Nickel-catalyzed reductive formylation of aryl halides via formyl radical
-
* Corresponding authors.
E-mail addresses: hjxu@hfut.edu.cn (H.-J. Xu), zhangq@hfut.edu.cn (Q. Zhang), yfliang@sdu.edu.cn (Y.-F. Liang).
Citation:
Xiao-Bo Liu, Ren-Ming Liu, Xiao-Di Bao, Hua-Jian Xu, Qi Zhang, Yu-Feng Liang. Nickel-catalyzed reductive formylation of aryl halides via formyl radical[J]. Chinese Chemical Letters,
;2024, 35(12): 109783.
doi:
10.1016/j.cclet.2024.109783
C.E.I. Knappke, S. Grupe, D. Gärtner, et al., Chem. Eur. J. 20 (2014) 6828–6842.
doi: 10.1002/chem.201402302
T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 20 (2014) 8242–8258.
doi: 10.1002/chem.201402509
D.J. Weix, Acc. Chem. Res. 48 (2015) 1767–1775.
doi: 10.1021/acs.accounts.5b00057
J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2 (2015) 1411–1421.
doi: 10.1039/C5QO00224A
E. Richmond, J. Moran, Synthesis 50 (2018) 499–513.
doi: 10.1055/s-0036-1591853
J. Liu, Y. Ye, J.L. Sessler, H. Gong, Acc. Chem. Res. 53 (2020) 1833–1845.
doi: 10.1021/acs.accounts.0c00291
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
X. Pang, P.F. Su, X.Z. Shu, Acc. Chem. Res. 55 (2022) 2491–2509.
doi: 10.1021/acs.accounts.2c00381
Q. Pan, Y. Ping, W. Kong, Acc. Chem. Res. 56 (2023) 515–535.
doi: 10.1021/acs.accounts.2c00771
Y. Liu, P. Li, Y. Wang, Y. Qiu, Angew. Chem. Int. Ed. 62 (2023) e202306679.
doi: 10.1002/anie.202306679
J.L. Hofstra, A.H. Cherney, C.M. Ordner, S.E. Reisman, J. Am. Chem. Soc. 140 (2018) 139–142.
doi: 10.1021/jacs.7b11707
L.J. Oxtoby, Z.Q. Li, V.T. Tran, et al., Angew. Chem. Int. Ed. 59 (2020) 8885–8890.
doi: 10.1002/anie.202001069
F. Cong, X.Y. Lv, C.S. Day, R. Martin, J. Am. Chem. Soc. 142 (2020) 20594–20599.
doi: 10.1021/jacs.0c11172
X.W. Chen, J.P. Yue, K. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 14068–14075.
doi: 10.1002/anie.202102769
T.J. DeLano, S.E. Dibrell, C.R. Lacker, et al., Chem. Sci. 12 (2021) 7758–7762.
doi: 10.1039/D1SC00822F
S. Guven, G. Kundu, A. Weβels, et al., J. Am. Chem. Soc. 143 (2021) 8375–8380.
doi: 10.1021/jacs.1c01797
F. Wang, Y. Chen, W. Rao, L. Ackermann, S.Y. Wang, Nat. Commun. 13 (2022) 2588–2598.
doi: 10.1038/s41467-022-30256-0
Q. Wang, Q. Sun, Y. Jiang, et al., Nat. Synth. 1 (2022) 235–244.
doi: 10.1038/s44160-022-00024-5
Y.Z. Li, N. Rao, L. An, et al., Nat. Commun. 13 (2022) 5539–5547.
doi: 10.1038/s41467-022-33159-2
Z. Zhu, J. Xiao, M. Li, Z. Shi, Angew. Chem. Int. Ed. 61 (2022) e202201370.
doi: 10.1002/anie.202201370
Y. Dai, F. Wang, S. Zhu, L. Chu, Chin. Chem. Lett. 33 (2022) 4074–4078.
doi: 10.1016/j.cclet.2021.12.050
L. Xi, L. Du, Z. Shi, Chin. Chem. Lett. 33 (2022) 4287–4292.
doi: 10.1016/j.cclet.2022.01.077
Y. Wang, Z. Zhao, D. Pan, et al., Angew. Chem. Int. Ed. 61 (2022) e202210201.
doi: 10.1002/anie.202210201
X. Hu, I. Cheng-Sánchez, S. Cuesta-Galisteo, C. Nevado, J. Am. Chem. Soc. 145 (2023) 6270–6279.
doi: 10.1021/jacs.2c12869
Z.M. Su, J. Twilton, C.B. Hoyt, et al., ACS Cent. Sci. 9 (2023) 159–165.
