Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water
-
* Corresponding authors.
E-mail addresses: 2016007@htu.edu.cn (C. Ma), jiangyuqin@htu.edu.cn (Y. Jiang), zhangzg@htu.edu.cn (Z. Zhang).
Citation:
Chunhua Ma, Mengjiao Liu, Siyu Ouyang, Zhenwei Cui, Jingjing Bi, Yuqin Jiang, Zhiguo Zhang. Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water[J]. Chinese Chemical Letters,
;2025, 36(1): 109755.
doi:
10.1016/j.cclet.2024.109755
Sustainable synthetic practices, especially green solvents, transition-metal free, and strong oxidants-free strategies, are highly desired to medicinal chemistry and synthetic chemistry [1-4]. The sustainable construction of nitrogen-containing compounds is an enduring topic, owing to their value in drugs, bioactive compounds and functional materials [5-8]. As one of the most important triazole heterocycles, 1,2,4-trizaolo[1,5-α]pyridines are widely found in drug candidates and natural products (Fig. 1), such as glucose-lowering drug candidate LY3104607 [9], cancer immunotherapeutic/antifibrotic agent EW-7197 [10], anti-atopic dermatitis agent LEO 39652 [11], and prolylhydroxylase domain enzayme PHD-1 inhibitor Takeda-39 [12]. Hence, the construction of 1,2,4-trizaolo[1,5-α]pyridines in a sustainable fashion is highly desirable.
Several strategies have been developed to access this important heterocyclic moiety. In 2009, Nagasawa’s group reported a CuBr catalyzed oxidative coupling approach of nitrile with 2-aminopyridine to yield the 1,2,4-triazoles in 1,2-dichlorobenzene DCB (Scheme 1a) [13]. Afterwards, this catalytic system was reformed to the solid-supported heterogeneous catalytic systems by Zhao’s group and Cai’s group, respectively [14,15]. However, these strategies rely on the use of transition-metal catalyst and carcinogenic solvent DCB. Alternatively, N-(2-pyridyl)amidines could be converted into 1,2,4-triazolo[1,5-a]pyridines in the presence of stoichiometric amounts of external oxidants, such as phenyliodine(Ⅲ)bis(trifluoroacetate) PIFA [16], I2 [17], isocyanuric chloride [18], in organic solvent (Scheme 1b). In 2019, Zhang’s group disclosed an electrochemical protocol to deliver the scaffold with nBu4NBr as the redox mediator in CH3CN (Scheme 1c) [19]. The use of organic solvent will bring the cost increasing, environmental threat, toxicity issues, and safety hazard. While, water is a low cost, environmentally benign, nontoxic, and non-flammable alternative. Therefore, developing the reactions conducted in water represent a vibrant area of investigation both in industry and academia [20-47].
The amino diphenylphosphinate (DPPH) as amino source was successfully applied in various nitrogen insertion reactions [48-52]. However, aminations using DPPH conducted in water are rarely reported, and construction of the hetero-aromatic ring with DPPH is underdeveloped. With our continued interest in developing sustainable strategy to the construction and derivatization of privileged scaffolds [53-60], we herein report an additive-free procedure to access 1,2,4-triazolo[1,5-a]pyridines from the readily available N-(pyridyl)amides and amino diphenylphosphinate in water (Scheme 1d).
We carried out the study with N-(pyridin-2-yl)benzamide (1a) and amino diphenylphosphinate (2) as the substrates. The first model reaction was conducted in DMF at 100 ℃ under N2 atmosphere, affording the desired product 3a in 74% yield (Table 1, entry 1). Firstly, the effects of the base were investigated (entries 2–6). The use of Et3N, K2CO3, NaH, NaOH, or KOH retarded the reaction. Green solvents H2O, polyethyleneglycol (PEG400), ethylene glycol (EG), cyclopentyl methyl ether (CPME), 2-MeTHF, or dimethyl carbonate (DMC) were then evaluated (entries 7–12). It was found that H2O (87%, entry 7) outperformed other green solvents (63%−82%, entries 8–12) in terms of the yield. Changing the reaction atmosphere from N2 to air or O2 has no adverse effect on the reaction efficiency (entries 13 and 14), indicating that the transformation is insensitive to O2. Thus, the optimized conditions were identified as follows: 1a (0.2 mmol), 2 (2 equiv.), H2O (3 mL) as a solvent, at 100 ℃ under N2 atmosphere.
