Citation: Han Wu, Yumei Wang, Zekai Ren, Hailin Cong, Youqing Shen, Bing Yu. The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy[J]. Chinese Chemical Letters, ;2025, 36(4): 109996. doi: 10.1016/j.cclet.2024.109996 shu

The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy

    * Corresponding author.
    E-mail address: yubing198@qdu.edu.cn (B. Yu).
  • Received Date: 8 March 2024
    Revised Date: 7 May 2024
    Accepted Date: 10 May 2024
    Available Online: 11 May 2024

Figures(2)

  • Glioma is the most common malignant tumor of the brain. The postoperative recurrence rate was high, and the 2-year survival rate only increased by 20%–25%. The reason is the blood-brain barrier (BBB). BBB is a physical barrier that stabilizes the physiological environment of brain tissue and protects the central nervous system from the invasion of harmful substances. Drug delivery based on nanotechnology and nanocarriers has attracted much attention due to its biological safety, continuous drug release time, increasing solubility, biological drug activity, and enhanced BBB permeability. By modifying different substances on the surface of nanocarriers, the BBB is bypassed by receptor-mediated and cell endocytosis and exocytosis. In addition, the purpose of bypassing BBB-targeted drug delivery can also be achieved by intranasal administration and local administration. This paper reviews different target transport mechanisms, mainly in invasive and non-invasive strategies, the nanocarriers that have made progress and the nanocarrier strategy of bypassing BBB are listed.
  • Recently, there has been a considerable interest in the asymmetric synthesis of P-chiral compounds as P-chiral stereogenic centers appear as key structural features not only in bioactive molecules [1,2] but also in chiral ligands [36]. Besides the classical methods based on transformations from chiral pool or auxiliary-assisted diastereoselective synthesis [7,8], new methods focusing on asymmetric catalysis contribute to the efficient asymmetric synthesis of P-chiral compounds [912]. Among P-chiral compounds, phosphinates are a class of important compounds in both medicinal and synthetic chemistry. For example, several chiral phosphinates exhibit strong anti-proliferative activity against a large panel of NCI cancer cell lines [13]. Furthermore, it is well known that chiral phosphinates serve as starting materials for the preparation of P-chiral tertiary phosphine oxides [14]. However, there are only limited methods available for the catalytic asymmetric preparation of P-chiral phosphinates.

    Three strategies have been employed for the catalytic asymmetric synthesis of P-chiral phosphinates. The first one is the catalytic desymmetrization. Both transition metal catalysis and organocatalysis enabled the facile synthesis of P-chiral phosphinates via desymmetrization [1518]. The second one is the catalytic kinetic resolution (KR) (Scheme 1a). In 2020, both Wang and Zhang studied the construction of P-chiral phosphinates by means of palladium-catalyzed asymmetric hydrophosphorylation of alkynes via KR [19,20]. Zhang's method was particularly efficient for secondary phosphine oxides but not very suitable for H-phosphinate. Moreover, Zhang and co-workers developed a Ni-catalyzed enantioselective allylic alkylation of H-phosphinates via KR based on their previous work with secondary phosphine oxides [2123]. The third one is catalytic dynamic kinetic asymmetric transformation (DyKAT) (Scheme 1b). In 2022, Yang and co-workers disclosed a copper(Ⅰ)-catalyzed dynamic kinetic intramolecular C-P cross-coupling reaction, which delivered P-chiral cyclic phosphinates in high enantioselectivity [24]. Despite the above achievements via three strategies, new methods towards the catalytic asymmetric synthesis of more diversified P-chiral phosphinates remain elusive. Conjugate addition has been identifed as a powerful tool to access P-chiral phosphine derivatives [2534]. However, its application in the synthesis of P-chiral phosphinates via KR has never been disclosed largely due to the weak nucleophicility of H-phosphinates [21].

    Scheme 1

    Scheme 1.  Catalytic asymmetric synthesis of P-chiral phosphinates via KR or DyKAT and our working hypothesis.

    The catalytic asymmetric construction of vicinal tertiary and quaternary stereogenic centers is a challenging issue as there are limited strateties available in literature. The possbile reasons inlcude difficult diastereo- and enantio-discrimination caused by the rotational freedom of acyclic molecules and steric repulsion caused by the two multi-substituted stereogenic centers [3538]. It would be more challenging to achieve the construction of vicinal P-chiral center and C-chiral center through asymmetric catalysis, which is reflected by the very limited methodologies [2530,3941]. In such reported reactions, the pronucleophiles were limited to racemic secondary phosphines, which led to a DyKAT process. Moreover, the diastereodivergent synthesis [42,43] of each diastereoisomer has never been achieved. Herein, by means of the dual "soft-soft" interaction [44], a copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral center and C-chiral center was accomplished, providing new chiral phosphinate derivatives in generally high to excellent diastereo- and enantioselectivities (Scheme 1c). Interestingly, a kinetic resolution process accompanies the catalytic asymmetric Michael addition. Moreover, the dual "soft-soft" interaction between copper(Ⅰ) and sulfur-containing nucleophiles (phosphinothioates), as well as electrophiles (α, β-unsaturated thioamides [4547, [48]), was carefully studied through NMR analysis.

    The reaction of α, β-unsaturated thioamide 1a and O-methyl phenylphosphinothioate (2a) was studied for the optimization of reaction conditions (Table 1). In the presence of 10 mol% Cu(CH3CN)4PF6, 10 mol% (R)-TOL-BINAP, and 20 mol% Et3N, the conjugate addition with 1.0 equiv. 1a and 2.0 equiv. 2a occurred smoothly to deliver the product 3aa in moderate yield with unsatisfied diastereo- and enantioselectivities in 4 h (entry 1). Then, a series of bisphosphine ligands were further evaluated (entry 2-7). The highest diastereoselectivity was observed in the reaction with (R, R)-Ph-BPE (entry 6). Fortunately, the enantioselectivity for the major diastereoisomer 3aa was high. Interestingly, in the reaction with (R, R)-TANIAPHOS, the diastereoselectivity was reversed (entry 8). Instead of 3aa, its diastereoisomer (4aa) was observed in 4/1 dr with 85%/71% ee. Except for the bisphosphine ligands, (R, R)-iPr-FOXAP and (S, S)-Ph-PYBOX were also tested. However, no superior results were obtained (entries 9 and 10). By setting up the reaction with (R, R)-Ph-BPE at 10 ℃ and increasing the amount of 2a to 3.0 equiv., 3aa was afforded in enhanced both diastereo- and enantioselectivities in 12 h (entry 12). As for the reaction with (R, R)-TANIAPHOS, 4aa was generated in 10/1 dr with 92% ee at ‒20 ℃ in the presence of 3.0 equiv. 2a with a concentration of 0.05 mol/L for 1a (entry 14).

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    By using the reaction conditions in entry 12 in Table 1, the substrate scopes for synthesizing 3 were evaluated as given in Scheme 2. It should be noticed that the dr values were generally enhanced in the isolation process. As for R1, various mono-substituted phenyls were applied. The excellent reaction results (3ba-3ja, 87%-96%, 13/1 ~ > 20/1 dr, 87%-98% ee) were not affected by the substitution pattern on the phenyl ring, including the ortho-, meta-, and para-substitution. Both electron-donating groups and electron-withdrawing groups were also well tolerated on the phenyl group. Moreover, both 1-naphthyl and 2-naphthyl were nicely accepted at the R1 position with satisfactory results obtained (3ka-3la, 89%-91%, 20/1 ~ > 20/1 dr, 96%-97% ee). Some heteroaryl groups, such as 2-pyridinyl, 2-furanyl, and 2-thienyl were also appropriate for R1 (3ma-3oa, 85%-87%, 10/1 ~ > 20/1 dr, 95%-98% ee).

    Scheme 2

    Scheme 2.  Substrate scope I of the catalytic asymmetric reaction. 1: 0.2 mmol, 2: 0.6 mmol. Isolated yields. ee of the major diastereoisomer was determined by chiral-stationary-phase HPLC analysis. dr was determined by 1H NMR analysis of crude mixture. dr in parenthesis was determined by 1H NMR analysis of an isolated sample. a Gram-scale reaction. b 10 mol% copper(Ⅰ) catalyst used. c 10 mol% Cu(CH3CN)4PF6 and 10 mol% (R)-DTBM-SEGPHOS used at room temperature.

    Then several alkyl groups for R1 were tested. It was found that simple linear alkyls, simple cyclic alkyls, and functionalized alkyls were well applicable (3pa-3va, 82%-96%, 7/1 ~ > 20/1 dr, 89%-97% ee). It was notable that alkyl chloride was not touched by the pronucleophile 2a. Furthermore, the terminal alkyne group did not disturb the addition although alkynyl copper(Ⅰ) species was often formed, which might undergo a conjugate addition to unsaturated amide 1a [42]. The reaction results were not disturbed by the presence of a nearby chiral center (3wa, 85%, 10/1 dr, 95% de). Interestingly, an α, β-unsaturated N-H thioamide served as a wonderful electrophile (3xa, 92%, 12/1 dr, 93% ee).

    The phenylphosphinothioate 2a was then varied. 4-Methyl-phenyl, 4-OMe-phenyl, 4-Cl-phenyl, and 2-thienyl were introduced into R4. The corresponding products were isolated in good results (3ab-3ae, 89%-95%, 6/1 ~ > 20/1 dr, 97%-98% ee). However, the phosphinothioate with cyclohexyl at R4 position worked in the present conditions with low diastereoselectivity (3af, 1.2/1 dr). Fortunately, 3af was isolated in moderate yield with excellent dr (53%, > 20/1 dr, 94% ee). O-Ethyl phenylphosphinothioate (2g) was also a good substrate (3ag, 97%, 6/1 dr, 94% ee). The absolute configuration of 3ga was determined by X-ray analysis and the stereochemistry of other products (3) was deduced by the structural analogy.

    By using the reaction conditions in entry 14 in Table 1, both unsaturated amides 1 and phosphinothioates 2 evaluated in Scheme 2 were examined again to assemble 4 (Scheme 3). As for α, β-unsaturated amides 1, both aryls and heteroaryls were suitable substituents for R1 as the corresponding products were isolated in high yields with moderate to high diastereo- and high enantioselectivity (4aa-4oa, 78%-90%, 4/1 ~ > 20/1 dr, 83%-93% ee). Various alkyls served as proper substituents at R1 too (4pa-4va, 80%-92%, 6/1 ~ > 20/1 dr, 82%-89% ee). The α, β-unsaturated thioamide bearing a chiral center (1w) worked also as a suitable electrophile (4wa, 82%, 10/1 dr, 91% de). However, the reaction of α, β-unsaturated N-H thioamide 2x occurred in moderate yield with 1.7/1 dr and 83%/50% ee (4xa, 74%). The bad dr was attributed to the decreased steric hindrance of N-H thioamide. As for phosphinothioates 2, both aryls and heteroaryl were well accepted at R4 (4ab-4ae, 82%-96%, 4/1-9/1 dr, 81%-91% ee). Remarkably, O-methyl cyclohexylphosphinothioate (2f) underwent the Michael addition to give 4af in satisfactory results (4af, 80%, > 20/1 dr, 80% ee). Although the enantioselectivity was lower than the one in Scheme 2, the diastereoselectivity in the crude mixture was significantly increased (9/1 vs. 1.2/1). The reaction with O-ethyl phenylphosphinothioate (2g) also worked nicely to deliver the desired product (4ag, 95%, 5/1 dr, 91% ee). Generally speaking, both the diastereo- and the enantioselectivities obtained in Scheme 3 were lower than the ones acquired in Scheme 2. The absolute configuration of 4aa was determined unambiguously with the assistance of X-ray crystallography. The stereochemistry in other products (4) was tentatively assigned.