doi: 10.1021/acscentsci.2c01324
X. Ying, Y. Li, L. Li, C. Li, Angew. Chem. Int. Ed. 62 (2023) e202304177.
doi: 10.1002/anie.202304177
W. Guan, L. Lu, Q. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202303592.
doi: 10.1002/anie.202303592
C.S. Day, A. Rentería-Gómez, S.J. Ton, et al., Nat. Catal. 6 (2023) 244–253.
doi: 10.1038/s41929-023-00925-4
J. Zhou, D. Wang, W. Xu, Z. Hu, T. Xu, J. Am. Chem. Soc. 145 (2023) 2081–2087.
doi: 10.1021/jacs.2c13220
L. Wan, Y. Tong, X. Lu, Y. Fu, Chin. Chem. Lett. 35 (2024) 109283.
doi: 10.1016/j.cclet.2023.109283
S.Z. Tasker, E.A. Standley, T.F. Jamison, Nature 509 (2014) 299–309.
doi: 10.1038/nature13274
J. Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 53 (2020) 906–919.
doi: 10.1021/acs.accounts.0c00032
N. Lalloo, C.E. Brigham, M.S. Sanford, Acc. Chem. Res. 55 (2022) 3430–3444.
doi: 10.1021/acs.accounts.2c00496
Q. Lin, E. Spielvogel, T. Diao, Chem 9 (2023) 1295–1308.
doi: 10.1016/j.chempr.2023.02.010
S. Biswas, D.J. Weix, J. Am. Chem. Soc. 135 (2013) 16192–16197.
doi: 10.1021/ja407589e
L.L. Anka-Lufford, K.M.M. Huihui, N.J. Gower, L.K.G. Ackerman, D.J. Weix, Chem. Eur. J. 22 (2016) 11564–11567.
doi: 10.1002/chem.201602668
S.Z. Sun, R. Martin, Angew. Chem. Int. Ed. 57 (2018) 3622–3625.
doi: 10.1002/anie.201712428
Y. Fang, T. Rogge, L. Ackermann, S.Y. Wang, S.J. Ji, Nat. Commun. 9 (2018) 2240–2250.
doi: 10.1038/s41467-018-04646-2
H. Yin, J. Sheng, K.F. Zhang, et al., Chem. Commun. 55 (2019) 7635–7638.
doi: 10.1039/C9CC03737C
S.J. He, J.W. Wang, Y. Li, et al., J. Am. Chem. Soc. 142 (2020) 214–221.
doi: 10.1021/jacs.9b09415
P. Fan, C. Zhang, L. Zhang, C. Wang, Org. Lett. 22 (2020) 3875–3878.
doi: 10.1021/acs.orglett.0c01121
D.J. Charboneau, E.L. Barth, N. Hazari, M.R. Uehling, S.L. Zultanski, ACS Catal 10 (2020) 12642–12656.
doi: 10.1021/acscatal.0c03237
H.Y. Tu, F. Wang, L. Huo, et al., J. Am. Chem. Soc. 142 (2020) 9604–9611.
doi: 10.1021/jacs.0c03708
D. Sun, G. Ma, X. Zhao, C. Lei, H. Gong, Chem. Sci. 12 (2021) 5253–5258.
doi: 10.1039/D1SC00283J
Z. Li, W. Sun, X. Wang, et al., J. Am. Chem. Soc. 143 (2021) 3536–3543.
doi: 10.1021/jacs.0c13093
P. Zheng, P. Zhou, D. Wang, et al., Nat. Commun. 12 (2021) 1646.
doi: 10.1038/s41467-021-21947-1
X. Li, X. Gao, C.Y. He, X. Zhang, Org. Lett. 23 (2021) 1400–1405.
doi: 10.1021/acs.orglett.1c00058
N.W.J. Ang, L. Ackermann, Chem. Eur. J. 27 (2021) 4883–4887.