With the optimal cyclization conditions at hand, the scope of the reaction was firstly investigated by variation of the R1 group in N-(pyridyl)amide 1a (Scheme 2). The result indicated that a variety of substitutions on the aromatic moiety were well tolerated regardless of their electronic properties or steric properties. For example, both electron-donating (Me, Et, OMe) and electron-withdrawing (F, Cl, Br) substitutions on para-, meta-, or ortho-positions of the phenyl group were well compatible, affording the desired products 3b-3k in 51%−98% yields. Moreover, the N-(pyridyl)amides 1l and 1m bearing the valuable pharmacophores (acetyl and phenoxy group) reacted smoothly to give the desired products 3l and 3m. Unfortunately, N-(pyridyl)amide with nitro substitution was not compatible to the standard conditions. With R1 being heteroaromatic rings (1n-1o), the reactions uneventfully afforded the corresponding products 3n-3o in 51% and 40% yields. Importantly, the substrates 1p-1t, with R1 being an alkyl, also turned out competent, retrieving the cyclized products 3p-3t in 19%−74% yields. Moreover, the structure of product 3a was confirmed by the X-ray single crystal diffraction studies.
We next turned our attention to study the effects of substitutions on the pyridine moiety (Scheme 3). Electron-donating groups on the different position of pyridine ring, such as 4-Me, 4-Et, 4-MeO-, 5-Me, 6-Me, 3-Me, and 3-MeO were amenable to the standard protocols, giving the desired products 3u-3aa in 48%−96% yields. Furthermore, the substrates 1ab-1ag with electron-withdrawing substituents (4-F, 4-Cl, 4-Br, 4-pH, 4-CF3, 5-Br) also proceeded smoothly and afforded the anticipated products 3ab-3ag in moderate to good yields. To our delight, the products 3ah-3aj were also delivered in 60%−93% yields when there were substituents both on the pyridine ring and aryl ring.
To highlight the usefulness of this sustainable strategy in medicinal chemistry, we conducted the late-stage modification of valuable natural products and pharmaceuticals (Scheme 4). The N-(pyridyl)amides derived from levulinic acid (1ak) and elaidic acid (1al) reacted efficiently to produce the products 3ak-3al in 34% and 62% yields, respectively. Furthermore, the method could also be successfully applied in the functionalization of nonsteroidal anti-inflammatory drug (lbuprofen, 1am), lipid regulators (gemfibrozil, 1an), and cholagogues (dehydrocholic acid, 1ao). The value of these current methods was further displayed by a scale-up synthesis which afforded the desired product in 70% yield (see Supporting information for details).
Considering that amino diphenylphosphinate is a typical electrophilic amination reagent widely used in the regioselectivity N—N coupling reaction [61-65], a plausible mechanism for the amination/cyclization reaction is depicted in Scheme 5. Initially, the pyridine in 1 attacks amino diphenylphosphinate 2, generating the N-aminopyridinium phospate salt 4, which exists in three resonance forms 4a-4c. The amino group attacks the carbonyl group intramolecularly to afford diphenylphosphinic acid 5 (detected by HRMS) and 6. Then, intermediate 6 underwent dehydration with the aid of acid 5 to give the final product 3 [66,67].
