Citation: Huijuan Li, Zhu Wang, Jiagen Geng, Ruiping Song, Xiaoyin Liu, Chaochen Fu, Si Li. Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater[J]. Chinese Chemical Letters, ;2025, 36(4): 110138. doi: 10.1016/j.cclet.2024.110138 shu

Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater

    * Corresponding author.
    E-mail address: sili@cau.edu.cn (S. Li).
  • Received Date: 31 January 2024
    Revised Date: 23 May 2024
    Accepted Date: 17 June 2024
    Available Online: 18 June 2024

Figures(5)

  • The widespread occurrence of antibiotics in wastewater aroused serious attention. UV-based advanced oxidation processes (UV-AOPs) are powerful technologies in removing antibiotics in wastewater, which include UV/catalyst, UV/H2O2, UV/Fenton, UV/persulfate, UV/chlorine, UV/ozone, and UV/peracetic acid. In this review, we collated recent advances in application of UV-AOPs for the abatement of fluoroquinolones (FQs) as widely used class of antibiotics. Representative FQs of ciprofloxacin, norfloxacin, ofloxacin, and enrofloxacin were most extensively studied in the state-of-art studies. The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous flow UV reactors were compared towards practical applications in UV-AOPs. Generally, degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix. Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs. Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.
  • Quinoxalin-2(1H)-one, as a significant heterocyclic unit, has been found important applications in synthetic chemistry, materials, natural products and pharmaceuticals because of their innate outstanding biological activities and excellent chemical characters [1], and their biological activities can be significantly influenced if the substituents is introduced into the N1- and C3-positions of the quinoxalin-2(1H)-one [2]. In particular, 3-substituted quinoxalin-2(1H)-ones have been developed into powerful drugs due to their strong pharmacological effects [3], such as ataquimast, antinicrobial, anticancer, Fxa coagulation inhibitors and glycogen phosphorylase inhibitor (Fig. 1) [4]. Therefore, a number of methods have been developed for their synthesis [5]. Generally, they are synthesized by cyclization of derivatives of aniline or 1, 2-diaminobenzene with suitable partners. However, the disadvantages including pre-functionalization of the partners and multi-step synthesis limit its application [6]. In recent years, direct C-H bond functionalization at the C3-position of quinoxalin-2(1H)-one has become a straightforward access to the 3-substituted quinoxalin-2(1H)-one derivatives, and various remarkable work has been achieved [7-12]. For instances, our group in 2019 reported a first example of oxidative C-H fluoroalkoxylation of quinoxalinones with fluoroalkyl alcohols under transition-metal and solvent-free conditions [8b]. This method can also be extended to the facile and efficient synthesis of histamine-4 receptor. The same year, Sun's group presented an efficient electrochemical approach for the C(sp2)–H phosphonation of quinoxalin-2(1H)-ones and C(sp3)–H phosphonation of xanthenes [9a]. More interestingly, the group of Pan disclosed a photocatalyst-free visible-light-promoted sulfenylation of quinoxalinones with thiols via cross-dehydrogenative coupling [10b]. Shortly after this discovery, He's group demonstrated a visible-light-promoted amidation of quinoxalin-2(1H)-ones [11b]. In a very recent contribution, a mild and eco-friendly visible-light-induced decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo carboxylic acids using ambient air as the sole oxidant at room temperature was also established by the same group [12a]. In sharp contrast, the alkenylation of quinoxalin-2(1H)-ones was rarely reported.

    Figure 1

    Figure 1.  Examples of quinoxalin-2(1H)-one skeleton-based bioactive molecules.

    Photocatalysis has become a powerful strategy for organic synthesis due to the advantages of low energy consumption and environmental protection [13]. For example, MacMillan et al. in 2016 reported a photocatalyzed C-H arylation of aliphatic amines with aryl bromides, providing a complement to existing cross-coupling technologies [13a]. In 2021, He' group developed the first example of visible-light induced one-pot tandem reaction of arylacrylamides, CHF2CO2H and PhI(OAc)2, affording an eco-friendly and practical method to access various difluoromethylated oxindoles [13b]. The same year, Jin and coworkers developed photocatalyst-free radical tandem cyclization of quinazolinones containing an unactivated alkene moiety with difluoro bromides under illumination, giving a practical method for the synthesis of fluorine-containing ring-fused quinazolinones [13f]. In recent years, with increasing attention to renewable energy, considerable efforts have been switched to the development of photocatalytic reactions that excited by the sunlight, which is known as a renewable and simple accessible light source [14]. Our research interests focus on the development of novel and effective methodologies for the direct modification ofN-containing heterocycles [15], herein, we demonstrated a direct alkenylation reaction between quinoxalin-2(1H)-ones and methyl ketones. Compared with our previous work [15a], this transformation was achieved through a combination of Mannich-type reaction and solar photocatalysis, which could be completed within 15min, providing a green and efficient solution for the synthesis of potentially bioactive compounds that containing a 3, 4-dihydroquinoxalin-2(1H)-one structure (Scheme 1b).

    Scheme 1

    Scheme 1.  Modification of quinoxalin-2(1H)-ones by C-H functionalization.

    1-Methylquinoxalin-2(1H)-one (1a) and acetone (2a) were chosen as starting materials to screen the reaction conditions. The target product (3a) was obtained in 80% yield when the reaction was performed by using 25mol% of CH3SO3H as a catalyst under the irradiation of sunlight for 15min (Table 1, entry 1). Other acid catalyst, such as CF3COOH and HBF4 gave the relative lower yield under the same conditions (Table 1, entries 2 and 3). No product was obtained in the absence of any acid catalyst (Table 1, entry 4). When used MeCN or DMF as solvent and 2.0 equiv. of acetone as substrate, 76% or 52% yield was obtained respectively (Table 1, entries 5 and 6). Extended reaction time to 30min did not enhanced product yield (Table 1, entry 7). There was no desired product generated when the reaction was carried out under dark condition (Table 1, entry 8).

    Table 1

    Table 1.  Screening of reaction conditions.a
    DownLoad: CSV

    With the optimum reaction conditions in hands, we then examined the substrate scope of the reaction by employing various quinoxalin-2(1H)-ones (1) with acetone (2a) (Scheme 2). Firstly, the N-substituted groups such as N-methyl, N-ethyl, N-cyclopropylmethyl, N-keto and N-ester were well compatible under the standard conditions, giving the desired products (3a-e) in 72%–80% yields. It is worth mentioning that quinoxalin-2(1H)-one with a sensitive allyl group, which could be further functionalized, also could give the product (3f) in 69% yield. A wide range of quinoxalin-2(1H)-ones with different benzyl groups, bearing both electron-donating and electron-withdrawing substituents at ortho-, meta-, or para-position could undergo the reaction smoothly, affording the corresponding products (3g–n) in 40%–72% yields. Importantly, the N-free quinoxalin-2(1H)-one could undergo the reaction smoothly, providing the product (3o) in 45% yield. Besides, plenty of quinoxalin-2(1H)-ones that bear the functional groups including methyl, halogen, tert-butyl, methoxy or trifluoromethyl at C5-, C6- or C7-position also gave the desired products in satisfactory yield (3p-3w). To expand the substrate scope of N-heterocycles, we also tested quinoline, isoquinoline, quinoxaline, benzimidazole and benzothiazole under standard conditions, however, no corresponding product was obtained (see Supporting information).

    Scheme 2

    Scheme 2.  Substrate scope of quinoxalin-2(1H)-ones. Reaction conditions: 1 (0.2 mmol), 2a (1.0 mL), CH3SO3H (25 mol%), open flask, sunlight, room temperature, 15 min. Isolated yields. a Reaction was performed on a 1 mmol scale.

