Citation: Changhui Yu, Peng Shang, Huihui Hu, Yuening Zhang, Xujin Qin, Linyu Han, Caihe Liu, Xiaohan Liu, Minghua Liu, Yuan Guo, Zhen Zhang. Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy[J]. Chinese Chemical Letters, ;2024, 35(10): 109805. doi: 10.1016/j.cclet.2024.109805 shu

Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy

    * Corresponding author.
    E-mail address: zhangz@iccas.ac.cn (Z. Zhang).
  • Received Date: 24 February 2024
    Revised Date: 20 March 2024
    Accepted Date: 20 March 2024
    Available Online: 21 March 2024

Figures(4)

  • Directed self-assembly has been used to create micro-nano scale patterns, including chiral periodic structures of organic molecules, for potential applications in optics, photonics, metamaterials, and medical and sensing technologies. This study presents a straightforward approach for fabricating large-scale chiral grating porphyrin assemblies through template-assisted techniques. The solution of tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was induced by chiral amino acids (L/D-arginine and L/D-serine) to self-assemble into highly ordered chiral grating structures with the assistance of sodium dodecyl sulfate (SDS). The structures show precise line widths (5.5 µm) and gaps (18 µm). Using in situ optical microscopy and second harmonic generation (SHG) microscopy, the chiral characteristics and dynamic evolution of the template-assisted self-assembly are investigated. It is found that the chirality of amino acids induced TPPS self-assembled into chiral structures and the liquid contraction interface significantly enhanced the chirality of the assemblies. This study is significant for understanding the mechanism of chiral evolution and designing novel micro-nano materials with predetermined chiral properties.
  • Nitrogen-containing heterocycles are abundant structural motifs in a large number of alkaloids [1], drug molecules [2] and biologically active substances [3]. Although significant accomplishments have been achieved towards the synthesis of various nitrogen heterocyclic compounds in the past few decades [4], modern organic synthesis still demands more efficient and divergent methodologies to access privileged motifs of biological active compounds [5]. As a prime instance, 1, 3-oxazinan-2-ones are not only a core scaffold within natural products [6] and pharmacologically interesting molecules [7], but also widely utilized as key intermediates [8] in the synthesis of drugs [8c, 8f] and bioactive natural products [7b, 8g]. Numerous synthetic approaches were reported to access various substituted 1, 3-oxazinan-2-ones, including halonium-mediated [6c, 9] or metal-catalyzed cyclization [10], intramolecular Michael addition of functionalized homoallylamines/homoallylic alcohols [11], allylic C-H amination [12], and tethered aminohydroxylation of olefins [13]. However, the effective methods to access 6, 6-disubstituted-1, 3-oxazinan-2-one 1, exemplified with the core structural unit of biologically active compounds such as anti-HIV Efavirenz 2 (Merck) [7e] and 11-β-HSD-1 inhibitor 3 [7c], are rare[14] (Fig. 1).

    Figure 1

    Figure 1.  6, 6-Disubstituted-1, 3-oxazinan-2-one scaffold and active compounds.

    N-Acyliminium ions, acting as important organic synthetic intermediates, are widely used in the formation of C-C and C-heteroatom bonds [15], mostly through intermolecular addition [16] and intramolecular cyclization [17] with various nucleophilic reagents. For examples, the reactions of N-acyliminium ions with olefins could undergo Lewis acid-catalyzed intramolecular addition-cyclization to construct a series of heterocyclic skeletons (Fig. 2, Eq. 1) [18]. Intermolecular reactions of N-acyliminium ions with olefins were also reported [19]. Kobayashi achieved the ring-opening allylation of semicyclic N, O-acetals with allylic silanes (Fig. 2, Eq. 2a) [19a]. Later, Zhang developed the intermolecular coupling reaction of N-acyliminium ions with styrene (Fig. 2, Eq. 2b) [19b]. Notably, N-acyliminium ions could serve as part of electron-deficient dienes, undergoing [4 + 2] cycloaddition with various dienophiles (alkenes or alkynes) [20, 21]. For example, Yoshida established a cycloaddition process of N-acyliminium ions connecting with an alkoxycarbonyl group with alkenes to afford substituted 1, 3-oxazinan-2-one framework, but the formation of corresponding N-acyliminium dienes required anodic oxidation of α-silyl carbamate substrates (Fig. 2, Eq. 3) [20d]. On the basis of our continuous efforts in exploring chemical transformations of semicyclic N, O-acetals [22], we envisioned that such [4 + 2] cycloaddition could lead to various important units. Herein we present an efficient synthetic approach to 4, 6, 6-trisubstituted-1, 3-oxazinan-2-ones6/7/9/10 through TMSOTf-mediated [4 + 2] cycloaddition of semicyclicN, O-acetals 4 with 1, 1-disubstituted ethylenes 5/8 (Fig. 2, Eq. 4).