In summary, we have developed a green and high yielding strategy for the amination/cyclization of N-(pyridyl)amides to access the 1,2,4-triazolo[1,5-a]pyridines in water. The transition metal- and oxidant-free protocol demonstrates broad substrate scope and exceptional functional group tolerance. The utility of this protocol is also highlighted in late-stage modification of several natural products and drugs. Accordingly, we anticipate that this sustainable protocol will be of great utility to the pharmaceutical chemistry as well as many other fields.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
We acknowledge the financial support from the National Natural Science Foundation of China (No. 82003585), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 24HASTIT069), the Technical Innovation Team of Henan Normal University (No. 2022TD03), the Special Project for Fundamental Research in University of Henan Province (No. 23ZX009), the Henan Science and Technology Program (No. 232102310364), the Key Project of Henan Educational Committee (No. 22A150041), Excellent Youth Foundation of Henan Scientific Committee (No. 222300420012), the Young Core Instructor Training Program of Xinyang Agriculture and Forestry University (2023).
Supplementary material associated with this article can be found, in the online version, at doi:
M.C. Bryan, B. Dillon, L.G. Hamann, et al., J. Med. Chem. 56 (2013) 6007–6021.
doi: 10.1021/jm400250p
J.Y. Chen, J. Huang, K. Sun, W.M. He, Org. Chem. Front. 9 (2022) 1152–1164.
doi: 10.1039/D1QO01504D
Y. Lang, C.J. Li, H. Zeng, Org. Chem. Front. 8 (2021) 3594–3613.
doi: 10.1039/d1qo00359c
X.Y. Yuan, F.L. Zeng, H.L. Zhu, et al., Org. Chem. Front. 7 (2020) 1884–1889.
doi: 10.1039/d0qo00222d
E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–10274.
doi: 10.1021/jm501100b
C. Ma, Q. Li, M. Zhao, et al., J. Med. Chem. 64 (2021) 16242–16270.
doi: 10.1021/acs.jmedchem.1c01559
L.D. Pennington, D.T. Moustakas, J. Med. Chem. 60 (2017) 3552–3579.
doi: 10.1021/acs.jmedchem.6b01807
M.N.R. Ashfold, J.P. Goss, B.L. Green, et al., Chem. Rev. 120 (2020) 5745–5794.
doi: 10.1021/acs.chemrev.9b00518
C. Hamdouchi, P. Maiti, A.M. Warshawsky, et al., J. Med. Chem. 61 (2018) 934–945.
doi: 10.1021/acs.jmedchem.7b01411
C.H. Jin, M. Krishnaiah, D. Sreenu, et al., J. Med. Chem. 57 (2014) 4213–4238.
doi: 10.1021/jm500115w
J. Larsen, M. Lambert, H. Pettersson, et al., J. Med. Chem. 63 (2020) 14502–14521.
doi: 10.1021/acs.jmedchem.0c00797
S. Ahmed, A. Ayscough, G.R. Barker, et al., J. Med. Chem. 60 (2017) 5663–5672.
doi: 10.1021/acs.jmedchem.7b00352
S. Ueda, H. Nagasawa, J. Am. Chem. Soc. 131 (2009) 15080–15081.
doi: 10.1021/ja905056z
X. Meng, C. Yu, P. Zhao, RSC Adv. 4 (2014) 8612–8616.
doi: 10.1039/c3ra47029f
J. Xia, X. Huang, M. Cai, Synthesis 51 (2019) 2014–2022.
doi: 10.1055/s-0037-1611712
Z. Zheng, S. Ma, L. Tang, et al., J. Org. Chem. 79 (2014) 4687–4693.
doi: 10.1021/jo500298j
L. Song, X. Tian, Z. Lv, et al., J. Org. Chem. 80 (2015) 7219–7225.
doi: 10.1021/acs.joc.5b01183
A. Bhatt, R.K. Singh, B.K. Sarma, R. Kant, Tetrahedron Lett. 60 (2019) 151026.
doi: 10.1016/j.tetlet.2019.151026
Y. Li, Z. Ye, N. Chen, Z. Chen, F. Zhang, Green Chem. 21 (2019) 4035–4039.
doi: 10.1039/c9gc01895f
B. Li, P.H. Dixneuf, Chem. Soc. Rev. 42 (2013) 5744–5767.
doi: 10.1039/c3cs60020c
M. Cortes-Clerget, J. Yu, J.R.A. Kincaid, et al., Chem. Sci. 12 (2021) 4237–4266.
doi: 10.1039/d0sc06000c
W.T. Ouyang, F. Xiao, L.J. Ou, W.M. He, Curr. Opin. Green Sust. 40 (2023) 100760.