    Subsequently, we evaluated the substrate scope of methyl ketones for the reaction (Scheme 3). To reduce the dosage of reactant, the reactions were performed with 2.0 equiv. of methyl ketones by using acetonitrile as solvent. To our delight, both long-chain and cycloalkyl methyl ketones could undergo the reaction smoothly, giving the corresponding products (3x3ad) in 58%–79% yields. The molecular structure of 3y was confirmed by X-ray crystallographic analysis (CCDC: 2060383). It was found that the molecular structure was more stable in (Z)-configuration probably because the effect of hydrogen bond interaction between amine and carbonyl group. Then, we found that cyclopentanone skeleton could also react with quinoxalin-2(1H)-one smoothly to deliver the target products (3ae and 3af) in moderate yield. The subsequent exploration found that the aryl methyl ketones, such as acetophenone, 1-(furan-2-yl)ethan-1-one and 1-(thiophen-2-yl)ethan-1-one were also could be converted into target products (3ag-3ai) in acceptable yields. Unfortunately, the substrates like ethyl acetate, acetonitrile, nitromethane, ethyl acetoacetate, and acetylacetone were not compatible under standard conditions (Supporting information).

    Scheme 3

    Scheme 3.  Substrate scope of methyl ketones. Reaction conditions: 1a (0.2 mmol), 2 (2.0 equiv.), CH3SO3H (25 mol%), MeCN (1.0 mL), open flask, sunlight, room temperature, 15min. Isolated yields.

    To show the synthetic utility of this protocol, a gram-scale synthesis experiment was performed to give the target product (3a) in 75% yield (Scheme 4). Interestingly, the anticancer compound (3aj) and antimicrobial compound (3ak) were obtained in moderate yields by using our strategy [16]. Moreover, since the molecules that bearing a 3, 4 dihydroquinoxalin-2(1H)-one framework are a promising class of biologically active compounds, in this regard, several bioactive molecules such as naproxen derivative, frambinone, ibuprofen derivative, vanillylacetone, nabumetone and pregnenolone acetate were selected to react with 1-methylquinoxalin-2(1H)-one directly, providing the potentially active molecules (3al-3aq) in 52%–70% yields.

    Scheme 4

    Scheme 4.  Gram-scale synthesis and application. Reaction conditions: 1a (0.2mmol), 2 (2.0 equiv.), CH3SO3H (25mol%), MeCN (1.0mL), open flask, sunlight, room temperature, 15min. Isolated yields.

    To study the reaction mechanism, a series of control experiments were carried out. Product 4 was generated instead of target product 3a when the reaction was performed under nitrogen atmosphere (Scheme 5). This result showed that oxygen in air was included in the subsequent oxidation process. To confirm the assumption, the oxidation process of compound 4 was studied. First, target product 3 was formed in 0%, 79% and 82% yields when the reaction performed under nitrogen, air or oxygen atmosphere respectively (Scheme 5). Second, the reaction was inhibited when singlet oxygen inhibitor (NaN3) was involved in the transformation (Scheme 5). Furthermore, compound 4 could not be converted into target product 3 when the reaction was performed in dark condition (Scheme 5). These experimental results strongly supported that the singlet oxygen 1O2, which was generated from triplet oxygen 3O2 through photocatalysis, serves as the real oxidant.

    Scheme 5

    Scheme 5.  Control experiments.

    On the basis of above results and previous reports [8-12], we proposed a possible mechanism for this reaction (Scheme 6). Firstly, substrate 1a was transformed into intermediate A through a protonation process. Meanwhile, acetone 2a was converted to the enol form B under acidic condition. Then, a Mannich-type reaction took place between intermediates A and B to give the intermediate C, which underwent a deprotonation process to provide the key compound 4. It was found that organic molecules that containing a quinoxalin-2(1H)-one skeleton could act as a photosensitizer to generate 1O2 from O2 under the irradiation of visible light [12p]. In this regard, compounds1a, 4 or 3a was excited by visible light to provide the excited-species 1a*, 4* or 3a*, which acted as a photosensitizer and underwent an energy transfer (ET) process with O2 to give 1O2, along with the regeneration of ground-state compounds 1a, 4 or 3a. Finally, compound 4 underwent the single-electron-transfer (SET) process with 1O2 to give the desired product with the generation of H2O2, which was detected by H2O2 test paper (Supporting information) [12a] [17]. We proposed that the electron-withdrawing effects of carbonyl group that exists in quinoxalin-2(1H)-one skeleton lower down the electron cloud density of the enamine moiety, making it difficult to be oxidized and can survive under this H2O2 oxidation conditions.

    Scheme 6

    Scheme 6.  Plausible mechanism.

    In conclusion, this study described a novel strategy for the olefination of quinoxalin-2(1H)-ones with methyl ketones. Various substrates were compatible under standard condition, providing the corresponding products in moderate to good yields. Control experiments revealed that a Mannich-type reaction and oxidative process were involved in the transformation.

    The authors declare that they have no conflict of interest.

    We thank the Natural Science Foundation of Zhejiang Province (No. LY21B060009) and the National Natural Science Foundation of China (No. 21871071) for financial support.

    Supplementary material related to this article can befound, in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.04.016.


    1. [1]

      S. Bhatt, S. Chatterjee, Environ. Pollut. 315 (2022) 120440.

    2. [2]

      E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E3463–E3470.

    3. [3]

      D. Schar, E.Y. Klein, R. Laxminarayan, et al., Sci. Rep. 10 (2020) 21878.  doi: 10.1038/s41598-020-78849-3

    4. [4]

      Q.Q. Zhang, G.G. Ying, C.G. Pan, et al., Environ. Sci. Technol. 49 (2015) 6772–6782.  doi: 10.1021/acs.est.5b00729

    5. [5]

      I.T. Carvalho, L. Santos, Environ. Int. 94 (2016) 736–757.

    6. [6]

      X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Sci. Total Environ. 500 (2014) 250–269.

    7. [7]

      M. Zou, W. Tian, J. Zhao, et al., Process Saf. Environ. Prot. 160 (2022) 116–129.  doi: 10.1016/j.psep.2022.02.013

    8. [8]

      S. Li, W. Shi, W. Liu, et al., Sci. Total Environ. 615 (2018) 906–917.  doi: 10.1016/j.scitotenv.2017.09.328

    9. [9]

      S. Li, Y. Liu, Y. Wu, et al., Natl. Sci. Open. 1 (2022) 20220029.  doi: 10.1360/nso/20220029

    10. [10]

      E.M. Golet, A.C. Alder, W. Giger, Environ. Sci. Technol. 36 (2002) 3645–3651.  doi: 10.1021/es0256212

    11. [11]

      M. Sturini, A. Speltini, F. Maraschi, et al., Chemosphere 134 (2015) 313–318.  doi: 10.1016/j.chemosphere.2015.04.081

    12. [12]

      Z. Li, J. Wang, J. Chang, et al., Sci. Total Environ. 857 (2023) 159172.  doi: 10.1016/j.scitotenv.2022.159172

    13. [13]

      R. Anjali, S. Shanthakumar, J. Environ. Manage. 246 (2019) 51–62.  doi: 10.1016/j.jenvman.2019.05.090

    14. [14]

      Y. Zhang, Y.G. Zhao, F. Maqbool, Y. Hu, J. Water Process. Eng. 45 (2022) 102496.  doi: 10.1016/j.jwpe.2021.102496

    15. [15]

      Y. Chuang, S. Chen, C. Chinn, W. Mitch, Environ. Sci. Technol. 51 (2017) 13859–13868.  doi: 10.1021/acs.est.7b03570

    16. [16]