    Figure 2

    Figure 2.  The intra- or intermolecular reactions of N-acyliminium ions with olefins.

    Our investigation started with the reaction of semicyclic N, O-acetal 4b with 1, 1-diphenylethene 5a. The reaction could not take place in the absence of Lewis acid (Table 1, entry 1). Several types of iron Lewis acids could lead to only faint products (Table 1, entries 2-6). When Ni(OTf)2, Cu(OTf)2 and Sc(OTf)3 were examined, no product was observed (Table 1, entries 7-9). SnCl4 could afford the desired product 7ba in 34% yield (Table 1, entry 10). Slight improvements in yields were achieved when TiCl4 and BFEt2O were applied, and the desired product 7ba could be obtained in moderate yield (48% and 66% respectively, Table 1, entries 11 and 12). Delightfully, TMSOTf could significantly increase the yield of 7ba to 81% (Table 1, entry 13). It was worth noting that the reaction was conducted at -78 ℃. Either increasing or decreasing the loading of TMSOTf resulted in slight drop of the reaction yield (Table 1, entries 14 and 15). The reaction could also afford the desired product using THF and PhMe as solvents, but the corresponding yields were lower compared with that in dichloromethane (Table 1, entries 16 and 17).

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    With the above identified optimized reaction conditions, the olefin substrates 5b-5j with different electronic properties were examined and the results were summarized in Scheme 1. First, neither hex-1-ene 5b nor cyclohexene 5c could afford any desired product in the presence of TMSOTf. The dienophiles with electron-withdrawing groups, methyl acrylate 5d and (E)-4-phenylbut-3-en-2-one 5e, led to complicated reaction mixtures. Delightfully, styrene 5f and its derivatives (5g and 5h) could generate the desired products 6af, 7bf-7bh in moderate yields and diastereoselectivities. 2-Vinylnaphthalene could also react with 4a and 4b to give the corresponding products 6ai and 7bi in moderate yields and diastereoselectivities. It was worth mentioning that a complex result was obtained when (E)-1, 2-diphenylethene 5j was investigated, probably due to the steric effect during the intermolecular [4 + 2] cycloaddition process.

    Scheme 1

    Scheme 1.  The reactions of semicyclic N, O-acetals 4a/4b with olefins 5b-5j. The reactions were performed with N, O-acetals 4 (0.5 mmol), olefins 5b-5j (1.0 mmol), and TMSOTf (1.0 mmol) in dry DCM (2 mL) at -78 ℃ for 5-10 h, isolated yield. dr was determined by HPLC or NMR of crude products. a 7bf (2.80 g, 51% yield) was obtained with 4b (22.0 mmol), 5f (44.0 mmol), and TMSOTf (44.0 mmol) in dry DCM (50 mL) at −78 ℃ for 8 h.

