Z. Li, et al., J. Hazard. Mater. 359 (2018) 414–420.
doi: 10.1016/j.jhazmat.2018.07.041
C. Zhao, Y. Li, H. Chu, et al., J. Hazard. Mater. 419 (2021) 126466.
doi: 10.1016/j.jhazmat.2021.126466
K. Saravanakumar, C.M. Park, Chem. Eng. J. 423 (2021) 130076.
doi: 10.1016/j.cej.2021.130076
V.T. Le, V.A. Tran, D.L. Tran, et al., Chemosphere 270 (2021) 129417.
doi: 10.1016/j.chemosphere.2020.129417
J. Lei, B. Chen, L. Zhou, et al., Chem. Eng. J. 400 (2020) 125902.
doi: 10.1016/j.cej.2020.125902
J. Li, Z. Xia, D. Ma, et al., J. Colloid Interface Sci. 586 (2021) 243–256.
doi: 10.1016/j.jcis.2020.10.088
Q. Chen, M. Zhang, J. Li, et al., Chem. Eng. J. 389 (2020) 124476.
doi: 10.1016/j.cej.2020.124476
Q. Zhang, F. Han, Y. Yan, et al., Appl. Surf. Sci. 485 (2019) 547–553.
doi: 10.1016/j.apsusc.2019.04.185
R. Du, P. Chen, Q. Zhang, G. Yu, Chemosphere 273 (2021) 128435.
doi: 10.1016/j.chemosphere.2020.128435
X. Zeng, X. Sun, Y. Yu, et al., Chem. Eng. J. 378 (2019) 122226.
doi: 10.1016/j.cej.2019.122226
L. Yang, Y. Xiang, F. Jia, et al., Appl. Catal. B: Environ. 292 (2021) 120198.
doi: 10.1016/j.apcatb.2021.120198
Y. Tian, X. He, W. Chen, et al., Sci. Total Environ. 723 (2020) 138144.
doi: 10.1016/j.scitotenv.2020.138144
O. Autin, C. Romelot, L. Rust, et al., Chemosphere 92 (2013) 745–751.
doi: 10.1016/j.chemosphere.2013.04.028
S. Li, J. Hu, Water Res. 132 (2018) 320–330.
doi: 10.1016/j.watres.2017.12.065
T.K. Kim, T. Kim, H. Park, et al., Chem. Eng. J. 394 (2020) 124803.
doi: 10.1016/j.cej.2020.124803
S. Li, T. Huang, P. Du, et al., Water Res. 185 (2020) 116286.
doi: 10.1016/j.watres.2020.116286
S. Guerra-Rodriguez, A.R. Lado Ribeiro, R.S. Ribeiro, et al., Sci. Total Environ. 770 (2021) 145299.
doi: 10.1016/j.scitotenv.2021.145299
P. Chen, L. Blaney, G. Cagnetta, et al., Environ. Sci. Technol. 53 (2019) 1564–1575.
doi: 10.1021/acs.est.8b05827
D. Cheng, H. Liu, E. Yang, et al., Sci. Total Environ. 773 (2021) 145102.
doi: 10.1016/j.scitotenv.2021.145102
X. Liu, Y. Liu, S. Lu, et al., Chem. Eng. J. 385 (2020) 123987.
doi: 10.1016/j.cej.2019.123987
W.K. Ye, F.X. Tian, B. Xu, et al., Sep. Purif. Technol. 280 (2022) 119846.
doi: 10.1016/j.seppur.2021.119846
D.A. Armstrong, R.E. Huie, W.H. Koppenol, et al., Pure Appl. Chem. 87 (2015) 1139–1150.
doi: 10.1515/pac-2014-0502
J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54 (2020) 3064–3081.
doi: 10.1021/acs.est.9b07082
T. Luukkonen, T. Heyninck, J. Rämö, U. Lassi, Water Res. 85 (2015) 275–285.
doi: 10.1016/j.watres.2015.08.037
H. Zhang, L. Chen, P. Du, et al., Environ. Sci. Technol. 58 (2024) 3506–3519.
M. Sturini, F. Maraschi, A. Cantalupi, et al., Materials 13 (2020) 537.
doi: 10.3390/ma13030537
M. Eskandari, N. Goudarzi, S.G. Moussavi, Water Environ. J. 32 (2018) 58–66.
doi: 10.1111/wej.12291
E.A. Serna-Galvis, Y. Avila-Torres, M. Ibanez, et al., Water 13 (2021) 2154.
doi: 10.3390/w13162154
L. Pretali, F. Maraschi, A. Cantalupi, et al., Catalysts 10 (2020) 628.
doi: 10.3390/catal10060628
A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, J. Photochem. Photobiol. A: Chem. 360 (2018) 34–43.