      C. Wang, N. Moore, K. Bircher, et al., Water Res. 161 (2019) 448–458.  doi: 10.1016/j.watres.2019.06.033

    17. [17]

      J. Rodriguez-Chueca, S. Varella della Giustina, J. Rocha, et al., Sci. Total Environ. 652 (2019) 1051–1061.  doi: 10.1016/j.scitotenv.2018.10.223

    18. [18]

      J. Rodríguez-Chueca, E. Laski, C. García-Cañibano, et al., Sci. Total Environ. 630 (2018) 1216–1225.  doi: 10.1016/j.scitotenv.2018.02.279

    19. [19]

      Y. Chen, J. Yang, L. Zeng, M. Zhu, Crit. Rev. Environ. Sci. Technol. 52 (2022) 1401–1448.  doi: 10.1080/10643389.2020.1859289

    20. [20]

      S. Shurbaji, P.T. Huong, T.M. Altahtamouni, Catalysts 11 (2021) 437.  doi: 10.3390/catal11040437

    21. [21]

      Y. Gou, P. Chen, L. Yang, et al., Chemosphere 270 (2021) 129481.  doi: 10.1016/j.chemosphere.2020.129481

    22. [22]

      X. Liu, Y. Zhou, J. Zhang, et al., Chem. Eng. J. 347 (2018) 379–397.  doi: 10.1016/j.cej.2018.04.142

    23. [23]

      T. Song, G. Li, R. Hu, et al., Catalysts 12 (2022) 1025.  doi: 10.3390/catal12091025

    24. [24]

      Z. Lu, Y. Ling, W. Sun, et al., Environ. Pollut. 308 (2022) 119673.  doi: 10.1016/j.envpol.2022.119673

    25. [25]

      X. Luo, B. Zhang, Y. Lu, et al., J. Hazard. Mater. 421 (2022) 126682.  doi: 10.1016/j.jhazmat.2021.126682

    26. [26]

      H.D.M. Tran, S. Boivin, H. Kodamatani, et al., Chemosphere 286 (2022) 131682.  doi: 10.1016/j.chemosphere.2021.131682

    27. [27]

      R. Shankar, W.J. Shim, J.G. An, U.H. Yim, Water Res. 68 (2015) 304–315.  doi: 10.1016/j.watres.2014.10.012

    28. [28]

      W. Qiu, M. Zheng, J. Sun, et al., Sci. Total Environ. 651 (2019) 1457–1468.  doi: 10.1016/j.scitotenv.2018.09.315

    29. [29]

      Y. Zhang, K. Huang, Y. Zhu, et al., RSC Adv. 12 (2022) 10088–10096.  doi: 10.1039/d2ra00199c

    30. [30]

      X. Zeng, Y. Meng, X. Sun, et al., J. Environ. Chem. Eng. 9 (2021) 106608.  doi: 10.1016/j.jece.2021.106608

    31. [31]

      X. Ao, W. Wang, W. Sun, et al., Water Res. 203 (2021) 117458.  doi: 10.1016/j.watres.2021.117458

    32. [32]

      K. Guo, Z. Wu, S. Yan, et al., Water Res. 147 (2018) 184–194.  doi: 10.1016/j.watres.2018.08.048

    33. [33]

      H. Milh, X. Yu, D. Cabooter, R. Dewil, Sci. Total Environ. 764 (2021) 144510.  doi: 10.1016/j.scitotenv.2020.144510

    34. [34]

      H. Yang, Y. Li, Y. Chen, et al., Water Environ. Res. 91 (2019) 1576–1588.  doi: 10.1002/wer.1144

    35. [35]

      H. Xue, S. Gao, N. Zheng, et al., Water Sci. Technol. 79 (2019) 2387–2394.  doi: 10.2166/wst.2019.240

    36. [36]

      C.C. Lin, H.Y. Lin, Desalin. Water Treat. 167 (2019) 170–175.  doi: 10.5004/dwt.2019.24602

    37. [37]

      J. Deng, G. Wu, S. Yuan, et al., J. Photochem. Photobiol. A: Chem. 371 (2019) 151–158.  doi: 10.1016/j.jphotochem.2018.10.043

    38. [38]

      X. Zhang, K. Guo, Y. Wang, et al., Chem. Eng. J. 400 (2020) 125222.  doi: 10.1016/j.cej.2020.125222

    39. [39]

      J. Lu, J. Li, J. Xu, et al., J. Water Process Eng. 44 (2021) 102324.  doi: 10.1016/j.jwpe.2021.102324

    40. [40]

      H. Liu, Y. Gao, J. Wang, et al., Chemosphere 276 (2021) 130220.  doi: 10.1016/j.chemosphere.2021.130220

    41. [41]

      D. Krakko, A. Illes, V. Licul-Kucera, et al., Chemosphere 275 (2021) 130080.  doi: 10.1016/j.chemosphere.2021.130080

    42. [42]

      Q. Ping, T. Yan, L. Wang, et al., Water Res. 210 (2022) 118019.  doi: 10.1016/j.watres.2021.118019

    43. [43]

      Q. Wu, Z. Que, Z. Li, et al., J. Hazard. Mater. 359 (2018) 414–420.  doi: 10.1016/j.jhazmat.2018.07.041

    44. [44]

      C. Zhao, Y. Li, H. Chu, et al., J. Hazard. Mater. 419 (2021) 126466.  doi: 10.1016/j.jhazmat.2021.126466

    45. [45]

      K. Saravanakumar, C.M. Park, Chem. Eng. J. 423 (2021) 130076.  doi: 10.1016/j.cej.2021.130076

    46. [46]

      V.T. Le, V.A. Tran, D.L. Tran, et al., Chemosphere 270 (2021) 129417.  doi: 10.1016/j.chemosphere.2020.129417

    47. [47]

      J. Lei, B. Chen, L. Zhou, et al., Chem. Eng. J. 400 (2020) 125902.  doi: 10.1016/j.cej.2020.125902

    48. [48]

      J. Li, Z. Xia, D. Ma, et al., J. Colloid Interface Sci. 586 (2021) 243–256.  doi: 10.1016/j.jcis.2020.10.088

    49. [49]

      Q. Chen, M. Zhang, J. Li, et al., Chem. Eng. J. 389 (2020) 124476.  doi: 10.1016/j.cej.2020.124476

    50. [50]

      Q. Zhang, F. Han, Y. Yan, et al., Appl. Surf. Sci. 485 (2019) 547–553.  doi: 10.1016/j.apsusc.2019.04.185

    51. [51]

      R. Du, P. Chen, Q. Zhang, G. Yu, Chemosphere 273 (2021) 128435.  doi: 10.1016/j.chemosphere.2020.128435

    52. [52]

      X. Zeng, X. Sun, Y. Yu, et al., Chem. Eng. J. 378 (2019) 122226.  doi: 10.1016/j.cej.2019.122226

    53. [53]

      L. Yang, Y. Xiang, F. Jia, et al., Appl. Catal. B: Environ. 292 (2021) 120198.  doi: 10.1016/j.apcatb.2021.120198

    54. [54]

      Y. Tian, X. He, W. Chen, et al., Sci. Total Environ. 723 (2020) 138144.  doi: 10.1016/j.scitotenv.2020.138144

    55. [55]

      O. Autin, C. Romelot, L. Rust, et al., Chemosphere 92 (2013) 745–751.  doi: 10.1016/j.chemosphere.2013.04.028

    56. [56]

      S. Li, J. Hu, Water Res. 132 (2018) 320–330.  doi: 10.1016/j.watres.2017.12.065

    57. [57]