    Scheme 3

    Scheme 3.  Substrate scope II of the catalytic asymmetric reaction. 1: 0.2 mmol, 2: 0.6 mmol. Isolated yields. ee of the major diastereoisomer was determined by chiral-stationary-phase HPLC analysis. dr was determined by 1H NMR analysis of crude mixture (in parenthesis of an isolated sample). a Gram-scale reaction. b 10 mol% catalyst loading. c 24 h.

    After the studies on the substrate scope, the kinetic resolution of 2a was investigated. As shown in Scheme 4, with (R, R)-Ph-BPE as the ligand, the reaction with 1.0 equiv. 1a and 1.0 equiv. rac-2a afforded 3aa in 88% yield with 1.5/1 dr and 56%/98% ee. By increasing to 1.8 equiv. rac-2a, the reaction furnished 3aa in 95% yield with 6/1 dr and 88%/92% ee. Meanwhile, (R)-2a was obtained in 38% yield with 91% ee. With 2.0 equiv. rac-2a, both the dr and the ee of the major diastereoisomer increased (8/1 dr, 95%/90% ee). (R)-2a was generated in 50% yield with 84% ee. When 3.0 equiv. rac-2a was employed, 3aa was generated in 96% yield with 14/1 dr and 97%/81% ee and (R)-2a was recovered in 62% yield with 37% ee. Then, the kinetic resolution of 2a with (R, R)-TANIAPHOS was probed. The reaction with 1.0 equiv. 1a and 1.0 equiv. rac-2a afforded 4aa in 86% yield with 2/1 dr and 63%/90% ee. In the reaction with 1.0 equiv. 1a and 2.0 equiv. rac-2a, (R)-2a was afforded in 48% yield with 76% ee. The reaction with 3.0 equiv. rac-2a gave 4aa in 92% yield with 10/1 dr and 92%/74% ee and 64% (R)-2a was obtained in 28% ee. Evidently, the resolution of 2a with (R, R)-Ph-BPE is more efficient than the one with (R, R)-TANIAPHOS. It was noted that the reaction with (R)-DTBM-SEGPHOS gave the corresponding adduct in excellent enantioselectivity for both diastereoisomers (Table 1, entry 3). Therefore, the dynamic resolution with (R)-DTBM-SEGPHOS was also tested. In the reaction with 1.0 equiv. 1a and 1.0 equiv. rac-2a, two diastereoisomers with 1/1 ratio were obtained in a total yield of 88%. By using 2.0 equiv. 2a, the reaction provided both ent-3aa in 98% yield with 4/1 dr and 99%/98% ee and (S)-2a in 47% yield with 50% ee. It is deduced that ent-3aa and the major enantiomer in its diastereoisomers had reversed P-chiral centers, which would rationalize the above experimental facts.

    Scheme 4

    Scheme 4.  Control experiments on kinetic resolution of 2a.

    The power of dual "soft-soft" interaction was demonstrated by a competitive experiment (Scheme 5). A test tube was charged with 5 mol% Cu(CH3CN)4PF6, 5 mol% (R, R)-Ph-BPE, 20 mol% Et3N, and THF ahead. Then four electrophiles (1.0 equiv. for each), including unsaturated thioamide 1a, unsaturated amide 5, unsaturated ketone 6, and unsaturated ester 7, and two nucleophiles (3.0 equiv. for each), including methyl phenylphosphinate 8 and O-methyl phenylphosphinothioate 2a were added to the test tube. After stirring the reaction mixture at 10 ℃ for 12 h, 3aa was obtained in 98% yield with 14/1 dr and 97% ee together with 9 in 15% yield. It should be noted that 9 was generated in low yield, low dr, and low enantioselectivity. Obviously, under the "soft-soft" interaction, α, β-unsaturated thioamide exhibited even higher electrophilicity than unsaturated ketone. Furthermore, O-methyl phenylphosphinothioate showed much higher reactivity than methyl phenylphosphinate. Evidently, this experimental fact demonstrated the unique advantage of the dual "soft-soft" interaction in transition-metal catalysis.

    Scheme 5

    Scheme 5.  Competitive experiment (1H NMR yields based on 1a and 6 are given).

    Then, some NMR studies were performed to get insights into the dual "soft-soft" interaction as shown in Fig. 1 (for the full spectra among the range of -5~100 ppm, see Supporting information). The 31P signal of rac-HP(S)PhOMe was recorded as δ 68.68 ppm (Fig. 1A). The 1/1 mixture of [Cu‒(R, R)-Ph-BPE]+ and rac-HP(S)PhOMe gave two 31P signals at δ 69.90 and δ 69.76 ppm with 1/1 dr ratio in the range of 66-75 ppm (Fig. 1B), which indicated the formation of [Cu‒(R, R)-Ph-BPE]+rac-HP(S)PhOMe species and thus confirmed the "soft-soft" interaction between copper(Ⅰ) and HP(S)PhOMe. Evidently, the 1/1 dr ratio is in accordance with the fact that rac-HP(S)PhOMe was employed. In the spectrum without decoupling by 1H (Fig. 1C), two peaks with a J = 545.8 Hz were observed. The huge H-P coupling constant implied that P(V) was present in the complex rather than HSP(Ⅲ)PhOMe. By using a sample of (R)-HP(S)PhOMe with 84% ee (Fig. 1D), the appearances of a big peak at δ 69.92 ppm and a small peak at δ 68.80 ppm further confirmed the formation of the [Cu‒(R, R)-Ph-BPE]+‒HP(S)PhOMe complex. Finally, the 1/1/1 mixture of [Cu‒(R, R)-Ph-BPE]+, rac-HP(S)PhOMe, unsaturated thioamide 1a gave two 31P signals at δ 69.32 and δ 69.24 ppm, which might suggest the formation of the [Cu‒(R, R)-BPE]+rac-HP(S)PhOMe‒thioamide 1a complex (Fig. 1E).

    Figure 1

    Figure 1.  31P NMR studies on some mixtures.

    In order to further explore the "soft-soft" interaction between copper(Ⅰ)-bisphosphine complex and α, β-unsaturated thioamide 1a, the 1H NMR spectrum of the 1/1 mixture of [Cu‒(R)-BINAP]+ and 1a was studied (for the details, see Supporting information). Although the chemical shifts of the two benzylic methylenes in the mixture were almost the same as the counterparts in 1a, the four methylene hydrogens in the mixture gave doublet peaks, which were different from the two single peaks in 1a. This information indicated that there was a chiral environment around the two hydrogens in the methylenes and thus the [Cu‒(R)-BINAP]+-1a complex was formed, which provided the required chiral environment. Evidently, there is a "soft-soft" interaction between the [Cu‒(R)-BINAP]+ complex and α, β-unsaturated thioamide 1a. In the study of the 1/1/1 mixture of [Cu‒(R)-BINAP]+, 1a, and 2a, a similar instructive phenomenon was observed (for the details, see Supporting information), which also indicated the "soft-soft" interaction between the [Cu‒(R)-BINAP]+-2a complex and α, β-unsaturated thioamide 1a. Evidently, these NMR experiments offered some proof for the double "soft-soft" interaction.

    The stereodivergent synthesis of all four stereoisomers was easily achieved by using unsaturated thioamide 1a and O-methyl phenylphosphinothioate (2a) as model substrates (Scheme 6). With (S, S)-Ph-BPE instead of (R, R)-Ph-BPE, the reaction proceeded in the same reaction efficiency, affording ent-3aa in 94% yield with 16/1 dr and 97% ee. By replacing (R, R)-TANIAPHOS with (S, S)-TANIAPHOS, ent-4aa was prepared in 90% yield with 10/1 dr and 91% ee. Evidently, both (R, R)-Ph-BPE and (R, R)-TANIAPHOS led to P-stereogenic center with (S)-configuration while both (S, S)-Ph-BPE and (S, S)-TANIAPHOS led to P-stereogenic center with (R)-configuration.

    Scheme 6

    Scheme 6.  Stereodivergent synthesis to all four stereoisomers with vicinal P-chiral and C-chiral centers.

    Subsequently, transformations of the products were proved to be straightforward by using 3aa and 4aa as model substrates (Scheme 7). By reduction with Schwartz reagent [49] at –78 ℃ and further reduction with NaBH4, thioamide 3aa was converted to a chiral alcohol, which was then treated with mCPBA. Interestingly, an intermolecular esterification occurred to give cyclic diphosphinate 10 in 41% yield for three steps with uncompromising both diastereo- and enantioselectivities. It should be noted that without the oxidative conversion of phosphinothioate to phosphinate, the intermolecular esterification did not proceed at all. Furthermore, the P-chiral centers were reversed in the esterification. On the contrary, the three-step transformation of 4aa afforded cyclic monophosphinate 11 rather than diphosphinate in 61% yield with unchanged both dr and ee by an intramolecular esterification. This special phenomenon highlighted the potential different reaction behavior of two diastereoisomers under the same reaction condition. At this stage, the origin for this interesting phenomenon is unclear.

    Scheme 7

    Scheme 7.  Transformations of 3aa and 4aa. Conditions: (a) Cp2ZrHCl, toluene, -78 ℃ to r.t. (b) NaBH4, MeOH, r.t. (c) mCPBA, DCM, 0 ℃ to r.t.

    The synthetic utility of chiral O-methyl phenylphosphinothioate ((R)-2a) was demonstrated by several transformations (Scheme 8). The conjugate addition of (R)-2a to benzyl acrylate was successfully carried out, furnishing thiophosphinate 12 in 92% yield with uncompromising ee. Moreover, the heteroarylation reaction of (R)-2a through nucleophilic aromatic substitution proceeded smoothly at ‒40 ℃ to deliver thiophosphinate 13 in 67% yield with unchanged ee [50]. The alkylation with EtI worked well to produce thiophosphinate 14 in 80% yield with slightly decreased ee. 14 was easily converted to tertiary phosphine oxide 15 in 69% yield for two steps with slightly eroded ee [14]. Notably, 15 is easily reduced to P-chiral tertiary phosphine, which may serve as chiral ligands in transition-metal catalysis. Finally, an amination with benzylamine by means of the Atherton-Todd reaction [51] led to phosphonamidothioate 16 in 89% yield with remained ee. Ammonia also served as a wonderful substrate in the amination to give phosphonamidothioate 17 in 91% yield with retained ee. It should be noted that the P-chiral centers were reversed in the Atherton-Todd reaction. Moreover, it is interesting to see that the oxide derivative of 17 was identified as an inhibitor of carbonic anhydrase [52,53].

    Scheme 8

    Scheme 8.  Transformations of (R)-2a.

    In conclusion, with the assistance of the dual "soft-soft" interaction between copper(Ⅰ) and the sulfur atoms in substrates, a catalytic asymmetric diastereodivergent addition of phosphinothioates to α, β-unsaturated thioamides was successfully carried out. The diastereodivergent additions were achieved by using (R, R)-Ph-BPE and (R, R)-TANIAPHOS as the ligand, respectively. The Michael addition enjoyed broad substrate scopes on both α, β-unsaturated thioamides and phosphinothioates. In the meanwhile of asymmetric addition, the kinetic resolution of phosphinothioates occurred. With (R, R)-BPE as the ligand, the resolution proceeded smoothly to afford (R)-HP(S)PhOMe in 38% yield with 91% ee. A competitive experiment showed that such a dual "soft-soft" interaction was indispensable in the present reaction as the first "soft-soft" interaction activated the phosphinothioates to enable the facile deprotonation and the second "soft-soft" interaction facilitated the addition. Interestingly, both 1H and 31P NMR studies offered some proof for the dual "soft-soft" interaction. Finally, the transformation of the product afforded a cyclic diphosphinate while the reaction of its diastereoisomer delivered a cyclic mono-phosphinate. The recovered (R)-O-methyl phenylphosphinothioate was smoothly converted to various P-chiral compounds without significantly eroded ee. Expanding the application of the dual "soft-soft" interaction in transition metal-catalysis is currently on going in our laboratory.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 22271302), the Science and Technology Commission of Shanghai Municipality (Nos. 20JC1417100 and 21XD1424800), CAS Key Laboratory of Synthetic Chemistry of Natural Substances, and Shanghai Institute of Organic Chemistry.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.109294.