doi: 10.1002/chem.202005449
R.F. Turro, M. Brandstätter, S.E. Reisman, Angew. Chem. Int. Ed. 61 (2022) e202207597.
doi: 10.1002/anie.202207597
W. Hu, Z. Lin, C. Wang, Org. Lett. 24 (2022) 5751–5755.
doi: 10.1021/acs.orglett.2c02199
Y. Gong, L. Su, Z. Zhu, Y. Ye, H. Gong, Angew. Chem. Int. Ed. 61 (2022) e202201662.
doi: 10.1002/anie.202201662
H. Wang, P. Zheng, X. Wu, Y. Li, T. Xu, J. Am. Chem. Soc. 144 (2022) 3989–3997.
doi: 10.1021/jacs.1c12424
D. Wang, L. Ackermann, Chem. Sci. 13 (2022) 7256–7263.
doi: 10.1039/D2SC02277J
W.T. Zhao, W. Shu, Sci. Adv. 9 (2023) eadg9898.
doi: 10.1126/sciadv.adg9898
J. Yi, S.O. Badir, L.M. Kammer, M. Ribagorda, G.A. Molander, Org. Lett. 21 (2019) 3346–3351.
doi: 10.1021/acs.orglett.9b01097
H. Yue, C. Zhu, L. Shen, et al., Chem. Sci. 10 (2019) 4430–4435.
doi: 10.1039/C9SC00783K
S. Ni, C.X. Li, Y. Mao, et al., Sci. Adv. 5 (2019) eaaw9516.
doi: 10.1126/sciadv.aaw9516
S.Z. Sun, C. Romano, R. Martin, J. Am. Chem. Soc. 141 (2019) 16197–16201.
doi: 10.1021/jacs.9b07489
S. Plunkett, C.H. Basch, S.O. Santana, M.P. Watson, J. Am. Chem. Soc. 141 (2019) 2257–2262.
doi: 10.1021/jacs.9b00111
J. Wang, M.E. Hoerrner, M.P. Watson, D.J. Weix, Angew. Chem. Int. Ed. 59 (2020) 13484–13489.
doi: 10.1002/anie.202002271
Y. Jin, J. Wu, Z. Lin, Y. Lan, C. Wang, Org. Lett. 22 (2020) 5347–5352.
doi: 10.1021/acs.orglett.0c01592
J.T.M. Correia, V.A. Fernandes, B.T. Matsuo, et al., Chem. Commun. 56 (2020) 503–514.
doi: 10.1039/C9CC08348K
J. Fu, W. Lundy, R. Chowdhury, et al., ACS Catal. 13 (2023) 9336–9345.
doi: 10.1021/acscatal.3c01939
J. Wang, L.E. Ehehalt, Z. Huang, et al., J. Am. Chem. Soc. 145 (2023) 9951–9958.
doi: 10.1021/jacs.2c11552
J.L. Douthwaite, R. Zhao, E. Shim, et al., J. Am. Chem. Soc. 145 (2023) 10930–10937.
doi: 10.1021/jacs.2c11563
A. Noble, S.J. McCarver, D.W.C. MacMillan, J. Am. Chem. Soc. 137 (2015) 624–627.
doi: 10.1021/ja511913h
J. Luo, J. Zhang, ACS Catal. 6 (2016) 873–877.
doi: 10.1021/acscatal.5b02204
H. Huang, X. Li, C. Yu, et al., Angew. Chem. Int. Ed. 56 (2017) 1500–1505.
doi: 10.1002/anie.201610108
Y. Hioki, M. Costantini, J. Griffin, et al., Science 380 (2023) 81–87.
doi: 10.1126/science.adf4762
M. Gao, D. Sun, H. Gong, Org. Lett. 21 (2019) 1645–1648.
doi: 10.1021/acs.orglett.9b00174
Y. Ye, H. Chen, J.L. Sessler, H. Gong, J. Am. Chem. Soc. 141 (2019) 820–824.
doi: 10.1021/jacs.8b12801
P. Guo, K. Wang, W.J. Jin, et al., J. Am. Chem. Soc. 143 (2021) 513–523.
doi: 10.1021/jacs.0c12462
X. Pang, X.Z. Shu, Chin. J. Chem. 41 (2023) 1637–1652.
doi: 10.1002/cjoc.202200769
K.M.M. Huihui, J.A. Caputo, Z. Melchor, et al., J. Am. Chem. Soc. 138 (2016) 5016–5019.