doi: 10.1016/j.jphotochem.2018.04.021
A. Siddique, M.B. Tahir, I. Shahid, et al., Appl. Nanosci. 12 (2022) 1613–1626.
doi: 10.1007/s13204-021-02313-5
L. Wolski, K. Grzelak, M. Munko, et al., Appl. Surf. Sci. 563 (2021) 150338.
doi: 10.1016/j.apsusc.2021.150338
N. Kaur, A. Verma, I. Thakur, S. Basu, Chemosphere 276 (2021) 130180.
doi: 10.1016/j.chemosphere.2021.130180
K. Qin, Q. Zhao, H. Yu, et al., Environ. Res. 199 (2021) 111360.
doi: 10.1016/j.envres.2021.111360
T. Senasu, T. Narenuch, K. Wannakam, et al., J. Mater. Sci.: Mater. Electron. 31 (2020) 9685–9694.
doi: 10.1007/s10854-020-03514-4
T. Chankhanittha, V. Somaudon, T. Photiwat, et al., J. Phys. Chem. Solids. 153 (2021) 109995.
doi: 10.1016/j.jpcs.2021.109995
W. Liu, J. Zhou, J. Yao, Ecotoxicol. Environ. Saf. 190 (2020) 110062.
doi: 10.1016/j.ecoenv.2019.110062
X. Zheng, S. Xu, Y. Wang, et al., J. Colloid Interface Sci. 527 (2018) 202–213.
doi: 10.1016/j.jcis.2018.05.054
S. Moles, J. Berges, M.P. Ormad, et al., Environ. Sci. Pollut. Res. 28 (2021) 24167–24179.
doi: 10.1007/s11356-021-12542-4
X. Huang, S. Wu, S. Tang, et al., J. Mol. Liq. 317 (2020) 113961.
doi: 10.1016/j.molliq.2020.113961
C. Zhang, M. Jia, Z. Xu, et al., Chem. Eng. J. 430 (2022) 132652.
doi: 10.1016/j.cej.2021.132652
Q. Wu, M.S. Siddique, Y. Guo, et al., Appl. Catal. B: Environ. 286 (2021) 119950.
doi: 10.1016/j.apcatb.2021.119950
C. Yang, X. Wang, L. Zhang, et al., J. Taiwan Inst. Chem. Eng. 115 (2020) 117–127.
doi: 10.1016/j.jtice.2020.09.036
L. Rizzo, Environ. Sci. Water Res. Technol. 8 (2022) 2145–2169.
doi: 10.1039/d2ew00146b
H. Luo, Y. Zeng, D. He, X. Pan, Chem. Eng. J. 407 (2021) 127191.
doi: 10.1016/j.cej.2020.127191
Y. Jiang, J. Ran, K. Mao, et al., Ecotoxicol. Environ. Saf. 236 (2022) 113464.
doi: 10.1016/j.ecoenv.2022.113464
S.K. Mondal, A.K. Saha, A. Sinha, J. Cleaner Prod. 171 (2018) 1203–1214.
doi: 10.1016/j.jclepro.2017.10.091
H. Dan, Y. Kong, Q. Yue, et al., Chem. Eng. J. 420 (2021) 127634.
doi: 10.1016/j.cej.2020.127634
W. He, Z. Li, S. Lv, et al., Chem. Eng. J. 409 (2021) 128274.
doi: 10.1016/j.cej.2020.128274
W. Li, Y. Wang, J. Chen, et al., Appl. Catal. B: Environ. 302 (2022) 120882.
doi: 10.1016/j.apcatb.2021.120882
A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Environ. Res. 217 (2023) 114789.
doi: 10.1016/j.envres.2022.114789
J. Yang, M. Zhu, D.D. Dionysiou, Water Res. 189 (2021) 116627.
doi: 10.1016/j.watres.2020.116627
Y. Sun, D.W. Cho, N.J.D. Graham, et al., Sci. Total Environ. 664 (2019) 312–321.
doi: 10.1016/j.scitotenv.2019.02.006
E. Ngumba, A. Gachanja, T. Tuhkanen, Water Environ. J. 34 (2020) 692–703.
doi: 10.1111/wej.12612
L. Wang, J. Wei, Y. Li, et al., Chem. Eng. J. 477 (2023) 147051.
doi: 10.1016/j.cej.2023.147051
T. Luukkonen, S.O. Pehkonen, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1–39.
doi: 10.1080/10643389.2016.1272343
X. Ao, X. Zhang, S. Li, et al., J. Hazard. Mater. 445 (2023) 130480.
doi: 10.1016/j.jhazmat.2022.130480
Z. Diao, J. Jin, M. Zou, et al., Sep. Purif. Technol. 278 (2021) 119620.
doi: 10.1016/j.seppur.2021.119620
Z.H. Diao, S.T. Huang, X. Chen, et al., J. Cleaner Prod. 330 (2022) 129806.