    1. [1]

      J. Kreuter, Adv. Drug Deliv. Rev. 64 (2012) 213–222.  doi: 10.1016/j.addr.2012.09.015

    2. [2]

      C. Abbruzzese, S. Matteoni, M. Signore, et al., J. Exp. Clin. Cancer Res. 36 (2017) 169.  doi: 10.1186/s13046-017-0642-x

    3. [3]

      S. Reddy, K. Tatiparti, S. Sau, A.K. Iyer, Drug. Discov. Today 26 (2021) 1944–1952.  doi: 10.1016/j.drudis.2021.04.008

    4. [4]

      S. Ostermann, C. Csajka, T. Buclin, et al., Clin. Cancer Res. 10 (2004) 3728–3736.  doi: 10.1158/1078-0432.CCR-03-0807

    5. [5]

      J. Portnow, B. Badie, M. Chen, et al., Clin. Cancer Res. 15 (2009) 7092–7098.  doi: 10.1158/1078-0432.CCR-09-1349

    6. [6]

      R. Stupp, W.P. Mason, M.J.v.d. Bent, et al., N. Engl. J. Med. 352 (2005) 987–996.  doi: 10.1056/NEJMoa043330

    7. [7]

      G.A. Silva, Surg. Neurol. 67 (2007) 113–116.  doi: 10.1016/j.surneu.2006.08.033

    8. [8]

      A. García-Fernández, F. Sancenón, R. Martínez-Máñez, Adv. Drug Deliv. Rev. 177 (2021) 113953.  doi: 10.1016/j.addr.2021.113953

    9. [9]

      P. Liu, C. Jiang, WIREs Nanomed. Nanobiotechnol. 14 (2022) e1818.  doi: 10.1002/wnan.1818

    10. [10]

      L. Shen, H. Liu, M. Jin, et al., Chin. Chem. Lett. 35 (2024) 109572.  doi: 10.1016/j.cclet.2024.109572

    11. [11]

      P. Wang, Y. Wang, P. Li, et al., Chin. Chem. Lett. 34 (2023) 107691.  doi: 10.1016/j.cclet.2022.07.034

    12. [12]

      N. McDannold, C.D. Arvanitis, N. Vykhodtseva, M.S. Livingstone, Cancer Res. 72 (2012) 3652–3663.

    13. [13]

      G.J.A. Murad, S. Walbridge, P.F. Morrison, et al., Clin. Cancer Res. 12 (2006) 3145–3151.  doi: 10.1158/1078-0432.CCR-05-2583

    14. [14]

      C.B. Brown, S. Jacobs, M.P. Johnson, C. Southerland, S. Threatt, Semin. Oncol. Nurs. 34 (2018) 494–500.  doi: 10.1016/j.soncn.2018.10.004

    15. [15]

      B.S. Karmur, J. Philteos, A. Abbasian, et al., Front. Oncol. 10 (2020) 563840.  doi: 10.3389/fonc.2020.563840

    16. [16]

      A. Furquan, A. Hafeez, M.A. Rahman, J. Nanopart. Res. 25 (2023) 233.  doi: 10.1007/s11051-023-05880-6

    17. [17]

      Y. Jiang, X. Pan, T. Yu, H. Wang, Nano Res. 16 (2023) 13077–13099.  doi: 10.1007/s12274-023-6026-y

    18. [18]

      E. Marcello, V. Chiono, Int. J. Mol. Sci. 24 (2023) 3390.  doi: 10.3390/ijms24043390

    19. [19]

      Q. Tang, G. Zhao, H. Fang, et al., Acta Pharm. Sin. B 14 (2024) 2786–2789.  doi: 10.1016/j.apsb.2024.03.023

    20. [20]

      D. Liu, X. Dai, Z. Tao, et al., Cancer Nanotechnol 14 (2023) 58.  doi: 10.1039/d2ce01263d

    21. [21]

      S. Zha, H. Liu, H. Li, et al., ACS Nano 18 (2024) 1820–1845.  doi: 10.1021/acsnano.3c10674

    22. [22]

      V. Kurawattimath, B. Wilson, K.M. Geetha, OpenNano 10 (2023) 100128.  doi: 10.1016/j.onano.2023.100128

    23. [23]

      M. Beygi, F. Oroojalian, S. Azizi-Arani, et al., Adv. Funct. Mater. 34 (2024) 2310881.  doi: 10.1002/adfm.202310881

    24. [24]

      W. Zhang, A. Mehta, Z. Tong, L. Esser, N.H. Voelcker, Adv. Sci. 8 (2021) 2003937.  doi: 10.1002/advs.202003937

    25. [25]

      Y.H. Song, R. De, K.T. Lee, Adv. Colloid Interface Sci. 320 (2023) 103008.  doi: 10.1016/j.cis.2023.103008

    26. [26]

      A. Cox, D. Vinciguerra, F. Re, et al., Eur. J. Pharm. Biopharm. 142 (2019) 70–82.  doi: 10.1016/j.ejpb.2019.06.004

    27. [27]

      R. Yu, S. Wen, Q. Wang, et al., J. Neurochem. 157 (2021) 1979–1991.  doi: 10.1111/jnc.15242

    28. [28]

      J. Firkins, P. Ambady, J.A. Frank, E.A. Neuwelt, J. Clin. Oncol. 36 (2018) e14056.  doi: 10.1200/JCO.2018.36.15_suppl.e14056

    29. [29]

      M. Kinoshita, N. McDannold, F.A. Jolesz, K. Hynynen, Biochem. Biophys. Res. Commun. 340 (2006) 1085–1090.  doi: 10.1016/j.bbrc.2005.12.112

    30. [30]

      R. Suzuki, Y. Oda, N. Utoguchi, K. Maruyama, J. Control. Release 149 (2011) 36–41.  doi: 10.1016/j.jconrel.2010.05.009

    31. [31]

      A.B. Etame, R.J. Diaz, C.A. Smith, et al., Neurosurg. Focus 32 (2012) E3.

    32. [32]

      S.A. Quadri, M. Waqas, I. Khan, et al., Neurosurg. Focus 44 (2018) E16.  doi: 10.3171/2017.11.focus17610

    33. [33]

      V. Krishna, F. Sammartino, A. Rezai, JAMA Neurol 75 (2018) 246–254.  doi: 10.1001/jamaneurol.2017.3129

    34. [34]

      A. Carpentier, M. Canney, A. Vignot, et al., Sci. Transl. Med. 8 (2016) 343re2.

    35. [35]

      K. Beccaria, M. Canney, L. Goldwirt, et al., J. Neurosurg. 119 (2013) 887–898.  doi: 10.3171/2013.5.JNS122374

    36. [36]

      T. Niibo, H. Ohta, S. Miyata, et al., Stroke 48 (2017) 117–122.  doi: 10.1161/STROKEAHA.116.013923

    37. [37]

      R.L. Lee, K.E. Funk, Front. Aging Neurosci. 15 (2023) 1144036.  doi: 10.3389/fnagi.2023.1144036

    38. [38]

      R. Gabathuler, Neurobiol. Dis. 37 (2010) 48–57.  doi: 10.1016/j.nbd.2009.07.028

    39. [39]

      R.H. Bobo, D.W. Laske, A. Akbasak, et al., Neurosurgery 91 (1994) 2076–2080.  doi: 10.1073/pnas.91.6.2076

    40. [40]

      A.H. Faraji, A. Jaquins-Gerstl, A.C. Valenta, et al., Neurosurgery 65 (2018) 136.  doi: 10.1093/neuros/nyy303.340

    41. [41]

      G. Xi, E. Robinson, B. Mania-Farnell, et al., Nanomed. Nanotech. Biol. Med. 10 (2014) 381–391.  doi: 10.1016/j.nano.2013.07.013

    42. [42]

      C.S. Lee, K.W. Leong, Curr. Opin. Biotech. 66 (2020) 78–87.  doi: 10.1016/j.copbio.2020.06.009

    43. [43]

      J.I. Griffith, J.N. Sarkaria, W.F. Elmquist, Trends Pharmacol. Sci. 42 (2021) 426–428.  doi: 10.1016/j.tips.2021.03.001

    44. [44]

      E.K. Nduom, C. Yang, M.J. Merrill, Z. Zhuang, R.R. Lonser, J. Neurosurg. 119 (2013) 427–433.  doi: 10.3171/2013.3.JNS122226

    45. [45]

      G.M. Bernal, M.J. LaRiviere, N. Mansour, et al., Nanomed. Nanotech. Biol. Med. 10 (2014) 149–157.

    46. [46]

      A.M. Sonabend, A.S. Carminucci, B. Amendolara, et al., Neuro Oncol. 16 (2014) 1210–1219.  doi: 10.1093/neuonc/nou026

    47. [47]

      H. Wu, Y. Zhou, Y. Wang, et al., Front. Pharmacol. 12 (2021) 717192.  doi: 10.3389/fphar.2021.717192

    48. [48]

      A.R. Khan, M. Liu, M.W. Khan, G. Zhai, J. Control. Release 268 (2017) 364–389.  doi: 10.1016/j.jconrel.2017.09.001

    49. [49]

      S.U. Islam, A. Shehzad, M.B. Ahmed, Y.S. Lee, Molecules 25 (2020) 1929.  doi: 10.3390/molecules25081929

    50. [50]

      Y.T. Zhang, K.J. He, J.B. Zhang, et al., Stem Cell Res. Ther. 12 (2021) 210.  doi: 10.1186/s13287-021-02274-0

    51. [51]

      A.S. Fatani, A. Petkova, A.G. Schatzlein, I.F. Uchegbu, Int. J. Pharm. 644 (2023) 123343.  doi: 10.1016/j.ijpharm.2023.123343

    52. [52]

      F. Anton, P. Peppel, Neuroscience 41 (1991) 617–628.  doi: 10.1016/0306-4522(91)90354-Q

    53. [53]

      A. Haasbroek-Pheiffer, S. Van Niekerk, F. Van der Kooy, et al., Biopharm. Drug Dispos. 44 (2023) 94–112.  doi: 10.1002/bdd.2348

    54. [54]

      S.V. Dhuria, L.R. Hanson, W.H. Frey, J. Pharm. Sci. 99 (2010) 1654–1673.  doi: 10.1002/jps.21924

    55. [55]

      N.A. Emad, B. Ahmed, A. Alhalmi, N. Alzobaidi, S.S. Al-Kubati, J. Drug Deliv. Sci. Technol. 64 (2021) 102642.  doi: 10.1016/j.jddst.2021.102642

    56. [56]

      S. Chi, L. Zhang, H. Cheng, et al., Angew. Chem. Int. Ed. 62 (2023) e202304419.  doi: 10.1002/anie.202304419

    57. [57]

      K. Ahirwar, A. Kumar, N. Srivastava, S.A. Saraf, R. Shukla, Int. J. Biol. Macromol. 266 (2024) 131048.  doi: 10.1016/j.ijbiomac.2024.131048

    58. [58]

      A.S. Carlini, L. Adamiak, N.C. Gianneschi, Macromolecules 49 (2016) 4379–4394.  doi: 10.1021/acs.macromol.6b00439

    59. [59]