doi: 10.1021/jacs.6b01533
L. Huang, A.M. Olivares, D.J. Weix, Angew. Chem. Int. Ed. 56 (2017) 11901–11905.
doi: 10.1002/anie.201706781
J. Wang, B.P. Cary, P.D. Beyer, S.H. Gellman, D.J. Weix, Angew. Chem. Int. Ed. 58 (2019) 12081–12085.
doi: 10.1002/anie.201906000
Z. Li, K.F. Wang, X. Zhao, et al., Nat. Commun. 11 (2020) 5036.
doi: 10.1038/s41467-020-18834-6
L.M. Kammer, S.O. Badir, R.M. Hu, G.A. Molander, Chem. Sci. 12 (2021) 5450–5457.
doi: 10.1039/D1SC00943E
D.C. Salgueiro, B.K. Chi, I.A. Guzei, P. García-Reynaga, D.J. Weix, Angew. Chem. Int. Ed. 61 (2022) e202205673.
doi: 10.1002/anie.202205673
E.M. DeCicco, S. Berritt, T. Knauber, S.B. Coffey, J. Hou, J. Org. Chem. 88 (2023) 12329–12340.
doi: 10.1021/acs.joc.3c01072
Y. Gao, B. Zhang, J. He, P.S. Baran, J. Am. Chem. Soc. 145 (2023) 11518–11523.
doi: 10.1021/jacs.3c03337
A. Schoenberg, I. Bartolet, R.F. Heck, J. Org. Chem. 39 (1974) 3318–3326.
doi: 10.1021/jo00937a003
W. Wu, W. Su, J. Am. Chem. Soc. 133 (2011) 11924–11927.
doi: 10.1021/ja2048495
T. Ueda, H. Konishi, K. Manabe, Angew. Chem. Int. Ed. 52 (2013) 8611–8615.
doi: 10.1002/anie.201303926
B. Zhao, R. Shang, W.M. Cheng, Y. Fu, Org. Chem. Front. 5 (2018) 1782–1786.
doi: 10.1039/C8QO00253C
S. Klaus, H. Neumann, A. Zapf, et al., Angew. Chem. Int. Ed. 45 (2006) 154–158.
doi: 10.1002/anie.200502697
A. Brennfãhrer, H. Neumann, M. Beller, Synlett 16 (2007) 2537–2540.
A.G. Sergeev, A. Spannenberg, M. Beller, J. Am. Chem. Soc. 130 (2008) 15549–15563.
doi: 10.1021/ja804997z
S. Korsager, R.H. Taaning, T. Skrydstrup, J. Am. Chem. Soc. 135 (2013) 2891–2894.
doi: 10.1021/ja3114032
K. Natte, A. Dumrath, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 53 (2014) 10090–10094.
doi: 10.1002/anie.201404833
Z. Liu, Z. Yang, B. Yu, et al., Org. Lett. 20 (2018) 5130–5134.
doi: 10.1021/acs.orglett.8b02027
D. Liu, K. Yang, D. Fang, et al., Angew. Chem. Int. Ed. 62 (2023) e202213686.
doi: 10.1002/anie.202213686
C.T. Wang, P.Y. Liang, M. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202304447.
doi: 10.1002/anie.202304447
J. Sheng, X. Cheng, CCS Chem. 6 (2024) 230–240.
doi: 10.31635/ccschem.023.202302835
J. Choi, P. Martín-Gago, G.C. Fu, J. Am. Chem. Soc. 136 (2014) 12161–12165.
doi: 10.1021/ja506885s
L. Lombardi, A. Cerveri, R. Giovanelli, et al., Angew. Chem. Int. Ed. 61 (2022) e202211732.
doi: 10.1002/anie.202211732
G. Bertoli, Á.M. Martínez, J.F. Goebel, et al., Angew. Chem. Int. Ed. 62 (2023) e202215920.
doi: 10.1002/anie.202215920
R.F. Turro, J.L.H. Wahlman, Z.J. Tong, et al., J. Am. Chem. Soc. 145 (2023) 14705–14715.