doi: 10.1016/j.jclepro.2021.129806
J. Wu, J. Bai, Z. Wang, et al., Environ. Technol. 43 (2022) 95–106.
doi: 10.1080/09593330.2020.1779353
H. Tang, Z. Dai, X. Xie, et al., Chem. Eng. J. 356 (2019) 472–482.
doi: 10.1016/j.cej.2018.09.066
Y. h. Tian, N. Jia, L. Zhou, et al., Chemosphere 288 (2022) 132627.
doi: 10.1016/j.chemosphere.2021.132627
D. Li, Z. Feng, B. Zhou, et al., Sci. Total Environ. 844 (2022) 157162.
doi: 10.1016/j.scitotenv.2022.157162
P. Wang, H. Zhang, Z. Wu, et al., Chin. Chem. Lett. 34 (2023) 108722.
doi: 10.1016/j.cclet.2023.108722
F. Wang, Y. Feng, P. Chen, et al., Appl. Catal. B: Environ. 227 (2018) 114–122.
doi: 10.1016/j.apcatb.2018.01.024
G. Wang, Y. Li, J. Dai, N. Deng, Environ. Sci. Pollut. Res. 29 (2022) 48522–48538.
doi: 10.1007/s11356-022-19269-w
H. Abdelraouf, J. Ding, J. Ren, et al., Process Saf. Environ. Prot. 168 (2022) 892–906.
doi: 10.1016/j.psep.2022.10.069
M. Kumaresan, V. Saravanan, M. Swaminathan, Inorg. Chem. Commun. 142 (2022) 109706.
doi: 10.1016/j.inoche.2022.109706
K. Jutarvutikul, C. Sakulthaew, C. Chokejaroenrat, et al., Aquacult. Eng. 94 (2021) 102174.
doi: 10.1016/j.aquaeng.2021.102174
A.S. Giri, A.K. Golder, J. Environ. Sci. 80 (2019) 82–92.
doi: 10.1016/j.jes.2018.09.016
C. Wang, J. Zhang, J. Du, et al., J. Hazard. Mater. 416 (2021) 125893.
doi: 10.1016/j.jhazmat.2021.125893
G. Harini, M.K. Okla, I.A. Alaraidh, et al., Chemosphere 303 (2022) 134963.
doi: 10.1016/j.chemosphere.2022.134963
X. Ao, W. Liu, W. Sun, et al., Chem. Eng. J. 345 (2018) 87–97.
doi: 10.1016/j.cej.2018.03.133
Y. Qi, R. Qu, J. Liu, et al., Chemosphere 237 (2019) 124484.
doi: 10.1016/j.chemosphere.2019.124484
S.P. Asu, N.K. Sompalli, S. Kuppusamy, et al., Mater. Today Sustain. 19 (2022) 100189.
N. Yin, H. Chen, X. Yuan, et al., J. Hazard. Mater. 436 (2022) 129317.
doi: 10.1016/j.jhazmat.2022.129317
H. Guo, N. Gao, Y. Yang, Y. Zhang, Chem. Eng. J. 292 (2016) 82–91.
doi: 10.1016/j.cej.2016.01.009
M. Kamagate, A.A. Assadi, T. Kone, et al., J. Hazard. Mater. 346 (2018) 159–166.
doi: 10.1016/j.jhazmat.2017.12.011
Y. Park, S. Kim, J. Kim, et al., Water 14 (2022) 958.
doi: 10.3390/w14060958
F.H. Borba, A. Schmitz, L. Pellenz, et al., J. Environ. Chem. Eng. 6 (2018) 6979–6988.