      T.K. Kim, T. Kim, H. Park, et al., Chem. Eng. J. 394 (2020) 124803.  doi: 10.1016/j.cej.2020.124803

    58. [58]

      S. Li, T. Huang, P. Du, et al., Water Res. 185 (2020) 116286.  doi: 10.1016/j.watres.2020.116286

    59. [59]

      S. Guerra-Rodriguez, A.R. Lado Ribeiro, R.S. Ribeiro, et al., Sci. Total Environ. 770 (2021) 145299.  doi: 10.1016/j.scitotenv.2021.145299

    60. [60]

      P. Chen, L. Blaney, G. Cagnetta, et al., Environ. Sci. Technol. 53 (2019) 1564–1575.  doi: 10.1021/acs.est.8b05827

    61. [61]

      D. Cheng, H. Liu, E. Yang, et al., Sci. Total Environ. 773 (2021) 145102.  doi: 10.1016/j.scitotenv.2021.145102

    62. [62]

      X. Liu, Y. Liu, S. Lu, et al., Chem. Eng. J. 385 (2020) 123987.  doi: 10.1016/j.cej.2019.123987

    63. [63]

      W.K. Ye, F.X. Tian, B. Xu, et al., Sep. Purif. Technol. 280 (2022) 119846.  doi: 10.1016/j.seppur.2021.119846

    64. [64]

      D.A. Armstrong, R.E. Huie, W.H. Koppenol, et al., Pure Appl. Chem. 87 (2015) 1139–1150.  doi: 10.1515/pac-2014-0502

    65. [65]

      J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54 (2020) 3064–3081.  doi: 10.1021/acs.est.9b07082

    66. [66]

      T. Luukkonen, T. Heyninck, J. Rämö, U. Lassi, Water Res. 85 (2015) 275–285.  doi: 10.1016/j.watres.2015.08.037

    67. [67]

      H. Zhang, L. Chen, P. Du, et al., Environ. Sci. Technol. 58 (2024) 3506–3519.

    68. [68]

      M. Sturini, F. Maraschi, A. Cantalupi, et al., Materials 13 (2020) 537.  doi: 10.3390/ma13030537

    69. [69]

      M. Eskandari, N. Goudarzi, S.G. Moussavi, Water Environ. J. 32 (2018) 58–66.  doi: 10.1111/wej.12291

    70. [70]

      E.A. Serna-Galvis, Y. Avila-Torres, M. Ibanez, et al., Water 13 (2021) 2154.  doi: 10.3390/w13162154

    71. [71]

      L. Pretali, F. Maraschi, A. Cantalupi, et al., Catalysts 10 (2020) 628.  doi: 10.3390/catal10060628

    72. [72]

      A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, J. Photochem. Photobiol. A: Chem. 360 (2018) 34–43.  doi: 10.1016/j.jphotochem.2018.04.021

    73. [73]

      A. Siddique, M.B. Tahir, I. Shahid, et al., Appl. Nanosci. 12 (2022) 1613–1626.  doi: 10.1007/s13204-021-02313-5

    74. [74]

      L. Wolski, K. Grzelak, M. Munko, et al., Appl. Surf. Sci. 563 (2021) 150338.  doi: 10.1016/j.apsusc.2021.150338

    75. [75]

      N. Kaur, A. Verma, I. Thakur, S. Basu, Chemosphere 276 (2021) 130180.  doi: 10.1016/j.chemosphere.2021.130180

    76. [76]

      K. Qin, Q. Zhao, H. Yu, et al., Environ. Res. 199 (2021) 111360.  doi: 10.1016/j.envres.2021.111360

    77. [77]

      T. Senasu, T. Narenuch, K. Wannakam, et al., J. Mater. Sci.: Mater. Electron. 31 (2020) 9685–9694.  doi: 10.1007/s10854-020-03514-4

    78. [78]

      T. Chankhanittha, V. Somaudon, T. Photiwat, et al., J. Phys. Chem. Solids. 153 (2021) 109995.  doi: 10.1016/j.jpcs.2021.109995

    79. [79]

      W. Liu, J. Zhou, J. Yao, Ecotoxicol. Environ. Saf. 190 (2020) 110062.  doi: 10.1016/j.ecoenv.2019.110062

    80. [80]

      X. Zheng, S. Xu, Y. Wang, et al., J. Colloid Interface Sci. 527 (2018) 202–213.  doi: 10.1016/j.jcis.2018.05.054

    81. [81]

      S. Moles, J. Berges, M.P. Ormad, et al., Environ. Sci. Pollut. Res. 28 (2021) 24167–24179.  doi: 10.1007/s11356-021-12542-4

    82. [82]

      X. Huang, S. Wu, S. Tang, et al., J. Mol. Liq. 317 (2020) 113961.  doi: 10.1016/j.molliq.2020.113961

    83. [83]

      C. Zhang, M. Jia, Z. Xu, et al., Chem. Eng. J. 430 (2022) 132652.  doi: 10.1016/j.cej.2021.132652

    84. [84]

      Q. Wu, M.S. Siddique, Y. Guo, et al., Appl. Catal. B: Environ. 286 (2021) 119950.  doi: 10.1016/j.apcatb.2021.119950

    85. [85]

      C. Yang, X. Wang, L. Zhang, et al., J. Taiwan Inst. Chem. Eng. 115 (2020) 117–127.  doi: 10.1016/j.jtice.2020.09.036

    86. [86]

      L. Rizzo, Environ. Sci. Water Res. Technol. 8 (2022) 2145–2169.  doi: 10.1039/d2ew00146b

    87. [87]

      H. Luo, Y. Zeng, D. He, X. Pan, Chem. Eng. J. 407 (2021) 127191.  doi: 10.1016/j.cej.2020.127191

    88. [88]

      Y. Jiang, J. Ran, K. Mao, et al., Ecotoxicol. Environ. Saf. 236 (2022) 113464.  doi: 10.1016/j.ecoenv.2022.113464

    89. [89]

      S.K. Mondal, A.K. Saha, A. Sinha, J. Cleaner Prod. 171 (2018) 1203–1214.  doi: 10.1016/j.jclepro.2017.10.091

    90. [90]

      H. Dan, Y. Kong, Q. Yue, et al., Chem. Eng. J. 420 (2021) 127634.  doi: 10.1016/j.cej.2020.127634

    91. [91]

      W. He, Z. Li, S. Lv, et al., Chem. Eng. J. 409 (2021) 128274.  doi: 10.1016/j.cej.2020.128274

    92. [92]

      W. Li, Y. Wang, J. Chen, et al., Appl. Catal. B: Environ. 302 (2022) 120882.  doi: 10.1016/j.apcatb.2021.120882

    93. [93]

      A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Environ. Res. 217 (2023) 114789.  doi: 10.1016/j.envres.2022.114789

    94. [94]

      J. Yang, M. Zhu, D.D. Dionysiou, Water Res. 189 (2021) 116627.  doi: 10.1016/j.watres.2020.116627

    95. [95]

      Y. Sun, D.W. Cho, N.J.D. Graham, et al., Sci. Total Environ. 664 (2019) 312–321.  doi: 10.1016/j.scitotenv.2019.02.006

    96. [96]

      E. Ngumba, A. Gachanja, T. Tuhkanen, Water Environ. J. 34 (2020) 692–703.  doi: 10.1111/wej.12612

    97. [97]

      L. Wang, J. Wei, Y. Li, et al., Chem. Eng. J. 477 (2023) 147051.  doi: 10.1016/j.cej.2023.147051

    98. [98]

      T. Luukkonen, S.O. Pehkonen, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1–39.  doi: 10.1080/10643389.2016.1272343