      A.O. Elzoghby, M.M. Abd-Elwakil, K. Abd-Elsalam, Curr. Pharm. Des. 22 (2016) 3305–3323.  doi: 10.2174/1381612822666160204120829

    60. [60]

      Y. Nie, L. Wang, S. Liu, et al., J. Nanobiotechnol. 21 (2023) 484.  doi: 10.1186/s12951-023-02254-x

    61. [61]

      E. Manek, F. Darvas, G.A. Petroianu, Molecules 25 (2020) 4866.  doi: 10.3390/molecules25204866

    62. [62]

      P. Agrawal, R.P.Singh Sonali, Colloids Surf. B: Biointerfaces 152 (2017) 277–288.  doi: 10.1016/j.colsurfb.2017.01.021

    63. [63]

      S. Di Gioia, G. Fracchiolla, S. Cometa, et al., Int. J. Biol. Macromol. 253 (2023) 127174.  doi: 10.1016/j.ijbiomac.2023.127174

    64. [64]

      A.E. Caprifico, P.J.S. Foot, E. Polycarpou, G. Calabrese, Pharmaceutics 12 (2020) 1013.  doi: 10.3390/pharmaceutics12111013

    65. [65]

      M.N. Savari, Sci. Rep. 14 (2024) 7000.  doi: 10.1038/s41598-024-57565-2

    66. [66]

      H. Hua, X. Zhang, H. Mu, et al., Int. J. Pharm. 543 (2018) 179–189.  doi: 10.1016/j.ijpharm.2018.03.028

    67. [67]

      M. Barrow, A. Taylor, D.J. Nieves, et al., Biomater. Sci. 3 (2015) 608–616.  doi: 10.1039/C5BM00011D

    68. [68]

      W. Zhang, X. Deng, L. Wang, et al., Chin. Chem. Lett. 35 (2024) 109422.  doi: 10.1016/j.cclet.2023.109422

    69. [69]

      R. Gobi, P. Ravichandiran, R.S. Babu, D.J. Yoo, Polymers 13 (2021) 1962.  doi: 10.3390/polym13121962

    70. [70]

      M. Tanaka, Chem. Pharm. Bull. 70 (2022) 507–513.  doi: 10.1248/cpb.c22-00125

    71. [71]

      R. Wang, L. Zou, Z. Yi, et al., Int. J. Pharm. 639 (2023) 122944.  doi: 10.1016/j.ijpharm.2023.122944

    72. [72]

      R. Mahar, A. Chakraborty, N. Nainwal, et al., AAPS PharmSciTech 24 (2023) 39.  doi: 10.1208/s12249-023-02502-1

    73. [73]

      B. Sharmah, A. Borthakur, P. Manna, Adv. Therap. 7 (2024) 2300424.  doi: 10.1002/adtp.202300424

    74. [74]

      L. Del Amo, A. Cano, M. Ettcheto, et al., Appl. Sci. 11 (2021) 4305.  doi: 10.3390/app11094305

    75. [75]

      M.J. Ramalho, I.D. Torres, J.A. Loureiro, J. Lima, M.C. Pereira, ACS Appl. Nano Mater. 6 (2023) 14191–14203.  doi: 10.1021/acsanm.3c02122

    76. [76]

      S. Kaya, B. Callan, S. Hawthorne, Pharmaceutics 15 (2023) 1382.  doi: 10.3390/pharmaceutics15051382

    77. [77]

      L. Zhou, H. Hu, H.L. Cong, et al., Integr. Ferroelectr. 199 (2019) 85–94.  doi: 10.1080/10584587.2019.1592601

    78. [78]

      M. Kaurav, S. Ruhi, H.A. Al-Goshae, et al., Front. Pharmacol. 14 (2023) 1159131.  doi: 10.3389/fphar.2023.1159131

    79. [79]

      H.H. de Oliveira Sobrinho, R. Eising, E.O. Wrasse, Mol. Syst. Des. Eng. 8 (2023) 1295–1300.  doi: 10.1039/d3me00060e

    80. [80]

      H. Cong, L. Zhou, Q. Meng, Biomater. Sci. 7 (2019) 3918–3925.  doi: 10.1039/c9bm00960d

    81. [81]

      G. Zhong, H. Long, T. Zhou, et al., Biomaterials 288 (2022) 121690.  doi: 10.1016/j.biomaterials.2022.121690

    82. [82]

      C. Song, Z. Ouyang, Y. Gao, Nano Today 41 (2021) 101325.  doi: 10.1016/j.nantod.2021.101325

    83. [83]

      K. Wiwatchaitawee, K. Ebeid, J.C. Quarterman, et al., Bioconjugate Chem. 33 (2022) 1957–1972.  doi: 10.1021/acs.bioconjchem.1c00479

    84. [84]

      Y. Wang, L. He, H. Cong, et al., Polymers 10 (2018) 1272.  doi: 10.3390/polym10111272

    85. [85]

      H. Yan, P. Xu, H. Cong, B. Yu, Y. Shen, Mater. Today Chem. 37 (2024) 101997.  doi: 10.1016/j.mtchem.2024.101997

    86. [86]

      X. Wang, M. Zhang, H. Cong, et al., Small 19 (2023) 2304006.  doi: 10.1002/smll.202304006

    87. [87]

      R. Tian, Z. Liu, Y. Chen, et al., Materials Express 13 (2023) 1138–1145.  doi: 10.1166/mex.2023.2449

    88. [88]

      D. Das, D. Narayanan, R. Ramachandran, et al., J. Control. Release 355 (2023) 474–488.  doi: 10.1016/j.jconrel.2023.01.085

    89. [89]

      R.K. Sahoo, H. Kumar, V. Jain, et al., ACS Biomater. Sci. Eng. 9 (2023) 4288–4301.  doi: 10.1021/acsbiomaterials.3c00263

    90. [90]

      Y. Fang, T. Nie, G. Li, et al., Chem. Eng. J. 480 (2024) 147930.  doi: 10.1016/j.cej.2023.147930

    91. [91]

      M. Zhou, Y. Wu, M. Sun, et al., J. Control. Release 365 (2024) 876–888.  doi: 10.1016/j.jconrel.2023.11.046

    92. [92]

      I. Hasan, S. Roy, E. Ehexige, et al., Nanoscale 15 (2023) 18108–18138.  doi: 10.1039/d3nr04241c

    93. [93]

      B. Feng, K. Tomizawa, H. Michiue, et al., Biomaterials 31 (2010) 4139–4145.  doi: 10.1016/j.biomaterials.2010.01.086

    94. [94]

      J. Cen, X. Dai, H. Zhao, et al., ACS Appl. Mater. Interfaces 15 (2023) 46697–46709.  doi: 10.1021/acsami.3c10364

    95. [95]

      N. Kato, S. Yamada, R. Suzuki, et al., Drug Deliv. Drug Deliv. 30 (2023) 2173333.  doi: 10.1080/10717544.2023.2173333

    96. [96]

      R. Jnaidi, A.J. Almeida, L.M. Gonçalves, Pharmaceutics 12 (2020) 860.  doi: 10.3390/pharmaceutics12090860

    97. [97]

      M.K. Satapathy, T.L. Yen, J.S. Jan, et al., Pharmaceutics 13 (2021) 1183.  doi: 10.3390/pharmaceutics13081183

    98. [98]

      M. Farshbaf, S. Mojarad-Jabali, S. Hemmati, et al., J. Control. Release 345 (2022) 371–384.  doi: 10.1016/j.jconrel.2022.03.019

    99. [99]

      N. Ouyang, C. Yang, X. Li, et al., Drug Deliv. Transl. Res. 14 (2024) 773–787.  doi: 10.1007/s13346-023-01432-6

    100. [100]

      D. Ran, J. Mao, C. Zhan, et al., ACS Appl. Mater. Interfaces 9 (2017) 25672–25682.  doi: 10.1021/acsami.7b03518

    101. [101]

      L. Lu, X. Zhao, T. Fu, et al., Biomaterials 230 (2020) 119666.  doi: 10.1016/j.biomaterials.2019.119666

    102. [102]

      V. Pokharkar, S. Suryawanshi, V. Dhapte-Pawar, Drug Deliv. Transl. Res. 10 (2020) 1019–1031.  doi: 10.1007/s13346-019-00702-6

    103. [103]

      N. Jirofti, M. Poorsargol, F. Sarhaddi, et al., Eur. Polym. J. 196 (2023) 112228.  doi: 10.1016/j.eurpolymj.2023.112228

    104. [104]

      D. Li, T. Ren, X. Wang, et al., Biomed. Pharmacother. 167 (2023) 115631.  doi: 10.1016/j.biopha.2023.115631

    105. [105]

      L. Fan, Y. Feng, J. Bian, et al., Chin. Chem. Lett. 35 (2024) 108443.  doi: 10.1016/j.cclet.2023.108443

    106. [106]

      A. Tomitaka, S. Ota, K. Nishimoto, et al., Nanoscale 11 (2019) 6489–6496.  doi: 10.1039/c9nr00242a

    107. [107]

      X. Liu, Z. Guo, J. Li, Bio-Medical Mater. Eng. 35 (2024) 279–292.  doi: 10.3233/bme-230171

    108. [108]

      S.F. Lai, B.H. Ko, C.C. Chien, et al., J. Nanobiotechnol. 13 (2015) 85.  doi: 10.1186/s12951-015-0140-2

    109. [109]

      L. Zhao, Y. Li, J. Zhu, et al., J. Nanobiotechnol. 17 (2019) 30.  doi: 10.1109/mnet.2019.1800221

    110. [110]

      H.S. Kim, M. Seo, T.E. Park, D.Y. Lee, J. Nanobiotechnol. 20 (2022) 14.  doi: 10.1186/s12951-021-01220-9

    111. [111]

      S. Ohta, E. Kikuchi, A. Ishijima, et al., Sci. Rep. 10 (2020) 18220.  doi: 10.1038/s41598-020-75253-9

    112. [112]

      H. Fei, Y. Jin, N. Jiang, et al., Biomaterials 306 (2024) 122479.  doi: 10.1016/j.biomaterials.2024.122479

    113. [113]

      M.S. Attia, A. Yahya, N.A. Monaem, S.A. Sabry, Saudi Pharm. J. 31 (2023) 417–432.  doi: 10.1016/j.jsps.2023.01.009

    114. [114]

      Y.P. Chen, C.M. Chou, T.Y. Chang, et al., Front. Chem. 10 (2022) 931584.  doi: 10.3389/fchem.2022.931584

    115. [115]

      T.C. Ribeiro, R.M. Sábio, G.C. Carvalho, B. Fonseca-Santos, M. Chorilli, Int. J. Pharm. 624 (2022) 121978.  doi: 10.1016/j.ijpharm.2022.121978

    116. [116]

      P. Zhang, F. Cao, J. Zhang, Y. Tan, S. Yao, Heliyon 9 (2023) e18490.

    117. [117]

      Y. Liu, S. Yu, X. Jiang, et al., Mater. Des. 238 (2024) 112715.  doi: 10.1016/j.matdes.2024.112715

    118. [118]

      H. Wei, X. Li, F. Huang, et al., Chin. Chem. Lett. 34 (2023) 108564.  doi: 10.1016/j.cclet.2023.108564

    119. [119]

      L. Ribovski, E. de Jong, O. Mergel, et al., Nanomed. Nanotech. Biol. Med. 34 (2021) 102377.  doi: 10.1016/j.nano.2021.102377

    120. [120]

      X. Zhang, W. Yan, Z. Song, et al., Adv. Therap. 6 (2023) 2200287.  doi: 10.1002/adtp.202200287

    121. [121]

      D. Suzuki, Langmuir 39 (2023) 7525–7529.  doi: 10.1021/acs.langmuir.3c00560

    122. [122]