doi: 10.1016/j.jece.2018.10.068
Y. Zhu, M. Wei, Z. Pan, et al., Sci. Total Environ. 705 (2020) 135960.
doi: 10.1016/j.scitotenv.2019.135960
S. Li, J.Y. Hu, J. Hazard. Mater. 318 (2016) 134–144.
doi: 10.1016/j.jhazmat.2016.05.100
F. Tan, D. Sun, J. Gao, et al., J. Hazard. Mater. 244 (2013) 750–757.
Z. Li, X. Yuan, H. Tang, et al., Environ. Sci. Water Res. Technol. 8 (2022) 2744–2760.
doi: 10.1039/d2ew00320a
A. Wang, H. Wang, H. Deng, et al., Appl. Catal. B: Environ. 248 (2019) 298–308.
doi: 10.1016/j.apcatb.2019.02.034
Y. Yu, K. Liu, Y. Zhang, et al., Int. J. Environ. Res. Public Health 19 (2022) 4793.
doi: 10.3390/ijerph19084793
F. Wang, X. Yu, M. Ge, S. Wu, Chem. Eng. J. 384 (2020) 123381.
doi: 10.1016/j.cej.2019.123381
O. Gomes Junior, V.M. Silva, A.E.H. Machado, et al., J. Environ. Manage. 213 (2018) 20–26.
doi: 10.1016/j.jenvman.2018.02.041
S. Bhatt, S. Chatterjee, Environ. Pollut. 315 (2022) 120440.
E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E3463–E3470.
D. Schar, E.Y. Klein, R. Laxminarayan, et al., Sci. Rep. 10 (2020) 21878.
doi: 10.1038/s41598-020-78849-3
Q.Q. Zhang, G.G. Ying, C.G. Pan, et al., Environ. Sci. Technol. 49 (2015) 6772–6782.
doi: 10.1021/acs.est.5b00729
I.T. Carvalho, L. Santos, Environ. Int. 94 (2016) 736–757.
X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Sci. Total Environ. 500 (2014) 250–269.
M. Zou, W. Tian, J. Zhao, et al., Process Saf. Environ. Prot. 160 (2022) 116–129.
doi: 10.1016/j.psep.2022.02.013
S. Li, W. Shi, W. Liu, et al., Sci. Total Environ. 615 (2018) 906–917.
doi: 10.1016/j.scitotenv.2017.09.328
S. Li, Y. Liu, Y. Wu, et al., Natl. Sci. Open. 1 (2022) 20220029.
doi: 10.1360/nso/20220029
E.M. Golet, A.C. Alder, W. Giger, Environ. Sci. Technol. 36 (2002) 3645–3651.
doi: 10.1021/es0256212
M. Sturini, A. Speltini, F. Maraschi, et al., Chemosphere 134 (2015) 313–318.
doi: 10.1016/j.chemosphere.2015.04.081
Z. Li, J. Wang, J. Chang, et al., Sci. Total Environ. 857 (2023) 159172.
doi: 10.1016/j.scitotenv.2022.159172
R. Anjali, S. Shanthakumar, J. Environ. Manage. 246 (2019) 51–62.
doi: 10.1016/j.jenvman.2019.05.090
Y. Zhang, Y.G. Zhao, F. Maqbool, Y. Hu, J. Water Process. Eng. 45 (2022) 102496.
doi: 10.1016/j.jwpe.2021.102496
Y. Chuang, S. Chen, C. Chinn, W. Mitch, Environ. Sci. Technol. 51 (2017) 13859–13868.
doi: 10.1021/acs.est.7b03570
C. Wang, N. Moore, K. Bircher, et al., Water Res. 161 (2019) 448–458.
doi: 10.1016/j.watres.2019.06.033
J. Rodriguez-Chueca, S. Varella della Giustina, J. Rocha, et al., Sci. Total Environ. 652 (2019) 1051–1061.
doi: 10.1016/j.scitotenv.2018.10.223
J. Rodríguez-Chueca, E. Laski, C. García-Cañibano, et al., Sci. Total Environ. 630 (2018) 1216–1225.
doi: 10.1016/j.scitotenv.2018.02.279
Y. Chen, J. Yang, L. Zeng, M. Zhu, Crit. Rev. Environ. Sci. Technol. 52 (2022) 1401–1448.
doi: 10.1080/10643389.2020.1859289
S. Shurbaji, P.T. Huong, T.M. Altahtamouni, Catalysts 11 (2021) 437.
doi: 10.3390/catal11040437
Y. Gou, P. Chen, L. Yang, et al., Chemosphere 270 (2021) 129481.
doi: 10.1016/j.chemosphere.2020.129481
X. Liu, Y. Zhou, J. Zhang, et al., Chem. Eng. J. 347 (2018) 379–397.
doi: 10.1016/j.cej.2018.04.142
T. Song, G. Li, R. Hu, et al., Catalysts 12 (2022) 1025.
doi: 10.3390/catal12091025
Z. Lu, Y. Ling, W. Sun, et al., Environ. Pollut. 308 (2022) 119673.
doi: 10.1016/j.envpol.2022.119673
X. Luo, B. Zhang, Y. Lu, et al., J. Hazard. Mater. 421 (2022) 126682.
doi: 10.1016/j.jhazmat.2021.126682
H.D.M. Tran, S. Boivin, H. Kodamatani, et al., Chemosphere 286 (2022) 131682.