    99. [99]

      X. Ao, X. Zhang, S. Li, et al., J. Hazard. Mater. 445 (2023) 130480.  doi: 10.1016/j.jhazmat.2022.130480

    100. [100]

      Z. Diao, J. Jin, M. Zou, et al., Sep. Purif. Technol. 278 (2021) 119620.  doi: 10.1016/j.seppur.2021.119620

    101. [101]

      Z.H. Diao, S.T. Huang, X. Chen, et al., J. Cleaner Prod. 330 (2022) 129806.  doi: 10.1016/j.jclepro.2021.129806

    102. [102]

      J. Wu, J. Bai, Z. Wang, et al., Environ. Technol. 43 (2022) 95–106.  doi: 10.1080/09593330.2020.1779353

    103. [103]

      H. Tang, Z. Dai, X. Xie, et al., Chem. Eng. J. 356 (2019) 472–482.  doi: 10.1016/j.cej.2018.09.066

    104. [104]

      Y. h. Tian, N. Jia, L. Zhou, et al., Chemosphere 288 (2022) 132627.  doi: 10.1016/j.chemosphere.2021.132627

    105. [105]

      D. Li, Z. Feng, B. Zhou, et al., Sci. Total Environ. 844 (2022) 157162.  doi: 10.1016/j.scitotenv.2022.157162

    106. [106]

      P. Wang, H. Zhang, Z. Wu, et al., Chin. Chem. Lett. 34 (2023) 108722.  doi: 10.1016/j.cclet.2023.108722

    107. [107]

      F. Wang, Y. Feng, P. Chen, et al., Appl. Catal. B: Environ. 227 (2018) 114–122.  doi: 10.1016/j.apcatb.2018.01.024

    108. [108]

      G. Wang, Y. Li, J. Dai, N. Deng, Environ. Sci. Pollut. Res. 29 (2022) 48522–48538.  doi: 10.1007/s11356-022-19269-w

    109. [109]

      H. Abdelraouf, J. Ding, J. Ren, et al., Process Saf. Environ. Prot. 168 (2022) 892–906.  doi: 10.1016/j.psep.2022.10.069

    110. [110]

      M. Kumaresan, V. Saravanan, M. Swaminathan, Inorg. Chem. Commun. 142 (2022) 109706.  doi: 10.1016/j.inoche.2022.109706

    111. [111]

      K. Jutarvutikul, C. Sakulthaew, C. Chokejaroenrat, et al., Aquacult. Eng. 94 (2021) 102174.  doi: 10.1016/j.aquaeng.2021.102174

    112. [112]

      A.S. Giri, A.K. Golder, J. Environ. Sci. 80 (2019) 82–92.  doi: 10.1016/j.jes.2018.09.016

    113. [113]

      C. Wang, J. Zhang, J. Du, et al., J. Hazard. Mater. 416 (2021) 125893.  doi: 10.1016/j.jhazmat.2021.125893

    114. [114]

      G. Harini, M.K. Okla, I.A. Alaraidh, et al., Chemosphere 303 (2022) 134963.  doi: 10.1016/j.chemosphere.2022.134963

    115. [115]

      X. Ao, W. Liu, W. Sun, et al., Chem. Eng. J. 345 (2018) 87–97.  doi: 10.1016/j.cej.2018.03.133

    116. [116]

      Y. Qi, R. Qu, J. Liu, et al., Chemosphere 237 (2019) 124484.  doi: 10.1016/j.chemosphere.2019.124484

    117. [117]

      S.P. Asu, N.K. Sompalli, S. Kuppusamy, et al., Mater. Today Sustain. 19 (2022) 100189.

    118. [118]

      N. Yin, H. Chen, X. Yuan, et al., J. Hazard. Mater. 436 (2022) 129317.  doi: 10.1016/j.jhazmat.2022.129317

    119. [119]

      H. Guo, N. Gao, Y. Yang, Y. Zhang, Chem. Eng. J. 292 (2016) 82–91.  doi: 10.1016/j.cej.2016.01.009

    120. [120]

      M. Kamagate, A.A. Assadi, T. Kone, et al., J. Hazard. Mater. 346 (2018) 159–166.  doi: 10.1016/j.jhazmat.2017.12.011

    121. [121]

      Y. Park, S. Kim, J. Kim, et al., Water 14 (2022) 958.  doi: 10.3390/w14060958

    122. [122]

      F.H. Borba, A. Schmitz, L. Pellenz, et al., J. Environ. Chem. Eng. 6 (2018) 6979–6988.  doi: 10.1016/j.jece.2018.10.068

    123. [123]

      Y. Zhu, M. Wei, Z. Pan, et al., Sci. Total Environ. 705 (2020) 135960.  doi: 10.1016/j.scitotenv.2019.135960

    124. [124]

      S. Li, J.Y. Hu, J. Hazard. Mater. 318 (2016) 134–144.  doi: 10.1016/j.jhazmat.2016.05.100

    125. [125]

      F. Tan, D. Sun, J. Gao, et al., J. Hazard. Mater. 244 (2013) 750–757.

    126. [126]

      Z. Li, X. Yuan, H. Tang, et al., Environ. Sci. Water Res. Technol. 8 (2022) 2744–2760.  doi: 10.1039/d2ew00320a

    127. [127]

      A. Wang, H. Wang, H. Deng, et al., Appl. Catal. B: Environ. 248 (2019) 298–308.  doi: 10.1016/j.apcatb.2019.02.034

    128. [128]

      Y. Yu, K. Liu, Y. Zhang, et al., Int. J. Environ. Res. Public Health 19 (2022) 4793.  doi: 10.3390/ijerph19084793

    129. [129]

      F. Wang, X. Yu, M. Ge, S. Wu, Chem. Eng. J. 384 (2020) 123381.  doi: 10.1016/j.cej.2019.123381

    130. [130]

      O. Gomes Junior, V.M. Silva, A.E.H. Machado, et al., J. Environ. Manage. 213 (2018) 20–26.  doi: 10.1016/j.jenvman.2018.02.041

    1. [1]

      S. Bhatt, S. Chatterjee, Environ. Pollut. 315 (2022) 120440.

    2. [2]

      E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E3463–E3470.

    3. [3]

      D. Schar, E.Y. Klein, R. Laxminarayan, et al., Sci. Rep. 10 (2020) 21878.  doi: 10.1038/s41598-020-78849-3

    4. [4]

      Q.Q. Zhang, G.G. Ying, C.G. Pan, et al., Environ. Sci. Technol. 49 (2015) 6772–6782.  doi: 10.1021/acs.est.5b00729

    5. [5]

      I.T. Carvalho, L. Santos, Environ. Int. 94 (2016) 736–757.

    6. [6]

      X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Sci. Total Environ. 500 (2014) 250–269.