      S. Singh, N. Drude, L. Blank, et al., Adv. Healthcare Mater. 10 (2021) 2100812.  doi: 10.1002/adhm.202100812

    123. [123]

      Q. Li, J. Shen, L. Wu, et al., Cancer Nanotechnol 14 (2023) 12.  doi: 10.1186/s12645-023-00167-w

    124. [124]

      A. Mushtaq, S. Mohd Wani, A.R. Malik, et al., Food Chem. X 18 (2023) 100684.  doi: 10.1016/j.fochx.2023.100684

    125. [125]

      B. Alhasso, M.U. Ghori, B.R. Conway, Pharmaceutics 15 (2023) 378.  doi: 10.3390/pharmaceutics15020378

    126. [126]

      M.C. Bonferoni, S. Rossi, G. Sandri, Pharmaceutics 11 (2019) 84.  doi: 10.3390/pharmaceutics11020084

    127. [127]

      Z. Zhao, B.V. Zlokovic, Cell Res 27 (2017) 849–850.  doi: 10.1038/cr.2017.71

    128. [128]

      Y. Zhou, L. Wang, L. Chen, et al., Nano Res 16 (2023) 13283–13293.  doi: 10.1007/s12274-023-5921-6

    129. [129]

      M. Heidarzadeh, Y. Gürsoy-Özdemir, M. Kaya, et al., Cell Biosci 11 (2021) 142.  doi: 10.1186/s13578-021-00650-0

    130. [130]

      P. Jiang, Y. Xiao, X. Hu, et al., ACS Biomater. Sci. Eng. 10 (2024) 3069–3085.  doi: 10.1021/acsbiomaterials.3c01622

    131. [131]

      Y. Wang, Y. Huo, C. Zhao, et al., J. Control. Release 368 (2024) 170–183.  doi: 10.3390/cryst14020170

    132. [132]

      C. Lu, G. Chen, B. Yu, H. Cong, Adv. Eng. Mater. 20 (2018) 1700940.  doi: 10.1002/adem.201700940

    133. [133]

      F. Liu, B. Huang, T. Tang, et al., Chem. Eng. J. 471 (2023) 144697.  doi: 10.1016/j.cej.2023.144697

    134. [134]

      P.A. Aaron, A. Gelli, ACS Infect. Dis. 6 (2020) 138–149.  doi: 10.1021/acsinfecdis.9b00348

    135. [135]

      G. Perini, V. Palmieri, G. Ciasca, M. De Spirito, M. Papi, Int. J. Mol. Sci. 21 (2020) 3712.  doi: 10.3390/ijms21103712

    136. [136]

      D. Huang, Q. Wang, Y. Cao, et al., ACS Nano 17 (2023) 5033–5046.  doi: 10.1021/acsnano.2c12840

    137. [137]

      D. Lin, M. Li, Y. Gao, L. Yin, Y. Guan, Chem. Eng. J. 429 (2022) 132210.  doi: 10.1016/j.cej.2021.132210

    138. [138]

      Y. Zhu, S. Cao, M. Huo, et al., Chem. Sci. 14 (2023) 7411–7437.  doi: 10.1039/d3sc01707a

    139. [139]

      R.A.J.F. Oerlemans, J. Shao, S.G.A.M. Huisman, et al., Macromol. Rapid Commun. 44 (2023) 2200904.  doi: 10.1002/marc.202200904

    140. [140]

      M. Sánchez-Purrà, V. Ramos, V.A. Petrenko, V.P. Torchilin, S. Borrós, Int. J. Pharm. 511 (2016) 946–956.  doi: 10.1016/j.ijpharm.2016.08.001

    141. [141]

      W.M. Pardridge, Front. Aging Neurosci. 15 (2023) 1276376.  doi: 10.3389/fnagi.2023.1276376

    142. [142]

      Y. Zhu, Y. Yang, J. Guo, et al., BioMed Res. Int. 2017 (2017) 1492327.

    143. [143]

      W.M. Pardridge, Front. Physiol. 11 (2020) 398.  doi: 10.3389/fphys.2020.00398

    144. [144]

      R.J. Boado, Pharmaceutics 14 (2022) 1476.  doi: 10.3390/pharmaceutics14071476

    145. [145]

      J. Li, Z. Zhang, B. Zhang, X. Yan, K. Fan, Biomater. Sci. 11 (2023) 3394–3413.  doi: 10.1039/d2bm02152h

    146. [146]

      S. Li, Z. Peng, J. Dallman, et al., Colloids Surf. B: Biointerfaces 145 (2016) 251–256.  doi: 10.1016/j.colsurfb.2016.05.007

    147. [147]

      S.M. Ashrafzadeh, A. Heydarinasab, A. Akbarzadeh, M. Ardjmand, Lett. Drug Des. Discov. 17 (2020) 1126–1138.  doi: 10.2174/1570180817999200330165213

    148. [148]

      S. Kang, W. Duan, S. Zhang, et al., Theranostics 10 (2020) 4308–4322.  doi: 10.7150/thno.41322

    149. [149]

      A. Dasgupta, T. Sun, E. Rama, et al., Adv. Mater. 35 (2023) 2308150.  doi: 10.1002/adma.202308150

    150. [150]

      J.H. Lee, J.A. Engler, J.F. Collawn, B.A. Moore, Eur. J. Biochem. 268 (2001) 2004–2012.  doi: 10.1046/j.1432-1327.2001.02073.x

    151. [151]

      X. Fang, Z. Chen, W. Zhou, et al., Small 19 (2023) 2207604.  doi: 10.1002/smll.202207604

    152. [152]

      M.M. Agwa, S. Sabra, Int. J. Biol. Macromol. 167 (2021) 1527–1543.  doi: 10.1016/j.ijbiomac.2020.11.107

    153. [153]

      H.S. Kim, S.C. Park, H.J. Kim, D.Y. Lee, Biomater. Res. 27 (2023) 52.  doi: 10.1186/s40824-023-00391-w

    154. [154]

      H. Chen, Y. Qin, Q. Zhang, et al., Eur. J. Pharm. Sci. 44 (2011) 164–173.  doi: 10.1016/j.ejps.2011.07.007

    155. [155]

      H. Li, Y. Tong, L. Bai, et al., Int. J. Biol. Macromol. 107 (2018) 204–211.  doi: 10.1016/j.ijbiomac.2017.08.155

    156. [156]

      M. Li, K. Shi, X. Tang, et al., Nanomed. Nanotech. Biol. Med. 14 (2018) 1833–1843.

    157. [157]

      C.K. Elechalawar, D. Bhattacharya, M.T. Ahmed, et al., Nanomed. Nanotech. Biol. Med. 1 (2019) 3555–3567.  doi: 10.1039/c9na00056a

    158. [158]

      H.M. Liu, Y. Zhang, Kaohsiung J. Med. Sci. 40 (2024) 435–444.  doi: 10.1002/kjm2.12819

    159. [159]

      K. Ulbrich, T. Hekmatara, E. Herbert, J. Kreuter, Eur. J. Pharm. Biopharm. 71 (2009) 251–256.  doi: 10.1016/j.ejpb.2008.08.021

    160. [160]

      D. Zhang, J. Kong, X. Huang, et al., Mater. Today Nano 23 (2023) 100347.  doi: 10.1016/j.mtnano.2023.100347

    161. [161]

      I. Kimura, S. Dohgu, F. Takata, et al., Neurosci. Lett. 694 (2019) 9–13.  doi: 10.1016/j.neulet.2018.11.022

    162. [162]

      F. Ji, L. Xu, K. Long, et al., Transl. Res. 259 (2023) 1–12.  doi: 10.1016/j.trsl.2023.03.003

    163. [163]

      Y. Molino, M. David, K. Varini, et al., FASEB J. 31 (2017) 1807–1827.  doi: 10.1096/fj.201600827R

    164. [164]

      Z. Ye, T. Zhang, W. He, et al., ACS Appl. Mater. Interfaces 10 (2018) 12341–12350.  doi: 10.1021/acsami.7b18135

    165. [165]

      G. Bor, L. Hosta-Rigau, Adv. Ther. 6 (2023) 2300161.  doi: 10.1002/adtp.202300161

    166. [166]

      D.Ý. Þorgeirsdóttir, J.H. Andersen, M. Perch-Nielsen, et al., Eur. J. Pharm. Sci. 183 (2023) 106400.  doi: 10.1016/j.ejps.2023.106400

    167. [167]

      E. Melander, C. Eriksson, S. Wellens, et al., Pharmaceutics 15 (2023) 1507.  doi: 10.3390/pharmaceutics15051507

    168. [168]

      R. Blades, L.M. Ittner, O. Tietz, J. Label. Comp. Radiopharm. 66 (2023) 237–248.  doi: 10.1002/jlcr.4023

    169. [169]

      N. Shadmani, P. Makvandi, M. Parsa, et al., Mol. Pharm. 20 (2023) 1531–1548.  doi: 10.1021/acs.molpharmaceut.2c00755

    170. [170]

      T. Saha, A.A. van Vliet, C. Cui, et al., Front. Mol. Biosci. 8 (2021) 754443.  doi: 10.3389/fmolb.2021.754443

    171. [171]

      J.H. Lim, M. Park, Y. Park, et al., Molecules 28 (2023) 3223.  doi: 10.3390/molecules28073223

    172. [172]

      D. Sagar, N.P. Singh, R. Ginwala, Sci. Rep. 7 (2017) 2707.  doi: 10.1038/s41598-017-03027-x

    173. [173]

      A.M. Hersh, S. Alomari, B.M. Tyler, Int. J. Mol. Sci. 23 (2022) 4153.  doi: 10.3390/ijms23084153

    174. [174]

      R. Jomura, S.I. Akanuma, B. Bauer, et al., Pharm. Res. 38 (2021) 113–125.  doi: 10.1007/s11095-021-03003-1

    175. [175]

      Y. Zhang, Y. Ren, H. Xu, L. Li, et al., ACS Appl. Mater. Interfaces 15 (2023) 10356–10370.  doi: 10.1021/acsami.2c19285

    176. [176]

      M. Iv, N. Telischak, D. Feng, et al., Nanomedicine 10 (2015) 993–1018.  doi: 10.2217/nnm.14.203

    177. [177]

      J. Xie, Z. Shen, Y. Anraku, K. Kataoka, X. Chen, Biomaterials 224 (2019) 119491.  doi: 10.1016/j.biomaterials.2019.119491

    178. [178]

      V.H. Tam, C. Sosa, R. Liu, N. Yao, R.D. Priestley, Int. J. Pharm. 515 (2016) 331–342.  doi: 10.1016/j.ijpharm.2016.10.031

    179. [179]

      W.M. Pardridge, Pharmaceutics 14 (2022) 1283.  doi: 10.3390/pharmaceutics14061283

    180. [180]

      M. Kannan, S. Sil, A. Oladapo, Redox Biol. 62 (2023) 102689.  doi: 10.1016/j.redox.2023.102689

    181. [181]

      K. Li, Y. Wang, Y. Xu, et al., Chin. Chem. Lett. 35 (2024) 109511.  doi: 10.1016/j.cclet.2024.109511

    1. [1]

      J. Kreuter, Adv. Drug Deliv. Rev. 64 (2012) 213–222.  doi: 10.1016/j.addr.2012.09.015

    2. [2]

      C. Abbruzzese, S. Matteoni, M. Signore, et al., J. Exp. Clin. Cancer Res. 36 (2017) 169.  doi: 10.1186/s13046-017-0642-x

    3. [3]

      S. Reddy, K. Tatiparti, S. Sau, A.K. Iyer, Drug. Discov. Today 26 (2021) 1944–1952.  doi: 10.1016/j.drudis.2021.04.008

    4. [4]