doi: 10.1016/j.chemosphere.2021.131682
R. Shankar, W.J. Shim, J.G. An, U.H. Yim, Water Res. 68 (2015) 304–315.
doi: 10.1016/j.watres.2014.10.012
W. Qiu, M. Zheng, J. Sun, et al., Sci. Total Environ. 651 (2019) 1457–1468.
doi: 10.1016/j.scitotenv.2018.09.315
Y. Zhang, K. Huang, Y. Zhu, et al., RSC Adv. 12 (2022) 10088–10096.
doi: 10.1039/d2ra00199c
X. Zeng, Y. Meng, X. Sun, et al., J. Environ. Chem. Eng. 9 (2021) 106608.
doi: 10.1016/j.jece.2021.106608
X. Ao, W. Wang, W. Sun, et al., Water Res. 203 (2021) 117458.
doi: 10.1016/j.watres.2021.117458
K. Guo, Z. Wu, S. Yan, et al., Water Res. 147 (2018) 184–194.
doi: 10.1016/j.watres.2018.08.048
H. Milh, X. Yu, D. Cabooter, R. Dewil, Sci. Total Environ. 764 (2021) 144510.
doi: 10.1016/j.scitotenv.2020.144510
H. Yang, Y. Li, Y. Chen, et al., Water Environ. Res. 91 (2019) 1576–1588.
doi: 10.1002/wer.1144
H. Xue, S. Gao, N. Zheng, et al., Water Sci. Technol. 79 (2019) 2387–2394.
doi: 10.2166/wst.2019.240
C.C. Lin, H.Y. Lin, Desalin. Water Treat. 167 (2019) 170–175.
doi: 10.5004/dwt.2019.24602
J. Deng, G. Wu, S. Yuan, et al., J. Photochem. Photobiol. A: Chem. 371 (2019) 151–158.
doi: 10.1016/j.jphotochem.2018.10.043
X. Zhang, K. Guo, Y. Wang, et al., Chem. Eng. J. 400 (2020) 125222.
doi: 10.1016/j.cej.2020.125222
J. Lu, J. Li, J. Xu, et al., J. Water Process Eng. 44 (2021) 102324.
doi: 10.1016/j.jwpe.2021.102324
H. Liu, Y. Gao, J. Wang, et al., Chemosphere 276 (2021) 130220.
doi: 10.1016/j.chemosphere.2021.130220
D. Krakko, A. Illes, V. Licul-Kucera, et al., Chemosphere 275 (2021) 130080.
doi: 10.1016/j.chemosphere.2021.130080
Q. Ping, T. Yan, L. Wang, et al., Water Res. 210 (2022) 118019.
doi: 10.1016/j.watres.2021.118019
Q. Wu, Z. Que, Z. Li, et al., J. Hazard. Mater. 359 (2018) 414–420.
doi: 10.1016/j.jhazmat.2018.07.041
C. Zhao, Y. Li, H. Chu, et al., J. Hazard. Mater. 419 (2021) 126466.
doi: 10.1016/j.jhazmat.2021.126466
K. Saravanakumar, C.M. Park, Chem. Eng. J. 423 (2021) 130076.
doi: 10.1016/j.cej.2021.130076
V.T. Le, V.A. Tran, D.L. Tran, et al., Chemosphere 270 (2021) 129417.
doi: 10.1016/j.chemosphere.2020.129417
J. Lei, B. Chen, L. Zhou, et al., Chem. Eng. J. 400 (2020) 125902.
doi: 10.1016/j.cej.2020.125902
J. Li, Z. Xia, D. Ma, et al., J. Colloid Interface Sci. 586 (2021) 243–256.
doi: 10.1016/j.jcis.2020.10.088
Q. Chen, M. Zhang, J. Li, et al., Chem. Eng. J. 389 (2020) 124476.
doi: 10.1016/j.cej.2020.124476
Q. Zhang, F. Han, Y. Yan, et al., Appl. Surf. Sci. 485 (2019) 547–553.
doi: 10.1016/j.apsusc.2019.04.185
R. Du, P. Chen, Q. Zhang, G. Yu, Chemosphere 273 (2021) 128435.
doi: 10.1016/j.chemosphere.2020.128435
X. Zeng, X. Sun, Y. Yu, et al., Chem. Eng. J. 378 (2019) 122226.
doi: 10.1016/j.cej.2019.122226
L. Yang, Y. Xiang, F. Jia, et al., Appl. Catal. B: Environ. 292 (2021) 120198.
doi: 10.1016/j.apcatb.2021.120198
Y. Tian, X. He, W. Chen, et al., Sci. Total Environ. 723 (2020) 138144.
doi: 10.1016/j.scitotenv.2020.138144
O. Autin, C. Romelot, L. Rust, et al., Chemosphere 92 (2013) 745–751.
doi: 10.1016/j.chemosphere.2013.04.028
S. Li, J. Hu, Water Res. 132 (2018) 320–330.
doi: 10.1016/j.watres.2017.12.065
T.K. Kim, T. Kim, H. Park, et al., Chem. Eng. J. 394 (2020) 124803.