    7. [7]

      M. Zou, W. Tian, J. Zhao, et al., Process Saf. Environ. Prot. 160 (2022) 116–129.  doi: 10.1016/j.psep.2022.02.013

    8. [8]

      S. Li, W. Shi, W. Liu, et al., Sci. Total Environ. 615 (2018) 906–917.  doi: 10.1016/j.scitotenv.2017.09.328

    9. [9]

      S. Li, Y. Liu, Y. Wu, et al., Natl. Sci. Open. 1 (2022) 20220029.  doi: 10.1360/nso/20220029

    10. [10]

      E.M. Golet, A.C. Alder, W. Giger, Environ. Sci. Technol. 36 (2002) 3645–3651.  doi: 10.1021/es0256212

    11. [11]

      M. Sturini, A. Speltini, F. Maraschi, et al., Chemosphere 134 (2015) 313–318.  doi: 10.1016/j.chemosphere.2015.04.081

    12. [12]

      Z. Li, J. Wang, J. Chang, et al., Sci. Total Environ. 857 (2023) 159172.  doi: 10.1016/j.scitotenv.2022.159172

    13. [13]

      R. Anjali, S. Shanthakumar, J. Environ. Manage. 246 (2019) 51–62.  doi: 10.1016/j.jenvman.2019.05.090

    14. [14]

      Y. Zhang, Y.G. Zhao, F. Maqbool, Y. Hu, J. Water Process. Eng. 45 (2022) 102496.  doi: 10.1016/j.jwpe.2021.102496

    15. [15]

      Y. Chuang, S. Chen, C. Chinn, W. Mitch, Environ. Sci. Technol. 51 (2017) 13859–13868.  doi: 10.1021/acs.est.7b03570

    16. [16]

      C. Wang, N. Moore, K. Bircher, et al., Water Res. 161 (2019) 448–458.  doi: 10.1016/j.watres.2019.06.033

    17. [17]

      J. Rodriguez-Chueca, S. Varella della Giustina, J. Rocha, et al., Sci. Total Environ. 652 (2019) 1051–1061.  doi: 10.1016/j.scitotenv.2018.10.223

    18. [18]

      J. Rodríguez-Chueca, E. Laski, C. García-Cañibano, et al., Sci. Total Environ. 630 (2018) 1216–1225.  doi: 10.1016/j.scitotenv.2018.02.279

    19. [19]

      Y. Chen, J. Yang, L. Zeng, M. Zhu, Crit. Rev. Environ. Sci. Technol. 52 (2022) 1401–1448.  doi: 10.1080/10643389.2020.1859289

    20. [20]

      S. Shurbaji, P.T. Huong, T.M. Altahtamouni, Catalysts 11 (2021) 437.  doi: 10.3390/catal11040437

    21. [21]

      Y. Gou, P. Chen, L. Yang, et al., Chemosphere 270 (2021) 129481.  doi: 10.1016/j.chemosphere.2020.129481

    22. [22]

      X. Liu, Y. Zhou, J. Zhang, et al., Chem. Eng. J. 347 (2018) 379–397.  doi: 10.1016/j.cej.2018.04.142

    23. [23]

      T. Song, G. Li, R. Hu, et al., Catalysts 12 (2022) 1025.  doi: 10.3390/catal12091025

    24. [24]

      Z. Lu, Y. Ling, W. Sun, et al., Environ. Pollut. 308 (2022) 119673.  doi: 10.1016/j.envpol.2022.119673

    25. [25]

      X. Luo, B. Zhang, Y. Lu, et al., J. Hazard. Mater. 421 (2022) 126682.  doi: 10.1016/j.jhazmat.2021.126682

    26. [26]

      H.D.M. Tran, S. Boivin, H. Kodamatani, et al., Chemosphere 286 (2022) 131682.  doi: 10.1016/j.chemosphere.2021.131682

    27. [27]

      R. Shankar, W.J. Shim, J.G. An, U.H. Yim, Water Res. 68 (2015) 304–315.  doi: 10.1016/j.watres.2014.10.012

    28. [28]

      W. Qiu, M. Zheng, J. Sun, et al., Sci. Total Environ. 651 (2019) 1457–1468.  doi: 10.1016/j.scitotenv.2018.09.315

    29. [29]

      Y. Zhang, K. Huang, Y. Zhu, et al., RSC Adv. 12 (2022) 10088–10096.  doi: 10.1039/d2ra00199c

    30. [30]

      X. Zeng, Y. Meng, X. Sun, et al., J. Environ. Chem. Eng. 9 (2021) 106608.  doi: 10.1016/j.jece.2021.106608

    31. [31]

      X. Ao, W. Wang, W. Sun, et al., Water Res. 203 (2021) 117458.  doi: 10.1016/j.watres.2021.117458

    32. [32]

      K. Guo, Z. Wu, S. Yan, et al., Water Res. 147 (2018) 184–194.  doi: 10.1016/j.watres.2018.08.048

    33. [33]

      H. Milh, X. Yu, D. Cabooter, R. Dewil, Sci. Total Environ. 764 (2021) 144510.  doi: 10.1016/j.scitotenv.2020.144510

    34. [34]

      H. Yang, Y. Li, Y. Chen, et al., Water Environ. Res. 91 (2019) 1576–1588.  doi: 10.1002/wer.1144

    35. [35]

      H. Xue, S. Gao, N. Zheng, et al., Water Sci. Technol. 79 (2019) 2387–2394.  doi: 10.2166/wst.2019.240

    36. [36]

      C.C. Lin, H.Y. Lin, Desalin. Water Treat. 167 (2019) 170–175.  doi: 10.5004/dwt.2019.24602

    37. [37]

      J. Deng, G. Wu, S. Yuan, et al., J. Photochem. Photobiol. A: Chem. 371 (2019) 151–158.  doi: 10.1016/j.jphotochem.2018.10.043

    38. [38]

      X. Zhang, K. Guo, Y. Wang, et al., Chem. Eng. J. 400 (2020) 125222.  doi: 10.1016/j.cej.2020.125222

    39. [39]

      J. Lu, J. Li, J. Xu, et al., J. Water Process Eng. 44 (2021) 102324.  doi: 10.1016/j.jwpe.2021.102324

    40. [40]

      H. Liu, Y. Gao, J. Wang, et al., Chemosphere 276 (2021) 130220.  doi: 10.1016/j.chemosphere.2021.130220

    41. [41]

      D. Krakko, A. Illes, V. Licul-Kucera, et al., Chemosphere 275 (2021) 130080.  doi: 10.1016/j.chemosphere.2021.130080

    42. [42]

      Q. Ping, T. Yan, L. Wang, et al., Water Res. 210 (2022) 118019.  doi: 10.1016/j.watres.2021.118019

    43. [43]

      Q. Wu, Z. Que, Z. Li, et al., J. Hazard. Mater. 359 (2018) 414–420.  doi: 10.1016/j.jhazmat.2018.07.041

    44. [44]

      C. Zhao, Y. Li, H. Chu, et al., J. Hazard. Mater. 419 (2021) 126466.  doi: 10.1016/j.jhazmat.2021.126466

    45. [45]

      K. Saravanakumar, C.M. Park, Chem. Eng. J. 423 (2021) 130076.  doi: 10.1016/j.cej.2021.130076

    46. [46]

      V.T. Le, V.A. Tran, D.L. Tran, et al., Chemosphere 270 (2021) 129417.  doi: 10.1016/j.chemosphere.2020.129417

    47. [47]

      J. Lei, B. Chen, L. Zhou, et al., Chem. Eng. J. 400 (2020) 125902.  doi: 10.1016/j.cej.2020.125902

    48. [48]

      J. Li, Z. Xia, D. Ma, et al., J. Colloid Interface Sci. 586 (2021) 243–256.  doi: 10.1016/j.jcis.2020.10.088

    49. [49]

      Q. Chen, M. Zhang, J. Li, et al., Chem. Eng. J. 389 (2020) 124476.  doi: 10.1016/j.cej.2020.124476

    50. [50]

      Q. Zhang, F. Han, Y. Yan, et al., Appl. Surf. Sci. 485 (2019) 547–553.  doi: 10.1016/j.apsusc.2019.04.185

    51. [51]

      R. Du, P. Chen, Q. Zhang, G. Yu, Chemosphere 273 (2021) 128435.  doi: 10.1016/j.chemosphere.2020.128435

    52. [52]

      X. Zeng, X. Sun, Y. Yu, et al., Chem. Eng. J. 378 (2019) 122226.  doi: 10.1016/j.cej.2019.122226

    53. [53]