    Next, we turned to investigate the scope and limitation of such addition-cyclization of semicyclic N, O-acetal (4a or 4b) with 1, 1-disubstituted ethylenes 5a, 5k-5v (Scheme 2). When prop-1-en-2-ylbenzene 5k was explored, desired products 6ak, 7bk were obtained in moderate yields and excellent diastereoselectivities. 4-Chloro substitution at phenyl ring (5l) led to slight decrease in yields of 6al, 7bl, but with excellent diastereoselectivities (dr up to 99:1). Replacement of the methyl group of 5k with other alkyl substitutions (5q: n-butyl and 5v: isopropyl) was tolerated, and the desired products 6aq, 7bq, 7bv were afforded in moderate yields under the optimized conditions. Although the n-butyl substituted products 6aq, 7bq showed moderate diastereoselectivities, the isopropyl substituted product 7bv was obtained with excellent diastereoselectivities. In addition, a series of diaryl substituted alkenes were surveyed under the optimized conditions. In general, all these substituted alkenes (5a, 5l-5o) could react with semicyclic N, O-acetals 4a and 4b, affording the desired products 6aa, 6am-6ao, 7ba, 7bm, 7bp in moderate yields. Several benzyl and phenyl olefins 5r-5t were also screened, most of them could give the desired products 6ar-6at, 7br-7bt in excellent yields and diastereoselectivities, except for the p-methoxyphenyl substituted olefin 5r. Substituted olefin 5u containing phenyl and phenethyl could also afford the desired products 6au and 7bu in excellent yields with moderate diastereoselectivities. The methyl and butyl substituted ethylene 5w could also react with N, O-acetal 4b to afford the desired product 7bw in 40% yield, but the diastereoselectivities was lower than those of aryl olefins. The chemical structures of 6aa, 6ak-6au, 7ba, 7bk-7bw were unambiguously confirmed based on the X-ray crystallographic analysis of compound 7bt (see Supporting information for detail).

    Scheme 2

    Scheme 2.  The reactions of semicyclic N, O-acetals 4a/4b with substituted olefins 5a, 5k-5w. The reactions were performed with N, O-acetal 4 (0.5 mmol), olefins (0.75 mmol), and TMSOTf (1.0 mmol) in dry DCM (2 mL) at -78 ℃ for 5-10 h. Isolated yield. dr was determined by HPLC or NMR of crude products.

    Next, we turned our attention to investigate the reaction of semicyclic N, O-acetal 4a or 4b with exocyclic olefins 8a-8g, aiming for the formation of 1, 3-oxazinan-2-ones containing a spiro quaternary carbon (Scheme 3). The reaction of 2-methylene-1, 2, 3, 4-tetrahydronaphthalene 8a with semicyclic N, O-acetal 4b afforded the desired product 10ba in 70% yield. The 6-bromo substituted olefin 8b led to 10bb in slightly lower yield of 65%, while the 5-methoxy substituted olefin 8c could generate 10bc in slightly higher yield of 78%. However, the diastereoselectivities of 10ba-10bc were low. The symmetric olefin, 2-methylene-2, 3-dihydro-1H-indene 8d, also worked well with semicyclic N, O-acetals 4a and 4b, affording the desired products 9ad and 10bd in moderate yields. Notably, a simple exocyclic olefin methylenecyclopentane 8g also worked well, and the corresponding product 10bg was obtained in 60% yield. Regarding olefin substrates with the exo-double bond adjacent to the phenyl ring, 5-methylene-6, 7, 8, 9-tetrahydro-5H-benzo[7]annulene 8e bearing a fused seven-membered ring could lead to the corresponding products in higher yields than that of 1-methylene-1, 2, 3, 4-tetrahydronaphthalene 8f bearing a fused six-membered ring. In detail, the desired products 9ae and 10be were obtained in 70% and 63% yields, while the yield of 10bf was only 36%. The diastereoselectivities of 9ae, 10be and 10bf were increased slightly, maybe due to the steric hindrance. The structures of 9ad, 9ae, 10ba-10bg were unambiguously confirmed based on the X-ray crystallographic analysis of compound10bb (see Supporting information for detail).

    Scheme 3

    Scheme 3.  The reactions of semicyclic N, O-acetals 4a/4b with substituted olefins 8a-8g. The reactions were performed with N, O-acetal 4 (0.5 mmol), olefins (0.75 mmol), and TMSOTf (1.0 mmol) in dry DCM (2 mL) at -78 ℃ for 5-10 h. Isolated yield. dr was determined by HPLC or NMR of crude products.

    A possible mechanism for this TMSOTf-mediated [4 + 2] cycloaddition process is presented in Fig. 3 [19a, 20d, 20f]. When semicyclic N, O-acetals 4 reacted with alkenes 5, diene type of N-acyliminium ions Int-1 was first generated under Lewis acid conditions. The subsequent reaction with alkenes 5 gave a six-membered intermediate Int-2, which would define the stereochemical outcome and give Int-3. Upon the cleavage of t-butyl group, the corresponding cycloadducts 6/7/9/10 were produced, along with the release of 2-methylprop-1-ene.

    Figure 3

    Figure 3.  Possible mechanism for the TMSOTf-mediated [4 + 2] cycloaddition process.