doi: 10.1016/j.cej.2020.124803
S. Li, T. Huang, P. Du, et al., Water Res. 185 (2020) 116286.
doi: 10.1016/j.watres.2020.116286
S. Guerra-Rodriguez, A.R. Lado Ribeiro, R.S. Ribeiro, et al., Sci. Total Environ. 770 (2021) 145299.
doi: 10.1016/j.scitotenv.2021.145299
P. Chen, L. Blaney, G. Cagnetta, et al., Environ. Sci. Technol. 53 (2019) 1564–1575.
doi: 10.1021/acs.est.8b05827
D. Cheng, H. Liu, E. Yang, et al., Sci. Total Environ. 773 (2021) 145102.
doi: 10.1016/j.scitotenv.2021.145102
X. Liu, Y. Liu, S. Lu, et al., Chem. Eng. J. 385 (2020) 123987.
doi: 10.1016/j.cej.2019.123987
W.K. Ye, F.X. Tian, B. Xu, et al., Sep. Purif. Technol. 280 (2022) 119846.
doi: 10.1016/j.seppur.2021.119846
D.A. Armstrong, R.E. Huie, W.H. Koppenol, et al., Pure Appl. Chem. 87 (2015) 1139–1150.
doi: 10.1515/pac-2014-0502
J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54 (2020) 3064–3081.
doi: 10.1021/acs.est.9b07082
T. Luukkonen, T. Heyninck, J. Rämö, U. Lassi, Water Res. 85 (2015) 275–285.
doi: 10.1016/j.watres.2015.08.037
H. Zhang, L. Chen, P. Du, et al., Environ. Sci. Technol. 58 (2024) 3506–3519.
M. Sturini, F. Maraschi, A. Cantalupi, et al., Materials 13 (2020) 537.
doi: 10.3390/ma13030537
M. Eskandari, N. Goudarzi, S.G. Moussavi, Water Environ. J. 32 (2018) 58–66.
doi: 10.1111/wej.12291
E.A. Serna-Galvis, Y. Avila-Torres, M. Ibanez, et al., Water 13 (2021) 2154.
doi: 10.3390/w13162154
L. Pretali, F. Maraschi, A. Cantalupi, et al., Catalysts 10 (2020) 628.
doi: 10.3390/catal10060628
A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, J. Photochem. Photobiol. A: Chem. 360 (2018) 34–43.