      L. Yang, Y. Xiang, F. Jia, et al., Appl. Catal. B: Environ. 292 (2021) 120198.  doi: 10.1016/j.apcatb.2021.120198

    54. [54]

      Y. Tian, X. He, W. Chen, et al., Sci. Total Environ. 723 (2020) 138144.  doi: 10.1016/j.scitotenv.2020.138144

    55. [55]

      O. Autin, C. Romelot, L. Rust, et al., Chemosphere 92 (2013) 745–751.  doi: 10.1016/j.chemosphere.2013.04.028

    56. [56]

      S. Li, J. Hu, Water Res. 132 (2018) 320–330.  doi: 10.1016/j.watres.2017.12.065

    57. [57]

      T.K. Kim, T. Kim, H. Park, et al., Chem. Eng. J. 394 (2020) 124803.  doi: 10.1016/j.cej.2020.124803

    58. [58]

      S. Li, T. Huang, P. Du, et al., Water Res. 185 (2020) 116286.  doi: 10.1016/j.watres.2020.116286

    59. [59]

      S. Guerra-Rodriguez, A.R. Lado Ribeiro, R.S. Ribeiro, et al., Sci. Total Environ. 770 (2021) 145299.  doi: 10.1016/j.scitotenv.2021.145299

    60. [60]

      P. Chen, L. Blaney, G. Cagnetta, et al., Environ. Sci. Technol. 53 (2019) 1564–1575.  doi: 10.1021/acs.est.8b05827

    61. [61]

      D. Cheng, H. Liu, E. Yang, et al., Sci. Total Environ. 773 (2021) 145102.  doi: 10.1016/j.scitotenv.2021.145102

    62. [62]

      X. Liu, Y. Liu, S. Lu, et al., Chem. Eng. J. 385 (2020) 123987.  doi: 10.1016/j.cej.2019.123987

    63. [63]

      W.K. Ye, F.X. Tian, B. Xu, et al., Sep. Purif. Technol. 280 (2022) 119846.  doi: 10.1016/j.seppur.2021.119846

    64. [64]

      D.A. Armstrong, R.E. Huie, W.H. Koppenol, et al., Pure Appl. Chem. 87 (2015) 1139–1150.  doi: 10.1515/pac-2014-0502

    65. [65]

      J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54 (2020) 3064–3081.  doi: 10.1021/acs.est.9b07082

    66. [66]

      T. Luukkonen, T. Heyninck, J. Rämö, U. Lassi, Water Res. 85 (2015) 275–285.  doi: 10.1016/j.watres.2015.08.037

    67. [67]

      H. Zhang, L. Chen, P. Du, et al., Environ. Sci. Technol. 58 (2024) 3506–3519.

    68. [68]

      M. Sturini, F. Maraschi, A. Cantalupi, et al., Materials 13 (2020) 537.  doi: 10.3390/ma13030537

    69. [69]

      M. Eskandari, N. Goudarzi, S.G. Moussavi, Water Environ. J. 32 (2018) 58–66.  doi: 10.1111/wej.12291

    70. [70]

      E.A. Serna-Galvis, Y. Avila-Torres, M. Ibanez, et al., Water 13 (2021) 2154.  doi: 10.3390/w13162154

    71. [71]

      L. Pretali, F. Maraschi, A. Cantalupi, et al., Catalysts 10 (2020) 628.  doi: 10.3390/catal10060628

    72. [72]

      A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, J. Photochem. Photobiol. A: Chem. 360 (2018) 34–43.  doi: 10.1016/j.jphotochem.2018.04.021

    73. [73]

      A. Siddique, M.B. Tahir, I. Shahid, et al., Appl. Nanosci. 12 (2022) 1613–1626.  doi: 10.1007/s13204-021-02313-5

    74. [74]

      L. Wolski, K. Grzelak, M. Munko, et al., Appl. Surf. Sci. 563 (2021) 150338.  doi: 10.1016/j.apsusc.2021.150338

    75. [75]

      N. Kaur, A. Verma, I. Thakur, S. Basu, Chemosphere 276 (2021) 130180.  doi: 10.1016/j.chemosphere.2021.130180

    76. [76]

      K. Qin, Q. Zhao, H. Yu, et al., Environ. Res. 199 (2021) 111360.  doi: 10.1016/j.envres.2021.111360

    77. [77]

      T. Senasu, T. Narenuch, K. Wannakam, et al., J. Mater. Sci.: Mater. Electron. 31 (2020) 9685–9694.  doi: 10.1007/s10854-020-03514-4

    78. [78]

      T. Chankhanittha, V. Somaudon, T. Photiwat, et al., J. Phys. Chem. Solids. 153 (2021) 109995.  doi: 10.1016/j.jpcs.2021.109995

    79. [79]

      W. Liu, J. Zhou, J. Yao, Ecotoxicol. Environ. Saf. 190 (2020) 110062.  doi: 10.1016/j.ecoenv.2019.110062

    80. [80]

      X. Zheng, S. Xu, Y. Wang, et al., J. Colloid Interface Sci. 527 (2018) 202–213.  doi: 10.1016/j.jcis.2018.05.054

    81. [81]

      S. Moles, J. Berges, M.P. Ormad, et al., Environ. Sci. Pollut. Res. 28 (2021) 24167–24179.  doi: 10.1007/s11356-021-12542-4

    82. [82]

      X. Huang, S. Wu, S. Tang, et al., J. Mol. Liq. 317 (2020) 113961.  doi: 10.1016/j.molliq.2020.113961

    83. [83]

      C. Zhang, M. Jia, Z. Xu, et al., Chem. Eng. J. 430 (2022) 132652.  doi: 10.1016/j.cej.2021.132652

    84. [84]

      Q. Wu, M.S. Siddique, Y. Guo, et al., Appl. Catal. B: Environ. 286 (2021) 119950.  doi: 10.1016/j.apcatb.2021.119950

    85. [85]

      C. Yang, X. Wang, L. Zhang, et al., J. Taiwan Inst. Chem. Eng. 115 (2020) 117–127.  doi: 10.1016/j.jtice.2020.09.036

    86. [86]

      L. Rizzo, Environ. Sci. Water Res. Technol. 8 (2022) 2145–2169.  doi: 10.1039/d2ew00146b

    87. [87]

      H. Luo, Y. Zeng, D. He, X. Pan, Chem. Eng. J. 407 (2021) 127191.  doi: 10.1016/j.cej.2020.127191

    88. [88]

      Y. Jiang, J. Ran, K. Mao, et al., Ecotoxicol. Environ. Saf. 236 (2022) 113464.  doi: 10.1016/j.ecoenv.2022.113464

    89. [89]

      S.K. Mondal, A.K. Saha, A. Sinha, J. Cleaner Prod. 171 (2018) 1203–1214.  doi: 10.1016/j.jclepro.2017.10.091

    90. [90]

      H. Dan, Y. Kong, Q. Yue, et al., Chem. Eng. J. 420 (2021) 127634.  doi: 10.1016/j.cej.2020.127634

    91. [91]

      W. He, Z. Li, S. Lv, et al., Chem. Eng. J. 409 (2021) 128274.  doi: 10.1016/j.cej.2020.128274

    92. [92]

      W. Li, Y. Wang, J. Chen, et al., Appl. Catal. B: Environ. 302 (2022) 120882.  doi: 10.1016/j.apcatb.2021.120882

    93. [93]

      A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Environ. Res. 217 (2023) 114789.  doi: 10.1016/j.envres.2022.114789

    94. [94]