    Finally, we focused on the utility of this intermolecular [4 + 2] process of N-acyliminium ions with alkenes in the synthesis of biologically active molecules. Scheme 4 showed a facile synthesis of norallosedamine 12. As a natural product, norallosedamine 12 was isolated from both the Sedum and Lobelia inflata plant family, and have attracted great interest in synthetic chemistry [23]. Starting from the cycloadduct 7bf, Dess-Martin oxidation (DMP) and subsequent reductive amination (Et3SiH/TMSOTf) could produce bicyclic pyrido [1,2-c][1,3]oxazin-1-one 11 in 75% overall yield. Then the ring opening (KOH) of 11 resulted in (±) norallosedamine 12 in 86% yield (dr = 94:6). The spectroscopic and physical data of the synthetic (±)-norallosedamine 12 were identical to the reported data [23a]. Norallosedamine 12 could be potentially converted to other alkaloids of its family by known process [23b, 23d].

    Scheme 4

    Scheme 4.  Synthesis of (±)-Norallosedamine 12. Reagents and conditions: (a) i, DMP, DCM, r.t., 3 h; ii, Et3SiH/TMSOTf, MeCN, 0 ℃ to r.t., 40 min, 75% (2 steps); (b) t-BuOH/toluene (v/v = 1/1), KOH, 85 ℃, 30 min, 86%.

    In summary, we established a novel and efficient approach for the synthesis of 4, 6-disubstituted- and 4, 6, 6-trisubstituted-1, 3-oxazinan-2-ones 6aa, 6af-6au, 7ba, 7bf-7bw and 6, 6-spiro containing 1, 3-oxazinan-2-ones 9ad, 9ae, 10ba-10bg. The Lewis acid TMSOTf could activate semicyclic N, O-acetals (4a and 4b), and the resulting N-alkoxycarbonyliminium ions readily underwent a [4 + 2] cycloaddition process with 1, 1-disubstituted ethylenes5a, 5k-5w and 8a-8g. The corresponding products were obtained in moderate to excellent yields and diastereoselectivities. In addition, the utility of this methodology was demonstrated by the facile synthesis of natural product (±)-norallosedamine12 from the cycloadduct 7bf.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We thank the National Natural Science Foundation of China (No. 21772027 to B.-G. Wei and 21702032 to C.-M. Si) for financial support. The authors also thank Dr. Han-Qing Dong (Arvinas, Inc.) for helpful suggestions.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.05.003.


    1. [1]

      B. Jeong, H. Han, C. Park, Adv. Mater. 32 (2020) 2000597.  doi: 10.1002/adma.202000597

    2. [2]

      Z. Qu, P. Zhou, F. Min, et al., Sci. Adv. 9 (2023) eadf3567.  doi: 10.1126/sciadv.adf3567

    3. [3]

      T.W. Park, Y.L. Kang, E.B. Kang, et al., Sci. Adv. 10 (2023) 2303412.  doi: 10.1002/advs.202303412

    4. [4]

      M. Su, F.F. Qin, Z.Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 14234–14240.  doi: 10.1002/anie.202007224

    5. [5]

      E. Yashima, N. Ousaka, D. Taura, et al., Chem. Rev. 116 (2016) 13752–13990.  doi: 10.1021/acs.chemrev.6b00354

    6. [6]

      W. Wang, Z. Wang, D. Sun, et al., Nanomaterials 12 (2022) 424.  doi: 10.3390/nano12030424

    7. [7]

      S. Huang, H.F. Yu, Q. Li, Adv. Sci. 8 (2021) 2002132.  doi: 10.1002/advs.202002132

    8. [8]

      A. Dhamija, B. Saha, D. Chandel, et al., Inorg. Chem. 59 (2020) 801–809.  doi: 10.1021/acs.inorgchem.9b03062

    9. [9]

      X. Zhang, J. Jie, W. Deng, et al., Adv. Mater. 28 (2016) 2475–2503.  doi: 10.1002/adma.201504206

    10. [10]

      X. Li, L. Chen, Y. Ma, et al., Adv. Funct. Mater. 32 (2022) 2205462.  doi: 10.1002/adfm.202205462

    11. [11]

      B. Shen, Y. Kim, M. Lee, et al., Adv. Mater. 32 (2020) 1905669.  doi: 10.1002/adma.201905669

    12. [12]

      A. Kim, K.S. Jang, J. Kim, et al., Adv. Mater. 25 (2013) 6219–6225.  doi: 10.1002/adma.201302719

    13. [13]

      J.M. Lim, Z.S. Yoon, J.Y. Shin, et al., Chem. Commun. (2009) 261–273.