doi: 10.1016/j.cogsc.2023.100760
L.Y. Xie, S. Peng, F. Liu, et al., ACS Sustain. Chem. Eng. 7 (2019) 7193–7199.
doi: 10.1021/acssuschemeng.9b00200
S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287–2290.
doi: 10.1016/j.cclet.2019.08.002
L.Y. Xie, S. Peng, J.X. Tan, et al., ACS Sustain. Chem. Eng. 6 (2018) 16976–16981.
doi: 10.1021/acssuschemeng.8b04339
L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19 (2017) 5642–5646.
doi: 10.1039/C7GC02304A
S.S. Zhu, L. Zuo, Y. Liu, B. Yu, Green Chem. 24 (2022) 8725–8732.
doi: 10.1039/d2gc02950b
L. Tang, Y. Ouyang, K. Sun, B. Yu, RSC Adv. 12 (2022) 19736–19740.
doi: 10.1039/d2ra03467k
X.Y. Li, Y. Liu, X.L. Chen, et al., Green Chem. 22 (2020) 4445–4449.
doi: 10.1039/c9gc04445k
F. Li, L. Lu, J. Ma, Org. Chem. Front. 2 (2015) 1589–1597.
doi: 10.1039/C5QO00255A
B. Lin, X. Zhang, C.Y. Zhou, C.M. Che, Org. Chem. Front. 8 (2021) 1216–1222.
doi: 10.1039/d0qo01266a
X. Liu, W.Z. Dong, Y. Li, et al., Org. Chem. Front. 10 (2023) 355–362.
doi: 10.1039/d2qo01541b
D. Ye, R. Huang, H. Zhu, L.H. Zou, D. Wang, Org. Chem. Front. 6 (2019) 62–69.
doi: 10.1039/c8qo00941d
Z. Zhang, L. Ji, X. Liu, et al., Org. Chem. Front. 9 (2022) 5154–5159.
doi: 10.1039/d2qo01081j
J.K. Laha, A. Gupta, U. Gulati, et al., Org. Chem. Front. 9 (2022) 6902–6908.
doi: 10.1039/d2qo01465c
M.A. Morozova, M.S. Yusubov, B. Kratochvil, et al., Org. Chem. Front. 4 (2017) 978–985.
doi: 10.1039/C6QO00787B
W. Shi, C. Yang, L. Guo, W. Xia, Org. Chem. Front. 9 (2022) 6513–6519.
doi: 10.1039/d2qo01424f
S. Liu, Y. Zhou, Y. Sui, H. Liu, H. Zhou, Org. Chem. Front. 4 (2017) 2175–2178.
doi: 10.1039/C7QO00604G
J. Zhen, Y. Li, H. Yuan, et al., Org. Chem. Front. 10 (2023) 404–409.
doi: 10.1039/d2qo01429g
S. Xu, P. Wu, W. Zhang, Org. Biomol. Chem. 14 (2016) 11389–11395.
doi: 10.1039/C6OB02200F
M. Liu, F. Zhou, Z. Jia, C.J. Li, Org. Chem. Front. 1 (2014) 161–166.
doi: 10.1039/c3qo00063j
S. Liu, P. Zhang, Y. Zhang, et al., Org. Chem. Front. 8 (2021) 5858–5865.
doi: 10.1039/d1qo01068a
H.X. Song, Q.Y. Han, C.L. Zhao, C.P. Zhang, Green Chem. 20 (2018) 1662–1731.