doi: 10.1021/jacs.3c02649
C.E.I. Knappke, S. Grupe, D. Gärtner, et al., Chem. Eur. J. 20 (2014) 6828–6842.
doi: 10.1002/chem.201402302
T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 20 (2014) 8242–8258.
doi: 10.1002/chem.201402509
D.J. Weix, Acc. Chem. Res. 48 (2015) 1767–1775.
doi: 10.1021/acs.accounts.5b00057
J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2 (2015) 1411–1421.
doi: 10.1039/C5QO00224A
E. Richmond, J. Moran, Synthesis 50 (2018) 499–513.
doi: 10.1055/s-0036-1591853
J. Liu, Y. Ye, J.L. Sessler, H. Gong, Acc. Chem. Res. 53 (2020) 1833–1845.
doi: 10.1021/acs.accounts.0c00291
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
X. Pang, P.F. Su, X.Z. Shu, Acc. Chem. Res. 55 (2022) 2491–2509.
doi: 10.1021/acs.accounts.2c00381
Q. Pan, Y. Ping, W. Kong, Acc. Chem. Res. 56 (2023) 515–535.
doi: 10.1021/acs.accounts.2c00771
Y. Liu, P. Li, Y. Wang, Y. Qiu, Angew. Chem. Int. Ed. 62 (2023) e202306679.
doi: 10.1002/anie.202306679
J.L. Hofstra, A.H. Cherney, C.M. Ordner, S.E. Reisman, J. Am. Chem. Soc. 140 (2018) 139–142.
doi: 10.1021/jacs.7b11707
L.J. Oxtoby, Z.Q. Li, V.T. Tran, et al., Angew. Chem. Int. Ed. 59 (2020) 8885–8890.
doi: 10.1002/anie.202001069
F. Cong, X.Y. Lv, C.S. Day, R. Martin, J. Am. Chem. Soc. 142 (2020) 20594–20599.
doi: 10.1021/jacs.0c11172
X.W. Chen, J.P. Yue, K. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 14068–14075.
doi: 10.1002/anie.202102769
T.J. DeLano, S.E. Dibrell, C.R. Lacker, et al., Chem. Sci. 12 (2021) 7758–7762.
doi: 10.1039/D1SC00822F
S. Guven, G. Kundu, A. Weβels, et al., J. Am. Chem. Soc. 143 (2021) 8375–8380.
doi: 10.1021/jacs.1c01797
F. Wang, Y. Chen, W. Rao, L. Ackermann, S.Y. Wang, Nat. Commun. 13 (2022) 2588–2598.
doi: 10.1038/s41467-022-30256-0
Q. Wang, Q. Sun, Y. Jiang, et al., Nat. Synth. 1 (2022) 235–244.
doi: 10.1038/s44160-022-00024-5
Y.Z. Li, N. Rao, L. An, et al., Nat. Commun. 13 (2022) 5539–5547.
doi: 10.1038/s41467-022-33159-2
Z. Zhu, J. Xiao, M. Li, Z. Shi, Angew. Chem. Int. Ed. 61 (2022) e202201370.
doi: 10.1002/anie.202201370
Y. Dai, F. Wang, S. Zhu, L. Chu, Chin. Chem. Lett. 33 (2022) 4074–4078.
doi: 10.1016/j.cclet.2021.12.050
L. Xi, L. Du, Z. Shi, Chin. Chem. Lett. 33 (2022) 4287–4292.
doi: 10.1016/j.cclet.2022.01.077
Y. Wang, Z. Zhao, D. Pan, et al., Angew. Chem. Int. Ed. 61 (2022) e202210201.
doi: 10.1002/anie.202210201
X. Hu, I. Cheng-Sánchez, S. Cuesta-Galisteo, C. Nevado, J. Am. Chem. Soc. 145 (2023) 6270–6279.
doi: 10.1021/jacs.2c12869
Z.M. Su, J. Twilton, C.B. Hoyt, et al., ACS Cent. Sci. 9 (2023) 159–165.