    14. [14]

      L. Zhang, T. Wang, J. Jiang, et al., Aggregate 4 (2022) e198.

    15. [15]

      M. Imran, M. Ramzan, A.K. Qureshi, et al., Biosensors 8 (2018) 95.  doi: 10.3390/bios8040095

    16. [16]

      H. Hu, H. Wang, Y. Yang, et al., Angew. Chem. Int. Ed. 61 (2022) e202200799.  doi: 10.1002/anie.202200799

    17. [17]

      Y. Zhang, C. Xu, B. Li, RSC Adv. 3 (2013) 6044.  doi: 10.1039/c3ra22525a

    18. [18]

      H.S. Peng, Y.F. Lu, Adv. Mater. 20 (2008) 797–800.  doi: 10.1002/adma.200701927

    19. [19]

      Q.H. Zeng, P.P. Chen, Z.F. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 48569–48581.  doi: 10.1021/acsami.1c12086

    20. [20]

      B.B. Beyene, C.H. Hung, Coord. Chem. Rev. 410 (2020) 213234.  doi: 10.1016/j.ccr.2020.213234

    21. [21]

      T. Liu, Y. Liu, X. Gao, et al., Chin. Chem. Lett. 34 (2023) 107883.  doi: 10.1016/j.cclet.2022.107883

    22. [22]

      S. Wu, Z.Z. Yin, D. Wu, et al., Langmuir 35 (2019) 16761–16769.  doi: 10.1021/acs.langmuir.9b03255

    23. [23]

      R. Zagami, M.A. Castriciano, A. Romeo, et al., Int. J. Mol. Sci. 24 (2023) 1695.  doi: 10.3390/ijms24021695

    24. [24]

      C. Kulkarni, A.K. Mondal, T.K. Das, et al., Adv. Mater. 32 (2020) 1904965.  doi: 10.1002/adma.201904965

    25. [25]

      S. Wang, H.J. Jiang, L. Zhang, et al., ChemPlusChem 83 (2018) 1038–1043.  doi: 10.1002/cplu.201800390

    26. [26]

      D. Yang, P.F. Duan, M.H. Liu, Angew. Chem. Int. Ed. 57 (2018) 9357–9361.  doi: 10.1002/anie.201804402

    27. [27]

      M. Stefanelli, G. Magna, F. Zurlo, et al., ACS Appl. Mater. Interfaces 11 (2019) 12077–12087.  doi: 10.1021/acsami.8b22749

    28. [28]

      J.D. Byers, H.I. Yee, T. Petrallimallow, et al., Phys. Rev. B 49 (1994) 14643–14647.  doi: 10.1103/PhysRevB.49.14643

    29. [29]

      G. Albano, A. Taddeucci, G. Pescitelli, et al., Chem. Eur. J. 29 (2023) e202301982.  doi: 10.1002/chem.202301982

    30. [30]

      P. Yan, A.C. Millard, M. Wei, et al., J. Am. Chem. Soc. 128 (2006) 11030–11031.  doi: 10.1021/ja0635534

    31. [31]

      V.K. Valev, B.D. Clercq, X. Zheng, et al., Opt. Express 20 (2012) 256–264.  doi: 10.1364/OE.20.000256

    32. [32]

      T. Verbiest, M. Kauranen, A. Persoons, J. Mater. Chem. 9 (1999) 2005–2012.  doi: 10.1039/a902421b

    33. [33]

      H. Su, Y. Guo, W. Gao, et al., Sci. Rep. 6 (2016) 22061.  doi: 10.1038/srep22061

    34. [34]

      M.J. Huttunen, G. Bautista, M. Decker, et al., Opt. Mater. Express 1 (2011) 46–56.  doi: 10.1364/OME.1.000046

    35. [35]

      H. Lee, M.J. Huttunen, K.J. Hsu, et al., Biomed. Opt. Express 4 (2013) 909–916.  doi: 10.1364/BOE.4.000909

    36. [36]