doi: 10.1016/j.jphotochem.2018.04.021
A. Siddique, M.B. Tahir, I. Shahid, et al., Appl. Nanosci. 12 (2022) 1613–1626.
doi: 10.1007/s13204-021-02313-5
L. Wolski, K. Grzelak, M. Munko, et al., Appl. Surf. Sci. 563 (2021) 150338.
doi: 10.1016/j.apsusc.2021.150338
N. Kaur, A. Verma, I. Thakur, S. Basu, Chemosphere 276 (2021) 130180.
doi: 10.1016/j.chemosphere.2021.130180
K. Qin, Q. Zhao, H. Yu, et al., Environ. Res. 199 (2021) 111360.
doi: 10.1016/j.envres.2021.111360
T. Senasu, T. Narenuch, K. Wannakam, et al., J. Mater. Sci.: Mater. Electron. 31 (2020) 9685–9694.
doi: 10.1007/s10854-020-03514-4
T. Chankhanittha, V. Somaudon, T. Photiwat, et al., J. Phys. Chem. Solids. 153 (2021) 109995.
doi: 10.1016/j.jpcs.2021.109995
W. Liu, J. Zhou, J. Yao, Ecotoxicol. Environ. Saf. 190 (2020) 110062.
doi: 10.1016/j.ecoenv.2019.110062
X. Zheng, S. Xu, Y. Wang, et al., J. Colloid Interface Sci. 527 (2018) 202–213.
doi: 10.1016/j.jcis.2018.05.054
S. Moles, J. Berges, M.P. Ormad, et al., Environ. Sci. Pollut. Res. 28 (2021) 24167–24179.
doi: 10.1007/s11356-021-12542-4
X. Huang, S. Wu, S. Tang, et al., J. Mol. Liq. 317 (2020) 113961.
doi: 10.1016/j.molliq.2020.113961
C. Zhang, M. Jia, Z. Xu, et al., Chem. Eng. J. 430 (2022) 132652.
doi: 10.1016/j.cej.2021.132652
Q. Wu, M.S. Siddique, Y. Guo, et al., Appl. Catal. B: Environ. 286 (2021) 119950.
doi: 10.1016/j.apcatb.2021.119950
C. Yang, X. Wang, L. Zhang, et al., J. Taiwan Inst. Chem. Eng. 115 (2020) 117–127.
doi: 10.1016/j.jtice.2020.09.036
L. Rizzo, Environ. Sci. Water Res. Technol. 8 (2022) 2145–2169.
doi: 10.1039/d2ew00146b
H. Luo, Y. Zeng, D. He, X. Pan, Chem. Eng. J. 407 (2021) 127191.
doi: 10.1016/j.cej.2020.127191
Y. Jiang, J. Ran, K. Mao, et al., Ecotoxicol. Environ. Saf. 236 (2022) 113464.
doi: 10.1016/j.ecoenv.2022.113464
S.K. Mondal, A.K. Saha, A. Sinha, J. Cleaner Prod. 171 (2018) 1203–1214.
doi: 10.1016/j.jclepro.2017.10.091
H. Dan, Y. Kong, Q. Yue, et al., Chem. Eng. J. 420 (2021) 127634.
doi: 10.1016/j.cej.2020.127634
W. He, Z. Li, S. Lv, et al., Chem. Eng. J. 409 (2021) 128274.
doi: 10.1016/j.cej.2020.128274
W. Li, Y. Wang, J. Chen, et al., Appl. Catal. B: Environ. 302 (2022) 120882.
doi: 10.1016/j.apcatb.2021.120882
A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Environ. Res. 217 (2023) 114789.
doi: 10.1016/j.envres.2022.114789
J. Yang, M. Zhu, D.D. Dionysiou, Water Res. 189 (2021) 116627.
doi: 10.1016/j.watres.2020.116627
Y. Sun, D.W. Cho, N.J.D. Graham, et al., Sci. Total Environ. 664 (2019) 312–321.
doi: 10.1016/j.scitotenv.2019.02.006
E. Ngumba, A. Gachanja, T. Tuhkanen, Water Environ. J. 34 (2020) 692–703.
doi: 10.1111/wej.12612
L. Wang, J. Wei, Y. Li, et al., Chem. Eng. J. 477 (2023) 147051.
doi: 10.1016/j.cej.2023.147051
T. Luukkonen, S.O. Pehkonen, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1–39.
doi: 10.1080/10643389.2016.1272343
X. Ao, X. Zhang, S. Li, et al., J. Hazard. Mater. 445 (2023) 130480.
doi: 10.1016/j.jhazmat.2022.130480
Z. Diao, J. Jin, M. Zou, et al., Sep. Purif. Technol. 278 (2021) 119620.
doi: 10.1016/j.seppur.2021.119620
Z.H. Diao, S.T. Huang, X. Chen, et al., J. Cleaner Prod. 330 (2022) 129806.
doi: 10.1016/j.jclepro.2021.129806
J. Wu, J. Bai, Z. Wang, et al., Environ. Technol. 43 (2022) 95–106.
doi: 10.1080/09593330.2020.1779353
H. Tang, Z. Dai, X. Xie, et al., Chem. Eng. J. 356 (2019) 472–482.
doi: 10.1016/j.cej.2018.09.066
Y. h. Tian, N. Jia, L. Zhou, et al., Chemosphere 288 (2022) 132627.
doi: 10.1016/j.chemosphere.2021.132627
D. Li, Z. Feng, B. Zhou, et al., Sci. Total Environ. 844 (2022) 157162.
doi: 10.1016/j.scitotenv.2022.157162
P. Wang, H. Zhang, Z. Wu, et al., Chin. Chem. Lett. 34 (2023) 108722.
doi: 10.1016/j.cclet.2023.108722
F. Wang, Y. Feng, P. Chen, et al., Appl. Catal. B: Environ. 227 (2018) 114–122.
doi: 10.1016/j.apcatb.2018.01.024
G. Wang, Y. Li, J. Dai, N. Deng, Environ. Sci. Pollut. Res. 29 (2022) 48522–48538.
doi: 10.1007/s11356-022-19269-w
H. Abdelraouf, J. Ding, J. Ren, et al., Process Saf. Environ. Prot. 168 (2022) 892–906.
doi: 10.1016/j.psep.2022.10.069
M. Kumaresan, V. Saravanan, M. Swaminathan, Inorg. Chem. Commun. 142 (2022) 109706.
doi: 10.1016/j.inoche.2022.109706
K. Jutarvutikul, C. Sakulthaew, C. Chokejaroenrat, et al., Aquacult. Eng. 94 (2021) 102174.
doi: 10.1016/j.aquaeng.2021.102174
A.S. Giri, A.K. Golder, J. Environ. Sci. 80 (2019) 82–92.