      J. Yang, M. Zhu, D.D. Dionysiou, Water Res. 189 (2021) 116627.  doi: 10.1016/j.watres.2020.116627

    95. [95]

      Y. Sun, D.W. Cho, N.J.D. Graham, et al., Sci. Total Environ. 664 (2019) 312–321.  doi: 10.1016/j.scitotenv.2019.02.006

    96. [96]

      E. Ngumba, A. Gachanja, T. Tuhkanen, Water Environ. J. 34 (2020) 692–703.  doi: 10.1111/wej.12612

    97. [97]

      L. Wang, J. Wei, Y. Li, et al., Chem. Eng. J. 477 (2023) 147051.  doi: 10.1016/j.cej.2023.147051

    98. [98]

      T. Luukkonen, S.O. Pehkonen, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1–39.  doi: 10.1080/10643389.2016.1272343

    99. [99]

      X. Ao, X. Zhang, S. Li, et al., J. Hazard. Mater. 445 (2023) 130480.  doi: 10.1016/j.jhazmat.2022.130480

    100. [100]

      Z. Diao, J. Jin, M. Zou, et al., Sep. Purif. Technol. 278 (2021) 119620.  doi: 10.1016/j.seppur.2021.119620

    101. [101]

      Z.H. Diao, S.T. Huang, X. Chen, et al., J. Cleaner Prod. 330 (2022) 129806.  doi: 10.1016/j.jclepro.2021.129806

    102. [102]

      J. Wu, J. Bai, Z. Wang, et al., Environ. Technol. 43 (2022) 95–106.  doi: 10.1080/09593330.2020.1779353

    103. [103]

      H. Tang, Z. Dai, X. Xie, et al., Chem. Eng. J. 356 (2019) 472–482.  doi: 10.1016/j.cej.2018.09.066

    104. [104]

      Y. h. Tian, N. Jia, L. Zhou, et al., Chemosphere 288 (2022) 132627.  doi: 10.1016/j.chemosphere.2021.132627

    105. [105]

      D. Li, Z. Feng, B. Zhou, et al., Sci. Total Environ. 844 (2022) 157162.  doi: 10.1016/j.scitotenv.2022.157162

    106. [106]

      P. Wang, H. Zhang, Z. Wu, et al., Chin. Chem. Lett. 34 (2023) 108722.  doi: 10.1016/j.cclet.2023.108722

    107. [107]

      F. Wang, Y. Feng, P. Chen, et al., Appl. Catal. B: Environ. 227 (2018) 114–122.  doi: 10.1016/j.apcatb.2018.01.024

    108. [108]

      G. Wang, Y. Li, J. Dai, N. Deng, Environ. Sci. Pollut. Res. 29 (2022) 48522–48538.  doi: 10.1007/s11356-022-19269-w

    109. [109]

      H. Abdelraouf, J. Ding, J. Ren, et al., Process Saf. Environ. Prot. 168 (2022) 892–906.  doi: 10.1016/j.psep.2022.10.069

    110. [110]

      M. Kumaresan, V. Saravanan, M. Swaminathan, Inorg. Chem. Commun. 142 (2022) 109706.  doi: 10.1016/j.inoche.2022.109706

    111. [111]

      K. Jutarvutikul, C. Sakulthaew, C. Chokejaroenrat, et al., Aquacult. Eng. 94 (2021) 102174.  doi: 10.1016/j.aquaeng.2021.102174

    112. [112]

      A.S. Giri, A.K. Golder, J. Environ. Sci. 80 (2019) 82–92.  doi: 10.1016/j.jes.2018.09.016

    113. [113]

      C. Wang, J. Zhang, J. Du, et al., J. Hazard. Mater. 416 (2021) 125893.  doi: 10.1016/j.jhazmat.2021.125893

    114. [114]

      G. Harini, M.K. Okla, I.A. Alaraidh, et al., Chemosphere 303 (2022) 134963.  doi: 10.1016/j.chemosphere.2022.134963

    115. [115]

      X. Ao, W. Liu, W. Sun, et al., Chem. Eng. J. 345 (2018) 87–97.  doi: 10.1016/j.cej.2018.03.133

    116. [116]

      Y. Qi, R. Qu, J. Liu, et al., Chemosphere 237 (2019) 124484.  doi: 10.1016/j.chemosphere.2019.124484

    117. [117]

      S.P. Asu, N.K. Sompalli, S. Kuppusamy, et al., Mater. Today Sustain. 19 (2022) 100189.

    118. [118]

      N. Yin, H. Chen, X. Yuan, et al., J. Hazard. Mater. 436 (2022) 129317.  doi: 10.1016/j.jhazmat.2022.129317

    119. [119]

      H. Guo, N. Gao, Y. Yang, Y. Zhang, Chem. Eng. J. 292 (2016) 82–91.  doi: 10.1016/j.cej.2016.01.009

    120. [120]

      M. Kamagate, A.A. Assadi, T. Kone, et al., J. Hazard. Mater. 346 (2018) 159–166.  doi: 10.1016/j.jhazmat.2017.12.011

    121. [121]

      Y. Park, S. Kim, J. Kim, et al., Water 14 (2022) 958.  doi: 10.3390/w14060958

    122. [122]

      F.H. Borba, A. Schmitz, L. Pellenz, et al., J. Environ. Chem. Eng. 6 (2018) 6979–6988.  doi: 10.1016/j.jece.2018.10.068

    123. [123]

      Y. Zhu, M. Wei, Z. Pan, et al., Sci. Total Environ. 705 (2020) 135960.  doi: 10.1016/j.scitotenv.2019.135960

    124. [124]

      S. Li, J.Y. Hu, J. Hazard. Mater. 318 (2016) 134–144.  doi: 10.1016/j.jhazmat.2016.05.100

    125. [125]

      F. Tan, D. Sun, J. Gao, et al., J. Hazard. Mater. 244 (2013) 750–757.

    126. [126]

      Z. Li, X. Yuan, H. Tang, et al., Environ. Sci. Water Res. Technol. 8 (2022) 2744–2760.  doi: 10.1039/d2ew00320a

    127. [127]

      A. Wang, H. Wang, H. Deng, et al., Appl. Catal. B: Environ. 248 (2019) 298–308.  doi: 10.1016/j.apcatb.2019.02.034

    128. [128]

      Y. Yu, K. Liu, Y. Zhang, et al., Int. J. Environ. Res. Public Health 19 (2022) 4793.  doi: 10.3390/ijerph19084793

    129. [129]

      F. Wang, X. Yu, M. Ge, S. Wu, Chem. Eng. J. 384 (2020) 123381.  doi: 10.1016/j.cej.2019.123381

    130. [130]

      O. Gomes Junior, V.M. Silva, A.E.H. Machado, et al., J. Environ. Manage. 213 (2018) 20–26.  doi: 10.1016/j.jenvman.2018.02.041

  • 加载中
    1. [1]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    2. [2]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    3. [3]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    4. [4]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    5. [5]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    6. [6]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    7. [7]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    8. [8]

      Quan XuYe-Qing DuPan-Pan ChenYili SunZe-Nan YangHui ZhangBencan TangHong WangJia LiYue-Wei GuoXu-Wen Li . Computation assisted chemical study of photo-induced late-stage skeleton transformation of marine natural products towards new scaffolds with biological functions. Chinese Chemical Letters, 2025, 36(5): 110141-. doi: 10.1016/j.cclet.2024.110141

    9. [9]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    10. [10]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    11. [11]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    12. [12]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    13. [13]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    14. [14]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    15. [15]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    16. [16]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    17. [17]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    18. [18]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

Metrics
  • PDF Downloads(3)
  • Abstract views(418)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return