      L. Lin, Y. Li, X. Qin, et al., J. Chem. Phys. 156 (2022) 094704.  doi: 10.1063/5.0069860

    37. [37]

      M. Xue, L. Zhang, M. Liu, et al., J. Phys. Chem. B 124 (2020) 8179–8187.  doi: 10.1021/acs.jpcb.0c05545

    38. [38]

      K. Claborn, E. Puklin-Faucher, M. Kurimoto, et al., J. Am. Chem. Soc. 125 (2003) 14825–14831.  doi: 10.1021/ja035644w

    39. [39]

      M. Savoini, P. Biagioni, S.C.J. Meskers, et al., J. Phys. Chem. Lett. 2 (2011) 1359–1362.  doi: 10.1021/jz200524m

    40. [40]

      Z.H. Guo, J.Z. Li, R.L. Liu, et al., Nano Lett. 23 (2023) 7434–7441.  doi: 10.1021/acs.nanolett.3c01863

    41. [41]

      L.U. Castaño, K. Mirsanaye, L. Kontenis, et al., J. Biophotonics 16 (2023) e202200284.  doi: 10.1002/jbio.202200284

    42. [42]

      M.Y. Chen, M.J. Huttunen, C.W. Kan, et al., Opt. Commun. 422 (2018) 56–63.  doi: 10.1016/j.optcom.2018.03.005

    43. [43]

      E.A. Mamonov, A.I. Maydykovskiy, I.A. Kolmychek, et al., Phys. Rev. B 96 (2017) 075408.  doi: 10.1103/PhysRevB.96.075408

    44. [44]

      M.A. Kriech, J.C. Conboy, J. Am. Chem. Soc. 127 (2005) 2834–2835.  doi: 10.1021/ja0430649

    45. [45]

      L. Lin, T. Wang, Z. Lu, et al., J. Phys. Chem. C 118 (2014) 6726–6733.  doi: 10.1021/jp4106579

    46. [46]

      Y. Zhang, C. Yu, L. Han, et al., J. Phys. Chem. Lett. 13 (2022) 3523–3528.  doi: 10.1021/acs.jpclett.2c00657

    47. [47]

      F. Min, P. Zhou, Z. Huang, et al., Angew. Chem. Int. Ed. 60 (2021) 16547–16553.  doi: 10.1002/anie.202103765

    48. [48]

      H.H. Wang, H.Y. Liu, F. Cheng, et al., Chin. Chem. Lett. 29 (2018) 1404–1408.  doi: 10.1016/j.cclet.2017.12.027

    49. [49]

      M.A. Castriciano, S. Cardillo, R. Zagami, et al., Int. J. Mol. Sci. 22 (2021) 797.  doi: 10.3390/ijms22020797

    50. [50]

      B.M. Weon, J.H. Je, Phys. Rev. E 82 (2010) 015305.  doi: 10.1103/PhysRevE.82.015305

    51. [51]

      K.X. Li, T.L. Zhang, H.Z. Li, et al., Acta Phys. Chim. Sin. 36 (2020) 1911057.

    52. [52]

      D.C. Hooper, A.G. Mark, C. Kuppe, et al., Adv. Mater. 29 (2017) 1605110.  doi: 10.1002/adma.201605110

    1. [1]

      B. Jeong, H. Han, C. Park, Adv. Mater. 32 (2020) 2000597.  doi: 10.1002/adma.202000597

    2. [2]

      Z. Qu, P. Zhou, F. Min, et al., Sci. Adv. 9 (2023) eadf3567.  doi: 10.1126/sciadv.adf3567

    3. [3]

      T.W. Park, Y.L. Kang, E.B. Kang, et al., Sci. Adv. 10 (2023) 2303412.  doi: 10.1002/advs.202303412

    4. [4]

      M. Su, F.F. Qin, Z.Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 14234–14240.  doi: 10.1002/anie.202007224

    5. [5]

      E. Yashima, N. Ousaka, D. Taura, et al., Chem. Rev. 116 (2016) 13752–13990.  doi: 10.1021/acs.chemrev.6b00354

    6. [6]

      W. Wang, Z. Wang, D. Sun, et al., Nanomaterials 12 (2022) 424.  doi: 10.3390/nano12030424

    7. [7]