doi: 10.1021/acscentsci.2c01324
X. Ying, Y. Li, L. Li, C. Li, Angew. Chem. Int. Ed. 62 (2023) e202304177.
doi: 10.1002/anie.202304177
W. Guan, L. Lu, Q. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202303592.
doi: 10.1002/anie.202303592
C.S. Day, A. Rentería-Gómez, S.J. Ton, et al., Nat. Catal. 6 (2023) 244–253.
doi: 10.1038/s41929-023-00925-4
J. Zhou, D. Wang, W. Xu, Z. Hu, T. Xu, J. Am. Chem. Soc. 145 (2023) 2081–2087.
doi: 10.1021/jacs.2c13220
L. Wan, Y. Tong, X. Lu, Y. Fu, Chin. Chem. Lett. 35 (2024) 109283.
doi: 10.1016/j.cclet.2023.109283
S.Z. Tasker, E.A. Standley, T.F. Jamison, Nature 509 (2014) 299–309.
doi: 10.1038/nature13274
J. Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 53 (2020) 906–919.
doi: 10.1021/acs.accounts.0c00032
N. Lalloo, C.E. Brigham, M.S. Sanford, Acc. Chem. Res. 55 (2022) 3430–3444.
doi: 10.1021/acs.accounts.2c00496
Q. Lin, E. Spielvogel, T. Diao, Chem 9 (2023) 1295–1308.
doi: 10.1016/j.chempr.2023.02.010
S. Biswas, D.J. Weix, J. Am. Chem. Soc. 135 (2013) 16192–16197.
doi: 10.1021/ja407589e
L.L. Anka-Lufford, K.M.M. Huihui, N.J. Gower, L.K.G. Ackerman, D.J. Weix, Chem. Eur. J. 22 (2016) 11564–11567.
doi: 10.1002/chem.201602668
S.Z. Sun, R. Martin, Angew. Chem. Int. Ed. 57 (2018) 3622–3625.
doi: 10.1002/anie.201712428
Y. Fang, T. Rogge, L. Ackermann, S.Y. Wang, S.J. Ji, Nat. Commun. 9 (2018) 2240–2250.
doi: 10.1038/s41467-018-04646-2
H. Yin, J. Sheng, K.F. Zhang, et al., Chem. Commun. 55 (2019) 7635–7638.
doi: 10.1039/C9CC03737C
S.J. He, J.W. Wang, Y. Li, et al., J. Am. Chem. Soc. 142 (2020) 214–221.
doi: 10.1021/jacs.9b09415
P. Fan, C. Zhang, L. Zhang, C. Wang, Org. Lett. 22 (2020) 3875–3878.
doi: 10.1021/acs.orglett.0c01121
D.J. Charboneau, E.L. Barth, N. Hazari, M.R. Uehling, S.L. Zultanski, ACS Catal 10 (2020) 12642–12656.
doi: 10.1021/acscatal.0c03237
H.Y. Tu, F. Wang, L. Huo, et al., J. Am. Chem. Soc. 142 (2020) 9604–9611.
doi: 10.1021/jacs.0c03708
D. Sun, G. Ma, X. Zhao, C. Lei, H. Gong, Chem. Sci. 12 (2021) 5253–5258.
doi: 10.1039/D1SC00283J
Z. Li, W. Sun, X. Wang, et al., J. Am. Chem. Soc. 143 (2021) 3536–3543.
doi: 10.1021/jacs.0c13093
P. Zheng, P. Zhou, D. Wang, et al., Nat. Commun. 12 (2021) 1646.
doi: 10.1038/s41467-021-21947-1
X. Li, X. Gao, C.Y. He, X. Zhang, Org. Lett. 23 (2021) 1400–1405.
doi: 10.1021/acs.orglett.1c00058
N.W.J. Ang, L. Ackermann, Chem. Eur. J. 27 (2021) 4883–4887.
doi: 10.1002/chem.202005449
R.F. Turro, M. Brandstätter, S.E. Reisman, Angew. Chem. Int. Ed. 61 (2022) e202207597.