      S. Ostermann, C. Csajka, T. Buclin, et al., Clin. Cancer Res. 10 (2004) 3728–3736.  doi: 10.1158/1078-0432.CCR-03-0807

    5. [5]

      J. Portnow, B. Badie, M. Chen, et al., Clin. Cancer Res. 15 (2009) 7092–7098.  doi: 10.1158/1078-0432.CCR-09-1349

    6. [6]

      R. Stupp, W.P. Mason, M.J.v.d. Bent, et al., N. Engl. J. Med. 352 (2005) 987–996.  doi: 10.1056/NEJMoa043330

    7. [7]

      G.A. Silva, Surg. Neurol. 67 (2007) 113–116.  doi: 10.1016/j.surneu.2006.08.033

    8. [8]

      A. García-Fernández, F. Sancenón, R. Martínez-Máñez, Adv. Drug Deliv. Rev. 177 (2021) 113953.  doi: 10.1016/j.addr.2021.113953

    9. [9]

      P. Liu, C. Jiang, WIREs Nanomed. Nanobiotechnol. 14 (2022) e1818.  doi: 10.1002/wnan.1818

    10. [10]

      L. Shen, H. Liu, M. Jin, et al., Chin. Chem. Lett. 35 (2024) 109572.  doi: 10.1016/j.cclet.2024.109572

    11. [11]

      P. Wang, Y. Wang, P. Li, et al., Chin. Chem. Lett. 34 (2023) 107691.  doi: 10.1016/j.cclet.2022.07.034

    12. [12]

      N. McDannold, C.D. Arvanitis, N. Vykhodtseva, M.S. Livingstone, Cancer Res. 72 (2012) 3652–3663.

    13. [13]

      G.J.A. Murad, S. Walbridge, P.F. Morrison, et al., Clin. Cancer Res. 12 (2006) 3145–3151.  doi: 10.1158/1078-0432.CCR-05-2583

    14. [14]

      C.B. Brown, S. Jacobs, M.P. Johnson, C. Southerland, S. Threatt, Semin. Oncol. Nurs. 34 (2018) 494–500.  doi: 10.1016/j.soncn.2018.10.004

    15. [15]

      B.S. Karmur, J. Philteos, A. Abbasian, et al., Front. Oncol. 10 (2020) 563840.  doi: 10.3389/fonc.2020.563840

    16. [16]

      A. Furquan, A. Hafeez, M.A. Rahman, J. Nanopart. Res. 25 (2023) 233.  doi: 10.1007/s11051-023-05880-6

    17. [17]

      Y. Jiang, X. Pan, T. Yu, H. Wang, Nano Res. 16 (2023) 13077–13099.  doi: 10.1007/s12274-023-6026-y

    18. [18]

      E. Marcello, V. Chiono, Int. J. Mol. Sci. 24 (2023) 3390.  doi: 10.3390/ijms24043390

    19. [19]

      Q. Tang, G. Zhao, H. Fang, et al., Acta Pharm. Sin. B 14 (2024) 2786–2789.  doi: 10.1016/j.apsb.2024.03.023

    20. [20]

      D. Liu, X. Dai, Z. Tao, et al., Cancer Nanotechnol 14 (2023) 58.  doi: 10.1039/d2ce01263d

    21. [21]

      S. Zha, H. Liu, H. Li, et al., ACS Nano 18 (2024) 1820–1845.  doi: 10.1021/acsnano.3c10674

    22. [22]

      V. Kurawattimath, B. Wilson, K.M. Geetha, OpenNano 10 (2023) 100128.  doi: 10.1016/j.onano.2023.100128

    23. [23]

      M. Beygi, F. Oroojalian, S. Azizi-Arani, et al., Adv. Funct. Mater. 34 (2024) 2310881.  doi: 10.1002/adfm.202310881

    24. [24]

      W. Zhang, A. Mehta, Z. Tong, L. Esser, N.H. Voelcker, Adv. Sci. 8 (2021) 2003937.  doi: 10.1002/advs.202003937

    25. [25]

      Y.H. Song, R. De, K.T. Lee, Adv. Colloid Interface Sci. 320 (2023) 103008.  doi: 10.1016/j.cis.2023.103008

    26. [26]

      A. Cox, D. Vinciguerra, F. Re, et al., Eur. J. Pharm. Biopharm. 142 (2019) 70–82.  doi: 10.1016/j.ejpb.2019.06.004

    27. [27]

      R. Yu, S. Wen, Q. Wang, et al., J. Neurochem. 157 (2021) 1979–1991.  doi: 10.1111/jnc.15242

    28. [28]

      J. Firkins, P. Ambady, J.A. Frank, E.A. Neuwelt, J. Clin. Oncol. 36 (2018) e14056.  doi: 10.1200/JCO.2018.36.15_suppl.e14056

    29. [29]

      M. Kinoshita, N. McDannold, F.A. Jolesz, K. Hynynen, Biochem. Biophys. Res. Commun. 340 (2006) 1085–1090.  doi: 10.1016/j.bbrc.2005.12.112

    30. [30]

      R. Suzuki, Y. Oda, N. Utoguchi, K. Maruyama, J. Control. Release 149 (2011) 36–41.  doi: 10.1016/j.jconrel.2010.05.009

    31. [31]

      A.B. Etame, R.J. Diaz, C.A. Smith, et al., Neurosurg. Focus 32 (2012) E3.

    32. [32]

      S.A. Quadri, M. Waqas, I. Khan, et al., Neurosurg. Focus 44 (2018) E16.  doi: 10.3171/2017.11.focus17610

    33. [33]

      V. Krishna, F. Sammartino, A. Rezai, JAMA Neurol 75 (2018) 246–254.  doi: 10.1001/jamaneurol.2017.3129

    34. [34]

      A. Carpentier, M. Canney, A. Vignot, et al., Sci. Transl. Med. 8 (2016) 343re2.

    35. [35]

      K. Beccaria, M. Canney, L. Goldwirt, et al., J. Neurosurg. 119 (2013) 887–898.  doi: 10.3171/2013.5.JNS122374

    36. [36]

      T. Niibo, H. Ohta, S. Miyata, et al., Stroke 48 (2017) 117–122.  doi: 10.1161/STROKEAHA.116.013923

    37. [37]

      R.L. Lee, K.E. Funk, Front. Aging Neurosci. 15 (2023) 1144036.  doi: 10.3389/fnagi.2023.1144036

    38. [38]

      R. Gabathuler, Neurobiol. Dis. 37 (2010) 48–57.  doi: 10.1016/j.nbd.2009.07.028

    39. [39]

      R.H. Bobo, D.W. Laske, A. Akbasak, et al., Neurosurgery 91 (1994) 2076–2080.  doi: 10.1073/pnas.91.6.2076

    40. [40]

      A.H. Faraji, A. Jaquins-Gerstl, A.C. Valenta, et al., Neurosurgery 65 (2018) 136.  doi: 10.1093/neuros/nyy303.340

    41. [41]

      G. Xi, E. Robinson, B. Mania-Farnell, et al., Nanomed. Nanotech. Biol. Med. 10 (2014) 381–391.  doi: 10.1016/j.nano.2013.07.013

    42. [42]

      C.S. Lee, K.W. Leong, Curr. Opin. Biotech. 66 (2020) 78–87.  doi: 10.1016/j.copbio.2020.06.009

    43. [43]

      J.I. Griffith, J.N. Sarkaria, W.F. Elmquist, Trends Pharmacol. Sci. 42 (2021) 426–428.  doi: 10.1016/j.tips.2021.03.001

    44. [44]

      E.K. Nduom, C. Yang, M.J. Merrill, Z. Zhuang, R.R. Lonser, J. Neurosurg. 119 (2013) 427–433.  doi: 10.3171/2013.3.JNS122226

    45. [45]

      G.M. Bernal, M.J. LaRiviere, N. Mansour, et al., Nanomed. Nanotech. Biol. Med. 10 (2014) 149–157.

    46. [46]

      A.M. Sonabend, A.S. Carminucci, B. Amendolara, et al., Neuro Oncol. 16 (2014) 1210–1219.  doi: 10.1093/neuonc/nou026

    47. [47]

      H. Wu, Y. Zhou, Y. Wang, et al., Front. Pharmacol. 12 (2021) 717192.  doi: 10.3389/fphar.2021.717192

    48. [48]

      A.R. Khan, M. Liu, M.W. Khan, G. Zhai, J. Control. Release 268 (2017) 364–389.  doi: 10.1016/j.jconrel.2017.09.001

    49. [49]

      S.U. Islam, A. Shehzad, M.B. Ahmed, Y.S. Lee, Molecules 25 (2020) 1929.  doi: 10.3390/molecules25081929

    50. [50]

      Y.T. Zhang, K.J. He, J.B. Zhang, et al., Stem Cell Res. Ther. 12 (2021) 210.  doi: 10.1186/s13287-021-02274-0

    51. [51]

      A.S. Fatani, A. Petkova, A.G. Schatzlein, I.F. Uchegbu, Int. J. Pharm. 644 (2023) 123343.  doi: 10.1016/j.ijpharm.2023.123343

    52. [52]

      F. Anton, P. Peppel, Neuroscience 41 (1991) 617–628.  doi: 10.1016/0306-4522(91)90354-Q

    53. [53]

      A. Haasbroek-Pheiffer, S. Van Niekerk, F. Van der Kooy, et al., Biopharm. Drug Dispos. 44 (2023) 94–112.  doi: 10.1002/bdd.2348

    54. [54]

      S.V. Dhuria, L.R. Hanson, W.H. Frey, J. Pharm. Sci. 99 (2010) 1654–1673.  doi: 10.1002/jps.21924

    55. [55]

      N.A. Emad, B. Ahmed, A. Alhalmi, N. Alzobaidi, S.S. Al-Kubati, J. Drug Deliv. Sci. Technol. 64 (2021) 102642.  doi: 10.1016/j.jddst.2021.102642

    56. [56]

      S. Chi, L. Zhang, H. Cheng, et al., Angew. Chem. Int. Ed. 62 (2023) e202304419.  doi: 10.1002/anie.202304419

    57. [57]

      K. Ahirwar, A. Kumar, N. Srivastava, S.A. Saraf, R. Shukla, Int. J. Biol. Macromol. 266 (2024) 131048.  doi: 10.1016/j.ijbiomac.2024.131048

    58. [58]

      A.S. Carlini, L. Adamiak, N.C. Gianneschi, Macromolecules 49 (2016) 4379–4394.  doi: 10.1021/acs.macromol.6b00439

    59. [59]

      A.O. Elzoghby, M.M. Abd-Elwakil, K. Abd-Elsalam, Curr. Pharm. Des. 22 (2016) 3305–3323.  doi: 10.2174/1381612822666160204120829

    60. [60]

      Y. Nie, L. Wang, S. Liu, et al., J. Nanobiotechnol. 21 (2023) 484.  doi: 10.1186/s12951-023-02254-x

    61. [61]

      E. Manek, F. Darvas, G.A. Petroianu, Molecules 25 (2020) 4866.  doi: 10.3390/molecules25204866

    62. [62]

      P. Agrawal, R.P.Singh Sonali, Colloids Surf. B: Biointerfaces 152 (2017) 277–288.  doi: 10.1016/j.colsurfb.2017.01.021

    63. [63]

      S. Di Gioia, G. Fracchiolla, S. Cometa, et al., Int. J. Biol. Macromol. 253 (2023) 127174.  doi: 10.1016/j.ijbiomac.2023.127174

    64. [64]

      A.E. Caprifico, P.J.S. Foot, E. Polycarpou, G. Calabrese, Pharmaceutics 12 (2020) 1013.  doi: 10.3390/pharmaceutics12111013

    65. [65]

      M.N. Savari, Sci. Rep. 14 (2024) 7000.  doi: 10.1038/s41598-024-57565-2

    66. [66]