doi: 10.1016/j.jes.2018.09.016
C. Wang, J. Zhang, J. Du, et al., J. Hazard. Mater. 416 (2021) 125893.
doi: 10.1016/j.jhazmat.2021.125893
G. Harini, M.K. Okla, I.A. Alaraidh, et al., Chemosphere 303 (2022) 134963.
doi: 10.1016/j.chemosphere.2022.134963
X. Ao, W. Liu, W. Sun, et al., Chem. Eng. J. 345 (2018) 87–97.
doi: 10.1016/j.cej.2018.03.133
Y. Qi, R. Qu, J. Liu, et al., Chemosphere 237 (2019) 124484.
doi: 10.1016/j.chemosphere.2019.124484
S.P. Asu, N.K. Sompalli, S. Kuppusamy, et al., Mater. Today Sustain. 19 (2022) 100189.
N. Yin, H. Chen, X. Yuan, et al., J. Hazard. Mater. 436 (2022) 129317.
doi: 10.1016/j.jhazmat.2022.129317
H. Guo, N. Gao, Y. Yang, Y. Zhang, Chem. Eng. J. 292 (2016) 82–91.
doi: 10.1016/j.cej.2016.01.009
M. Kamagate, A.A. Assadi, T. Kone, et al., J. Hazard. Mater. 346 (2018) 159–166.
doi: 10.1016/j.jhazmat.2017.12.011
Y. Park, S. Kim, J. Kim, et al., Water 14 (2022) 958.
doi: 10.3390/w14060958
F.H. Borba, A. Schmitz, L. Pellenz, et al., J. Environ. Chem. Eng. 6 (2018) 6979–6988.
doi: 10.1016/j.jece.2018.10.068
Y. Zhu, M. Wei, Z. Pan, et al., Sci. Total Environ. 705 (2020) 135960.
doi: 10.1016/j.scitotenv.2019.135960
S. Li, J.Y. Hu, J. Hazard. Mater. 318 (2016) 134–144.
doi: 10.1016/j.jhazmat.2016.05.100
F. Tan, D. Sun, J. Gao, et al., J. Hazard. Mater. 244 (2013) 750–757.
Z. Li, X. Yuan, H. Tang, et al., Environ. Sci. Water Res. Technol. 8 (2022) 2744–2760.
doi: 10.1039/d2ew00320a
A. Wang, H. Wang, H. Deng, et al., Appl. Catal. B: Environ. 248 (2019) 298–308.
doi: 10.1016/j.apcatb.2019.02.034
Y. Yu, K. Liu, Y. Zhang, et al., Int. J. Environ. Res. Public Health 19 (2022) 4793.
doi: 10.3390/ijerph19084793
F. Wang, X. Yu, M. Ge, S. Wu, Chem. Eng. J. 384 (2020) 123381.
doi: 10.1016/j.cej.2019.123381
O. Gomes Junior, V.M. Silva, A.E.H. Machado, et al., J. Environ. Manage. 213 (2018) 20–26.
doi: 10.1016/j.jenvman.2018.02.041
Jinshuai Zheng , Junfeng Niu , Crispin Halsall , Yadi Guo , Peng Zhang , Linke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Yunlong Sun , Wei Ding , Yanhao Wang , Zhening Zhang , Ruyun Wang , Yinghui Guo , Zhiyuan Gao , Haiyan Du , Dong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Quan Xu , Ye-Qing Du , Pan-Pan Chen , Yili Sun , Ze-Nan Yang , Hui Zhang , Bencan Tang , Hong Wang , Jia Li , Yue-Wei Guo , Xu-Wen Li . Computation assisted chemical study of photo-induced late-stage skeleton transformation of marine natural products towards new scaffolds with biological functions. Chinese Chemical Letters, 2025, 36(5): 110141-. doi: 10.1016/j.cclet.2024.110141
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Menglu Guo , Ying-Qi Song , Junfei Cheng , Guoqiang Dong , Xun Sun , Chunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Chu Chu , Yuancheng Qin , Cailing Ni , Jianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616