doi: 10.1002/anie.202207597
W. Hu, Z. Lin, C. Wang, Org. Lett. 24 (2022) 5751–5755.
doi: 10.1021/acs.orglett.2c02199
Y. Gong, L. Su, Z. Zhu, Y. Ye, H. Gong, Angew. Chem. Int. Ed. 61 (2022) e202201662.
doi: 10.1002/anie.202201662
H. Wang, P. Zheng, X. Wu, Y. Li, T. Xu, J. Am. Chem. Soc. 144 (2022) 3989–3997.
doi: 10.1021/jacs.1c12424
D. Wang, L. Ackermann, Chem. Sci. 13 (2022) 7256–7263.
doi: 10.1039/D2SC02277J
W.T. Zhao, W. Shu, Sci. Adv. 9 (2023) eadg9898.
doi: 10.1126/sciadv.adg9898
J. Yi, S.O. Badir, L.M. Kammer, M. Ribagorda, G.A. Molander, Org. Lett. 21 (2019) 3346–3351.
doi: 10.1021/acs.orglett.9b01097
H. Yue, C. Zhu, L. Shen, et al., Chem. Sci. 10 (2019) 4430–4435.
doi: 10.1039/C9SC00783K
S. Ni, C.X. Li, Y. Mao, et al., Sci. Adv. 5 (2019) eaaw9516.
doi: 10.1126/sciadv.aaw9516
S.Z. Sun, C. Romano, R. Martin, J. Am. Chem. Soc. 141 (2019) 16197–16201.
doi: 10.1021/jacs.9b07489
S. Plunkett, C.H. Basch, S.O. Santana, M.P. Watson, J. Am. Chem. Soc. 141 (2019) 2257–2262.
doi: 10.1021/jacs.9b00111
J. Wang, M.E. Hoerrner, M.P. Watson, D.J. Weix, Angew. Chem. Int. Ed. 59 (2020) 13484–13489.
doi: 10.1002/anie.202002271
Y. Jin, J. Wu, Z. Lin, Y. Lan, C. Wang, Org. Lett. 22 (2020) 5347–5352.
doi: 10.1021/acs.orglett.0c01592
J.T.M. Correia, V.A. Fernandes, B.T. Matsuo, et al., Chem. Commun. 56 (2020) 503–514.
doi: 10.1039/C9CC08348K
J. Fu, W. Lundy, R. Chowdhury, et al., ACS Catal. 13 (2023) 9336–9345.
doi: 10.1021/acscatal.3c01939
J. Wang, L.E. Ehehalt, Z. Huang, et al., J. Am. Chem. Soc. 145 (2023) 9951–9958.
doi: 10.1021/jacs.2c11552
J.L. Douthwaite, R. Zhao, E. Shim, et al., J. Am. Chem. Soc. 145 (2023) 10930–10937.
doi: 10.1021/jacs.2c11563
A. Noble, S.J. McCarver, D.W.C. MacMillan, J. Am. Chem. Soc. 137 (2015) 624–627.
doi: 10.1021/ja511913h
J. Luo, J. Zhang, ACS Catal. 6 (2016) 873–877.
doi: 10.1021/acscatal.5b02204
H. Huang, X. Li, C. Yu, et al., Angew. Chem. Int. Ed. 56 (2017) 1500–1505.
doi: 10.1002/anie.201610108
Y. Hioki, M. Costantini, J. Griffin, et al., Science 380 (2023) 81–87.
doi: 10.1126/science.adf4762
M. Gao, D. Sun, H. Gong, Org. Lett. 21 (2019) 1645–1648.
doi: 10.1021/acs.orglett.9b00174
Y. Ye, H. Chen, J.L. Sessler, H. Gong, J. Am. Chem. Soc. 141 (2019) 820–824.
doi: 10.1021/jacs.8b12801
P. Guo, K. Wang, W.J. Jin, et al., J. Am. Chem. Soc. 143 (2021) 513–523.
doi: 10.1021/jacs.0c12462
X. Pang, X.Z. Shu, Chin. J. Chem. 41 (2023) 1637–1652.
doi: 10.1002/cjoc.202200769
K.M.M. Huihui, J.A. Caputo, Z. Melchor, et al., J. Am. Chem. Soc. 138 (2016) 5016–5019.