      H. Hua, X. Zhang, H. Mu, et al., Int. J. Pharm. 543 (2018) 179–189.  doi: 10.1016/j.ijpharm.2018.03.028

    67. [67]

      M. Barrow, A. Taylor, D.J. Nieves, et al., Biomater. Sci. 3 (2015) 608–616.  doi: 10.1039/C5BM00011D

    68. [68]

      W. Zhang, X. Deng, L. Wang, et al., Chin. Chem. Lett. 35 (2024) 109422.  doi: 10.1016/j.cclet.2023.109422

    69. [69]

      R. Gobi, P. Ravichandiran, R.S. Babu, D.J. Yoo, Polymers 13 (2021) 1962.  doi: 10.3390/polym13121962

    70. [70]

      M. Tanaka, Chem. Pharm. Bull. 70 (2022) 507–513.  doi: 10.1248/cpb.c22-00125

    71. [71]

      R. Wang, L. Zou, Z. Yi, et al., Int. J. Pharm. 639 (2023) 122944.  doi: 10.1016/j.ijpharm.2023.122944

    72. [72]

      R. Mahar, A. Chakraborty, N. Nainwal, et al., AAPS PharmSciTech 24 (2023) 39.  doi: 10.1208/s12249-023-02502-1

    73. [73]

      B. Sharmah, A. Borthakur, P. Manna, Adv. Therap. 7 (2024) 2300424.  doi: 10.1002/adtp.202300424

    74. [74]

      L. Del Amo, A. Cano, M. Ettcheto, et al., Appl. Sci. 11 (2021) 4305.  doi: 10.3390/app11094305

    75. [75]

      M.J. Ramalho, I.D. Torres, J.A. Loureiro, J. Lima, M.C. Pereira, ACS Appl. Nano Mater. 6 (2023) 14191–14203.  doi: 10.1021/acsanm.3c02122

    76. [76]

      S. Kaya, B. Callan, S. Hawthorne, Pharmaceutics 15 (2023) 1382.  doi: 10.3390/pharmaceutics15051382

    77. [77]

      L. Zhou, H. Hu, H.L. Cong, et al., Integr. Ferroelectr. 199 (2019) 85–94.  doi: 10.1080/10584587.2019.1592601

    78. [78]

      M. Kaurav, S. Ruhi, H.A. Al-Goshae, et al., Front. Pharmacol. 14 (2023) 1159131.  doi: 10.3389/fphar.2023.1159131

    79. [79]

      H.H. de Oliveira Sobrinho, R. Eising, E.O. Wrasse, Mol. Syst. Des. Eng. 8 (2023) 1295–1300.  doi: 10.1039/d3me00060e

    80. [80]

      H. Cong, L. Zhou, Q. Meng, Biomater. Sci. 7 (2019) 3918–3925.  doi: 10.1039/c9bm00960d

    81. [81]

      G. Zhong, H. Long, T. Zhou, et al., Biomaterials 288 (2022) 121690.  doi: 10.1016/j.biomaterials.2022.121690

    82. [82]

      C. Song, Z. Ouyang, Y. Gao, Nano Today 41 (2021) 101325.  doi: 10.1016/j.nantod.2021.101325

    83. [83]

      K. Wiwatchaitawee, K. Ebeid, J.C. Quarterman, et al., Bioconjugate Chem. 33 (2022) 1957–1972.  doi: 10.1021/acs.bioconjchem.1c00479

    84. [84]

      Y. Wang, L. He, H. Cong, et al., Polymers 10 (2018) 1272.  doi: 10.3390/polym10111272

    85. [85]

      H. Yan, P. Xu, H. Cong, B. Yu, Y. Shen, Mater. Today Chem. 37 (2024) 101997.  doi: 10.1016/j.mtchem.2024.101997

    86. [86]

      X. Wang, M. Zhang, H. Cong, et al., Small 19 (2023) 2304006.  doi: 10.1002/smll.202304006

    87. [87]

      R. Tian, Z. Liu, Y. Chen, et al., Materials Express 13 (2023) 1138–1145.  doi: 10.1166/mex.2023.2449

    88. [88]

      D. Das, D. Narayanan, R. Ramachandran, et al., J. Control. Release 355 (2023) 474–488.  doi: 10.1016/j.jconrel.2023.01.085

    89. [89]

      R.K. Sahoo, H. Kumar, V. Jain, et al., ACS Biomater. Sci. Eng. 9 (2023) 4288–4301.  doi: 10.1021/acsbiomaterials.3c00263

    90. [90]

      Y. Fang, T. Nie, G. Li, et al., Chem. Eng. J. 480 (2024) 147930.  doi: 10.1016/j.cej.2023.147930

    91. [91]

      M. Zhou, Y. Wu, M. Sun, et al., J. Control. Release 365 (2024) 876–888.  doi: 10.1016/j.jconrel.2023.11.046

    92. [92]

      I. Hasan, S. Roy, E. Ehexige, et al., Nanoscale 15 (2023) 18108–18138.  doi: 10.1039/d3nr04241c

    93. [93]

      B. Feng, K. Tomizawa, H. Michiue, et al., Biomaterials 31 (2010) 4139–4145.  doi: 10.1016/j.biomaterials.2010.01.086

    94. [94]

      J. Cen, X. Dai, H. Zhao, et al., ACS Appl. Mater. Interfaces 15 (2023) 46697–46709.  doi: 10.1021/acsami.3c10364

    95. [95]

      N. Kato, S. Yamada, R. Suzuki, et al., Drug Deliv. Drug Deliv. 30 (2023) 2173333.  doi: 10.1080/10717544.2023.2173333

    96. [96]

      R. Jnaidi, A.J. Almeida, L.M. Gonçalves, Pharmaceutics 12 (2020) 860.  doi: 10.3390/pharmaceutics12090860

    97. [97]

      M.K. Satapathy, T.L. Yen, J.S. Jan, et al., Pharmaceutics 13 (2021) 1183.  doi: 10.3390/pharmaceutics13081183

    98. [98]

      M. Farshbaf, S. Mojarad-Jabali, S. Hemmati, et al., J. Control. Release 345 (2022) 371–384.  doi: 10.1016/j.jconrel.2022.03.019

    99. [99]

      N. Ouyang, C. Yang, X. Li, et al., Drug Deliv. Transl. Res. 14 (2024) 773–787.  doi: 10.1007/s13346-023-01432-6

    100. [100]

      D. Ran, J. Mao, C. Zhan, et al., ACS Appl. Mater. Interfaces 9 (2017) 25672–25682.  doi: 10.1021/acsami.7b03518

    101. [101]

      L. Lu, X. Zhao, T. Fu, et al., Biomaterials 230 (2020) 119666.  doi: 10.1016/j.biomaterials.2019.119666

    102. [102]

      V. Pokharkar, S. Suryawanshi, V. Dhapte-Pawar, Drug Deliv. Transl. Res. 10 (2020) 1019–1031.  doi: 10.1007/s13346-019-00702-6

    103. [103]

      N. Jirofti, M. Poorsargol, F. Sarhaddi, et al., Eur. Polym. J. 196 (2023) 112228.  doi: 10.1016/j.eurpolymj.2023.112228

    104. [104]

      D. Li, T. Ren, X. Wang, et al., Biomed. Pharmacother. 167 (2023) 115631.  doi: 10.1016/j.biopha.2023.115631

    105. [105]

      L. Fan, Y. Feng, J. Bian, et al., Chin. Chem. Lett. 35 (2024) 108443.  doi: 10.1016/j.cclet.2023.108443

    106. [106]

      A. Tomitaka, S. Ota, K. Nishimoto, et al., Nanoscale 11 (2019) 6489–6496.  doi: 10.1039/c9nr00242a

    107. [107]

      X. Liu, Z. Guo, J. Li, Bio-Medical Mater. Eng. 35 (2024) 279–292.  doi: 10.3233/bme-230171

    108. [108]

      S.F. Lai, B.H. Ko, C.C. Chien, et al., J. Nanobiotechnol. 13 (2015) 85.  doi: 10.1186/s12951-015-0140-2

    109. [109]

      L. Zhao, Y. Li, J. Zhu, et al., J. Nanobiotechnol. 17 (2019) 30.  doi: 10.1109/mnet.2019.1800221

    110. [110]

      H.S. Kim, M. Seo, T.E. Park, D.Y. Lee, J. Nanobiotechnol. 20 (2022) 14.  doi: 10.1186/s12951-021-01220-9

    111. [111]

      S. Ohta, E. Kikuchi, A. Ishijima, et al., Sci. Rep. 10 (2020) 18220.  doi: 10.1038/s41598-020-75253-9

    112. [112]

      H. Fei, Y. Jin, N. Jiang, et al., Biomaterials 306 (2024) 122479.  doi: 10.1016/j.biomaterials.2024.122479

    113. [113]

      M.S. Attia, A. Yahya, N.A. Monaem, S.A. Sabry, Saudi Pharm. J. 31 (2023) 417–432.  doi: 10.1016/j.jsps.2023.01.009

    114. [114]

      Y.P. Chen, C.M. Chou, T.Y. Chang, et al., Front. Chem. 10 (2022) 931584.  doi: 10.3389/fchem.2022.931584

    115. [115]

      T.C. Ribeiro, R.M. Sábio, G.C. Carvalho, B. Fonseca-Santos, M. Chorilli, Int. J. Pharm. 624 (2022) 121978.  doi: 10.1016/j.ijpharm.2022.121978

    116. [116]

      P. Zhang, F. Cao, J. Zhang, Y. Tan, S. Yao, Heliyon 9 (2023) e18490.

    117. [117]

      Y. Liu, S. Yu, X. Jiang, et al., Mater. Des. 238 (2024) 112715.  doi: 10.1016/j.matdes.2024.112715

    118. [118]

      H. Wei, X. Li, F. Huang, et al., Chin. Chem. Lett. 34 (2023) 108564.  doi: 10.1016/j.cclet.2023.108564

    119. [119]

      L. Ribovski, E. de Jong, O. Mergel, et al., Nanomed. Nanotech. Biol. Med. 34 (2021) 102377.  doi: 10.1016/j.nano.2021.102377

    120. [120]

      X. Zhang, W. Yan, Z. Song, et al., Adv. Therap. 6 (2023) 2200287.  doi: 10.1002/adtp.202200287

    121. [121]

      D. Suzuki, Langmuir 39 (2023) 7525–7529.  doi: 10.1021/acs.langmuir.3c00560

    122. [122]

      S. Singh, N. Drude, L. Blank, et al., Adv. Healthcare Mater. 10 (2021) 2100812.  doi: 10.1002/adhm.202100812

    123. [123]

      Q. Li, J. Shen, L. Wu, et al., Cancer Nanotechnol 14 (2023) 12.  doi: 10.1186/s12645-023-00167-w

    124. [124]

      A. Mushtaq, S. Mohd Wani, A.R. Malik, et al., Food Chem. X 18 (2023) 100684.  doi: 10.1016/j.fochx.2023.100684

    125. [125]

      B. Alhasso, M.U. Ghori, B.R. Conway, Pharmaceutics 15 (2023) 378.  doi: 10.3390/pharmaceutics15020378

    126. [126]

      M.C. Bonferoni, S. Rossi, G. Sandri, Pharmaceutics 11 (2019) 84.  doi: 10.3390/pharmaceutics11020084

    127. [127]

      Z. Zhao, B.V. Zlokovic, Cell Res 27 (2017) 849–850.  doi: 10.1038/cr.2017.71

    128. [128]

      Y. Zhou, L. Wang, L. Chen, et al., Nano Res 16 (2023) 13283–13293.  doi: 10.1007/s12274-023-5921-6

    129. [129]