      S. Huang, H.F. Yu, Q. Li, Adv. Sci. 8 (2021) 2002132.  doi: 10.1002/advs.202002132

    8. [8]

      A. Dhamija, B. Saha, D. Chandel, et al., Inorg. Chem. 59 (2020) 801–809.  doi: 10.1021/acs.inorgchem.9b03062

    9. [9]

      X. Zhang, J. Jie, W. Deng, et al., Adv. Mater. 28 (2016) 2475–2503.  doi: 10.1002/adma.201504206

    10. [10]

      X. Li, L. Chen, Y. Ma, et al., Adv. Funct. Mater. 32 (2022) 2205462.  doi: 10.1002/adfm.202205462

    11. [11]

      B. Shen, Y. Kim, M. Lee, et al., Adv. Mater. 32 (2020) 1905669.  doi: 10.1002/adma.201905669

    12. [12]

      A. Kim, K.S. Jang, J. Kim, et al., Adv. Mater. 25 (2013) 6219–6225.  doi: 10.1002/adma.201302719

    13. [13]

      J.M. Lim, Z.S. Yoon, J.Y. Shin, et al., Chem. Commun. (2009) 261–273.

    14. [14]

      L. Zhang, T. Wang, J. Jiang, et al., Aggregate 4 (2022) e198.

    15. [15]

      M. Imran, M. Ramzan, A.K. Qureshi, et al., Biosensors 8 (2018) 95.  doi: 10.3390/bios8040095

    16. [16]

      H. Hu, H. Wang, Y. Yang, et al., Angew. Chem. Int. Ed. 61 (2022) e202200799.  doi: 10.1002/anie.202200799

    17. [17]

      Y. Zhang, C. Xu, B. Li, RSC Adv. 3 (2013) 6044.  doi: 10.1039/c3ra22525a

    18. [18]

      H.S. Peng, Y.F. Lu, Adv. Mater. 20 (2008) 797–800.  doi: 10.1002/adma.200701927

    19. [19]

      Q.H. Zeng, P.P. Chen, Z.F. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 48569–48581.  doi: 10.1021/acsami.1c12086

    20. [20]

      B.B. Beyene, C.H. Hung, Coord. Chem. Rev. 410 (2020) 213234.  doi: 10.1016/j.ccr.2020.213234

    21. [21]

      T. Liu, Y. Liu, X. Gao, et al., Chin. Chem. Lett. 34 (2023) 107883.  doi: 10.1016/j.cclet.2022.107883

    22. [22]

      S. Wu, Z.Z. Yin, D. Wu, et al., Langmuir 35 (2019) 16761–16769.  doi: 10.1021/acs.langmuir.9b03255

    23. [23]

      R. Zagami, M.A. Castriciano, A. Romeo, et al., Int. J. Mol. Sci. 24 (2023) 1695.  doi: 10.3390/ijms24021695

    24. [24]

      C. Kulkarni, A.K. Mondal, T.K. Das, et al., Adv. Mater. 32 (2020) 1904965.  doi: 10.1002/adma.201904965

    25. [25]

      S. Wang, H.J. Jiang, L. Zhang, et al., ChemPlusChem 83 (2018) 1038–1043.  doi: 10.1002/cplu.201800390

    26. [26]

      D. Yang, P.F. Duan, M.H. Liu, Angew. Chem. Int. Ed. 57 (2018) 9357–9361.  doi: 10.1002/anie.201804402

    27. [27]

      M. Stefanelli, G. Magna, F. Zurlo, et al., ACS Appl. Mater. Interfaces 11 (2019) 12077–12087.  doi: 10.1021/acsami.8b22749

    28. [28]

      J.D. Byers, H.I. Yee, T. Petrallimallow, et al., Phys. Rev. B 49 (1994) 14643–14647.  doi: 10.1103/PhysRevB.49.14643

    29. [29]

      G. Albano, A. Taddeucci, G. Pescitelli, et al., Chem. Eur. J. 29 (2023) e202301982.  doi: 10.1002/chem.202301982

    30. [30]

      P. Yan, A.C. Millard, M. Wei, et al., J. Am. Chem. Soc. 128 (2006) 11030–11031.  doi: 10.1021/ja0635534

    31. [31]

      V.K. Valev, B.D. Clercq, X. Zheng, et al., Opt. Express 20 (2012) 256–264.  doi: 10.1364/OE.20.000256