doi: 10.1021/jacs.6b01533
L. Huang, A.M. Olivares, D.J. Weix, Angew. Chem. Int. Ed. 56 (2017) 11901–11905.
doi: 10.1002/anie.201706781
J. Wang, B.P. Cary, P.D. Beyer, S.H. Gellman, D.J. Weix, Angew. Chem. Int. Ed. 58 (2019) 12081–12085.
doi: 10.1002/anie.201906000
Z. Li, K.F. Wang, X. Zhao, et al., Nat. Commun. 11 (2020) 5036.
doi: 10.1038/s41467-020-18834-6
L.M. Kammer, S.O. Badir, R.M. Hu, G.A. Molander, Chem. Sci. 12 (2021) 5450–5457.
doi: 10.1039/D1SC00943E
D.C. Salgueiro, B.K. Chi, I.A. Guzei, P. García-Reynaga, D.J. Weix, Angew. Chem. Int. Ed. 61 (2022) e202205673.
doi: 10.1002/anie.202205673
E.M. DeCicco, S. Berritt, T. Knauber, S.B. Coffey, J. Hou, J. Org. Chem. 88 (2023) 12329–12340.
doi: 10.1021/acs.joc.3c01072
Y. Gao, B. Zhang, J. He, P.S. Baran, J. Am. Chem. Soc. 145 (2023) 11518–11523.
doi: 10.1021/jacs.3c03337
A. Schoenberg, I. Bartolet, R.F. Heck, J. Org. Chem. 39 (1974) 3318–3326.
doi: 10.1021/jo00937a003
W. Wu, W. Su, J. Am. Chem. Soc. 133 (2011) 11924–11927.
doi: 10.1021/ja2048495
T. Ueda, H. Konishi, K. Manabe, Angew. Chem. Int. Ed. 52 (2013) 8611–8615.
doi: 10.1002/anie.201303926
B. Zhao, R. Shang, W.M. Cheng, Y. Fu, Org. Chem. Front. 5 (2018) 1782–1786.
doi: 10.1039/C8QO00253C
S. Klaus, H. Neumann, A. Zapf, et al., Angew. Chem. Int. Ed. 45 (2006) 154–158.
doi: 10.1002/anie.200502697
A. Brennfãhrer, H. Neumann, M. Beller, Synlett 16 (2007) 2537–2540.
A.G. Sergeev, A. Spannenberg, M. Beller, J. Am. Chem. Soc. 130 (2008) 15549–15563.
doi: 10.1021/ja804997z
S. Korsager, R.H. Taaning, T. Skrydstrup, J. Am. Chem. Soc. 135 (2013) 2891–2894.
doi: 10.1021/ja3114032
K. Natte, A. Dumrath, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 53 (2014) 10090–10094.
doi: 10.1002/anie.201404833
Z. Liu, Z. Yang, B. Yu, et al., Org. Lett. 20 (2018) 5130–5134.
doi: 10.1021/acs.orglett.8b02027
D. Liu, K. Yang, D. Fang, et al., Angew. Chem. Int. Ed. 62 (2023) e202213686.
doi: 10.1002/anie.202213686
C.T. Wang, P.Y. Liang, M. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202304447.
doi: 10.1002/anie.202304447
J. Sheng, X. Cheng, CCS Chem. 6 (2024) 230–240.
doi: 10.31635/ccschem.023.202302835
J. Choi, P. Martín-Gago, G.C. Fu, J. Am. Chem. Soc. 136 (2014) 12161–12165.
doi: 10.1021/ja506885s
L. Lombardi, A. Cerveri, R. Giovanelli, et al., Angew. Chem. Int. Ed. 61 (2022) e202211732.
doi: 10.1002/anie.202211732
G. Bertoli, Á.M. Martínez, J.F. Goebel, et al., Angew. Chem. Int. Ed. 62 (2023) e202215920.
doi: 10.1002/anie.202215920
R.F. Turro, J.L.H. Wahlman, Z.J. Tong, et al., J. Am. Chem. Soc. 145 (2023) 14705–14715.
doi: 10.1021/jacs.3c02649
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Fan Chen , Xiaoyu Zhao , Weihang Miao , Yingying Li , Ye Yuan , Lingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239
Hui Yang , Guangxun Zhang , Yueyao Sun , Huijie Zhou , Huan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986