      M. Heidarzadeh, Y. Gürsoy-Özdemir, M. Kaya, et al., Cell Biosci 11 (2021) 142.  doi: 10.1186/s13578-021-00650-0

    130. [130]

      P. Jiang, Y. Xiao, X. Hu, et al., ACS Biomater. Sci. Eng. 10 (2024) 3069–3085.  doi: 10.1021/acsbiomaterials.3c01622

    131. [131]

      Y. Wang, Y. Huo, C. Zhao, et al., J. Control. Release 368 (2024) 170–183.  doi: 10.3390/cryst14020170

    132. [132]

      C. Lu, G. Chen, B. Yu, H. Cong, Adv. Eng. Mater. 20 (2018) 1700940.  doi: 10.1002/adem.201700940

    133. [133]

      F. Liu, B. Huang, T. Tang, et al., Chem. Eng. J. 471 (2023) 144697.  doi: 10.1016/j.cej.2023.144697

    134. [134]

      P.A. Aaron, A. Gelli, ACS Infect. Dis. 6 (2020) 138–149.  doi: 10.1021/acsinfecdis.9b00348

    135. [135]

      G. Perini, V. Palmieri, G. Ciasca, M. De Spirito, M. Papi, Int. J. Mol. Sci. 21 (2020) 3712.  doi: 10.3390/ijms21103712

    136. [136]

      D. Huang, Q. Wang, Y. Cao, et al., ACS Nano 17 (2023) 5033–5046.  doi: 10.1021/acsnano.2c12840

    137. [137]

      D. Lin, M. Li, Y. Gao, L. Yin, Y. Guan, Chem. Eng. J. 429 (2022) 132210.  doi: 10.1016/j.cej.2021.132210

    138. [138]

      Y. Zhu, S. Cao, M. Huo, et al., Chem. Sci. 14 (2023) 7411–7437.  doi: 10.1039/d3sc01707a

    139. [139]

      R.A.J.F. Oerlemans, J. Shao, S.G.A.M. Huisman, et al., Macromol. Rapid Commun. 44 (2023) 2200904.  doi: 10.1002/marc.202200904

    140. [140]

      M. Sánchez-Purrà, V. Ramos, V.A. Petrenko, V.P. Torchilin, S. Borrós, Int. J. Pharm. 511 (2016) 946–956.  doi: 10.1016/j.ijpharm.2016.08.001

    141. [141]

      W.M. Pardridge, Front. Aging Neurosci. 15 (2023) 1276376.  doi: 10.3389/fnagi.2023.1276376

    142. [142]

      Y. Zhu, Y. Yang, J. Guo, et al., BioMed Res. Int. 2017 (2017) 1492327.

    143. [143]

      W.M. Pardridge, Front. Physiol. 11 (2020) 398.  doi: 10.3389/fphys.2020.00398

    144. [144]

      R.J. Boado, Pharmaceutics 14 (2022) 1476.  doi: 10.3390/pharmaceutics14071476

    145. [145]

      J. Li, Z. Zhang, B. Zhang, X. Yan, K. Fan, Biomater. Sci. 11 (2023) 3394–3413.  doi: 10.1039/d2bm02152h

    146. [146]

      S. Li, Z. Peng, J. Dallman, et al., Colloids Surf. B: Biointerfaces 145 (2016) 251–256.  doi: 10.1016/j.colsurfb.2016.05.007

    147. [147]

      S.M. Ashrafzadeh, A. Heydarinasab, A. Akbarzadeh, M. Ardjmand, Lett. Drug Des. Discov. 17 (2020) 1126–1138.  doi: 10.2174/1570180817999200330165213

    148. [148]

      S. Kang, W. Duan, S. Zhang, et al., Theranostics 10 (2020) 4308–4322.  doi: 10.7150/thno.41322

    149. [149]

      A. Dasgupta, T. Sun, E. Rama, et al., Adv. Mater. 35 (2023) 2308150.  doi: 10.1002/adma.202308150

    150. [150]

      J.H. Lee, J.A. Engler, J.F. Collawn, B.A. Moore, Eur. J. Biochem. 268 (2001) 2004–2012.  doi: 10.1046/j.1432-1327.2001.02073.x

    151. [151]

      X. Fang, Z. Chen, W. Zhou, et al., Small 19 (2023) 2207604.  doi: 10.1002/smll.202207604

    152. [152]

      M.M. Agwa, S. Sabra, Int. J. Biol. Macromol. 167 (2021) 1527–1543.  doi: 10.1016/j.ijbiomac.2020.11.107

    153. [153]

      H.S. Kim, S.C. Park, H.J. Kim, D.Y. Lee, Biomater. Res. 27 (2023) 52.  doi: 10.1186/s40824-023-00391-w

    154. [154]

      H. Chen, Y. Qin, Q. Zhang, et al., Eur. J. Pharm. Sci. 44 (2011) 164–173.  doi: 10.1016/j.ejps.2011.07.007

    155. [155]

      H. Li, Y. Tong, L. Bai, et al., Int. J. Biol. Macromol. 107 (2018) 204–211.  doi: 10.1016/j.ijbiomac.2017.08.155

    156. [156]

      M. Li, K. Shi, X. Tang, et al., Nanomed. Nanotech. Biol. Med. 14 (2018) 1833–1843.

    157. [157]

      C.K. Elechalawar, D. Bhattacharya, M.T. Ahmed, et al., Nanomed. Nanotech. Biol. Med. 1 (2019) 3555–3567.  doi: 10.1039/c9na00056a

    158. [158]

      H.M. Liu, Y. Zhang, Kaohsiung J. Med. Sci. 40 (2024) 435–444.  doi: 10.1002/kjm2.12819

    159. [159]

      K. Ulbrich, T. Hekmatara, E. Herbert, J. Kreuter, Eur. J. Pharm. Biopharm. 71 (2009) 251–256.  doi: 10.1016/j.ejpb.2008.08.021

    160. [160]

      D. Zhang, J. Kong, X. Huang, et al., Mater. Today Nano 23 (2023) 100347.  doi: 10.1016/j.mtnano.2023.100347

    161. [161]

      I. Kimura, S. Dohgu, F. Takata, et al., Neurosci. Lett. 694 (2019) 9–13.  doi: 10.1016/j.neulet.2018.11.022

    162. [162]

      F. Ji, L. Xu, K. Long, et al., Transl. Res. 259 (2023) 1–12.  doi: 10.1016/j.trsl.2023.03.003

    163. [163]

      Y. Molino, M. David, K. Varini, et al., FASEB J. 31 (2017) 1807–1827.  doi: 10.1096/fj.201600827R

    164. [164]

      Z. Ye, T. Zhang, W. He, et al., ACS Appl. Mater. Interfaces 10 (2018) 12341–12350.  doi: 10.1021/acsami.7b18135

    165. [165]

      G. Bor, L. Hosta-Rigau, Adv. Ther. 6 (2023) 2300161.  doi: 10.1002/adtp.202300161

    166. [166]

      D.Ý. Þorgeirsdóttir, J.H. Andersen, M. Perch-Nielsen, et al., Eur. J. Pharm. Sci. 183 (2023) 106400.  doi: 10.1016/j.ejps.2023.106400

    167. [167]

      E. Melander, C. Eriksson, S. Wellens, et al., Pharmaceutics 15 (2023) 1507.  doi: 10.3390/pharmaceutics15051507

    168. [168]

      R. Blades, L.M. Ittner, O. Tietz, J. Label. Comp. Radiopharm. 66 (2023) 237–248.  doi: 10.1002/jlcr.4023

    169. [169]

      N. Shadmani, P. Makvandi, M. Parsa, et al., Mol. Pharm. 20 (2023) 1531–1548.  doi: 10.1021/acs.molpharmaceut.2c00755

    170. [170]

      T. Saha, A.A. van Vliet, C. Cui, et al., Front. Mol. Biosci. 8 (2021) 754443.  doi: 10.3389/fmolb.2021.754443

    171. [171]

      J.H. Lim, M. Park, Y. Park, et al., Molecules 28 (2023) 3223.  doi: 10.3390/molecules28073223

    172. [172]

      D. Sagar, N.P. Singh, R. Ginwala, Sci. Rep. 7 (2017) 2707.  doi: 10.1038/s41598-017-03027-x

    173. [173]

      A.M. Hersh, S. Alomari, B.M. Tyler, Int. J. Mol. Sci. 23 (2022) 4153.  doi: 10.3390/ijms23084153

    174. [174]

      R. Jomura, S.I. Akanuma, B. Bauer, et al., Pharm. Res. 38 (2021) 113–125.  doi: 10.1007/s11095-021-03003-1

    175. [175]

      Y. Zhang, Y. Ren, H. Xu, L. Li, et al., ACS Appl. Mater. Interfaces 15 (2023) 10356–10370.  doi: 10.1021/acsami.2c19285

    176. [176]

      M. Iv, N. Telischak, D. Feng, et al., Nanomedicine 10 (2015) 993–1018.  doi: 10.2217/nnm.14.203

    177. [177]

      J. Xie, Z. Shen, Y. Anraku, K. Kataoka, X. Chen, Biomaterials 224 (2019) 119491.  doi: 10.1016/j.biomaterials.2019.119491

    178. [178]

      V.H. Tam, C. Sosa, R. Liu, N. Yao, R.D. Priestley, Int. J. Pharm. 515 (2016) 331–342.  doi: 10.1016/j.ijpharm.2016.10.031

    179. [179]

      W.M. Pardridge, Pharmaceutics 14 (2022) 1283.  doi: 10.3390/pharmaceutics14061283

    180. [180]

      M. Kannan, S. Sil, A. Oladapo, Redox Biol. 62 (2023) 102689.  doi: 10.1016/j.redox.2023.102689

    181. [181]

      K. Li, Y. Wang, Y. Xu, et al., Chin. Chem. Lett. 35 (2024) 109511.  doi: 10.1016/j.cclet.2024.109511

  • 加载中
    1. [1]

      Liqing ChenZheming ZhangYanhong LiuChenfei LiuCongcong XiaoLiming GongMingji JinZhonggao GaoWei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228

    2. [2]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    3. [3]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    4. [4]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    5. [5]

      Hongyi HuangSiyao CheWenjie ZhouYunchu ZhangWeiling ZhuoXijing YangSongping ZhengJiagang LiuXiang Gao . Apatinib potentiates doxorubicin with cRGD-functionalized pH-sensitive micelles against glioma. Chinese Chemical Letters, 2025, 36(5): 110084-. doi: 10.1016/j.cclet.2024.110084

    6. [6]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    7. [7]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    8. [8]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    9. [9]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    10. [10]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    11. [11]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    12. [12]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    13. [13]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    14. [14]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    15. [15]

      Wen XiaoFazhan WangYangzhuo GuXi HeNa FanQian ZhengShugang QinZhongshan HeYuquan WeiXiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755

    16. [16]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    17. [17]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    18. [18]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    19. [19]

      Mengwei YeQingqing XuHuanhuan JianYiduo DingWenpeng ZhaoChenxiao WangJunya LuShuaipeng FengSiling WangQinfu Zhao . Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics. Chinese Chemical Letters, 2025, 36(6): 110221-. doi: 10.1016/j.cclet.2024.110221

    20. [20]

      Shushan MoZhaoshuo WangDandan DingZhengzheng YanYunlu DaiJinchao ZhangHuifang LiuTianjiao LiangJianfei TongZhenhua LiXueyi Wang . The synthesis and evaluation of novel BPA derivatives for enhanced blood-brain barrier penetration and boron neutron capture therapy. Chinese Chemical Letters, 2025, 36(5): 110190-. doi: 10.1016/j.cclet.2024.110190

Metrics
  • PDF Downloads(6)
  • Abstract views(545)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return