    32. [32]

      T. Verbiest, M. Kauranen, A. Persoons, J. Mater. Chem. 9 (1999) 2005–2012.  doi: 10.1039/a902421b

    33. [33]

      H. Su, Y. Guo, W. Gao, et al., Sci. Rep. 6 (2016) 22061.  doi: 10.1038/srep22061

    34. [34]

      M.J. Huttunen, G. Bautista, M. Decker, et al., Opt. Mater. Express 1 (2011) 46–56.  doi: 10.1364/OME.1.000046

    35. [35]

      H. Lee, M.J. Huttunen, K.J. Hsu, et al., Biomed. Opt. Express 4 (2013) 909–916.  doi: 10.1364/BOE.4.000909

    36. [36]

      L. Lin, Y. Li, X. Qin, et al., J. Chem. Phys. 156 (2022) 094704.  doi: 10.1063/5.0069860

    37. [37]

      M. Xue, L. Zhang, M. Liu, et al., J. Phys. Chem. B 124 (2020) 8179–8187.  doi: 10.1021/acs.jpcb.0c05545

    38. [38]

      K. Claborn, E. Puklin-Faucher, M. Kurimoto, et al., J. Am. Chem. Soc. 125 (2003) 14825–14831.  doi: 10.1021/ja035644w

    39. [39]

      M. Savoini, P. Biagioni, S.C.J. Meskers, et al., J. Phys. Chem. Lett. 2 (2011) 1359–1362.  doi: 10.1021/jz200524m

    40. [40]

      Z.H. Guo, J.Z. Li, R.L. Liu, et al., Nano Lett. 23 (2023) 7434–7441.  doi: 10.1021/acs.nanolett.3c01863

    41. [41]

      L.U. Castaño, K. Mirsanaye, L. Kontenis, et al., J. Biophotonics 16 (2023) e202200284.  doi: 10.1002/jbio.202200284

    42. [42]

      M.Y. Chen, M.J. Huttunen, C.W. Kan, et al., Opt. Commun. 422 (2018) 56–63.  doi: 10.1016/j.optcom.2018.03.005

    43. [43]

      E.A. Mamonov, A.I. Maydykovskiy, I.A. Kolmychek, et al., Phys. Rev. B 96 (2017) 075408.  doi: 10.1103/PhysRevB.96.075408

    44. [44]

      M.A. Kriech, J.C. Conboy, J. Am. Chem. Soc. 127 (2005) 2834–2835.  doi: 10.1021/ja0430649

    45. [45]

      L. Lin, T. Wang, Z. Lu, et al., J. Phys. Chem. C 118 (2014) 6726–6733.  doi: 10.1021/jp4106579

    46. [46]

      Y. Zhang, C. Yu, L. Han, et al., J. Phys. Chem. Lett. 13 (2022) 3523–3528.  doi: 10.1021/acs.jpclett.2c00657

    47. [47]

      F. Min, P. Zhou, Z. Huang, et al., Angew. Chem. Int. Ed. 60 (2021) 16547–16553.  doi: 10.1002/anie.202103765

    48. [48]

      H.H. Wang, H.Y. Liu, F. Cheng, et al., Chin. Chem. Lett. 29 (2018) 1404–1408.  doi: 10.1016/j.cclet.2017.12.027

    49. [49]

      M.A. Castriciano, S. Cardillo, R. Zagami, et al., Int. J. Mol. Sci. 22 (2021) 797.  doi: 10.3390/ijms22020797

    50. [50]

      B.M. Weon, J.H. Je, Phys. Rev. E 82 (2010) 015305.  doi: 10.1103/PhysRevE.82.015305

    51. [51]

      K.X. Li, T.L. Zhang, H.Z. Li, et al., Acta Phys. Chim. Sin. 36 (2020) 1911057.

    52. [52]

      D.C. Hooper, A.G. Mark, C. Kuppe, et al., Adv. Mater. 29 (2017) 1605110.  doi: 10.1002/adma.201605110

  • 加载中
    1. [1]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    2. [2]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    5. [5]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    6. [6]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    7. [7]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    8. [8]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    12. [12]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    13. [13]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    16. [16]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    17. [17]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    18. [18]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

Metrics
  • PDF Downloads(1)
  • Abstract views(821)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return