doi: 10.1039/c8gc00078f
P. Norcott, C. Spielman, C.S.P. McErlean, Green Chem. 14 (2012) 605–609.
doi: 10.1039/c2gc16259h
J. Tomasek, J. Schatz, Green Chem. 15 (2013) 2317–2338.
doi: 10.1039/c3gc41042k
D.N. Kommi, P.S. Jadhavar, D. Kumar, A.K. Chakraborti, Green Chem. 15 (2013) 798–810.
doi: 10.1039/c3gc37004f
Y.H. Lu, Z.T. Zhang, H.Y. Wu, et al., Chin. Chem. Lett. 34 (2023) 108036.
doi: 10.1016/j.cclet.2022.108036
S. Laulhé, S.S. Gori, M.H. Nantz, J. Org. Chem. 77 (2012) 9334–9337.
doi: 10.1021/jo301133y
J.A. Smulik, E. Vedejs, Org. Lett. 5 (2003) 4187–4190.
doi: 10.1021/ol035629w
A. Armstrong, R.D.C. Pullin, C.R. Jenner, J.N. Scutt, J. Org. Chem. 75 (2010) 3499–3502.
doi: 10.1021/jo100407s
A. Armstrong, C.A. Baxter, S.G. Lamont, A.R. Pape, R. Wincewicz, Org. Lett. 9 (2007) 351–353.
doi: 10.1021/ol062852v
M. Ong, M. Arnold, A.W. Walz, J.M. Wahl, Org. Lett. 24 (2022) 6171–6175.
doi: 10.1021/acs.orglett.2c02361
C. Ma, Z. Feng, J. Li, et al., Org. Chem. Front. 8 (2021) 3286–3291.
doi: 10.1039/d1qo00064k
C.H. Ma, L. Zhao, X. He, Y.Q. Jiang, B. Yu, Org. Chem. Front. 9 (2022) 1445–1450.
doi: 10.1039/d1qo01870a
C.H. Ma, M. Chen, Z.W. Feng, et al., New J. Chem. 45 (2021) 9302–9314.
doi: 10.1039/d1nj00704a
C.H. Ma, Y. Ji, J. Zhao, et al., Chin. J. Catal. 43 (2022) 571–583.
doi: 10.1016/S1872-2067(21)63917-7
C. Ma, Y. Tian, J. Wang, et al., Org. Lett. 24 (2022) 8265–8270.
doi: 10.1021/acs.orglett.2c02949
C. Ma, H. Meng, J. Li, et al., Chin. J. Chem. 40 (2022) 2655–2662.
doi: 10.1002/cjoc.202200386
Y.Q. Jiang, J. Li, Z.W. Feng, et al., Adv. Synth. Catal. 362 (2020) 2609–2614.
doi: 10.1002/adsc.202000233
C. Ma, X. Li, X. Chen, et al., Org. Lett. 25 (2023) 8016–8021.
doi: 10.1021/acs.orglett.3c03193
W. Klötzer, H. Baldinger, E.M. Karpitschka, J. Knoflach, Synthesis 1982 (1982) 592–595.
doi: 10.1055/s-1982-29875
M. Fernández, R. Alonso, Org. Lett. 5 (2003) 2461–2464.
doi: 10.1021/ol034696n
A.G. Draffan, B. Frey, B. Pool, et al., ACS Med. Chem. Lett. 5 (2014) 679–684.
doi: 10.1021/ml500077j
A. Armstrong, R.D.C. Pullin, C.R. Jenner, et al., Tetrahedron: Asymmetry 25 (2014) 74–86.
doi: 10.1016/j.tetasy.2013.11.008
J.S.W. Klötzer, J. Raneburger, Org. Synth. 64 (1986) 96.
doi: 10.15227/orgsyn.064.0096
H. Hikawa, M. Imani, H. Suzuki, Y. Yokoyama, I. Azumaya, RSC Adv. 4 (2014) 3768–3773.
doi: 10.1039/C3RA46749J
A.K. Sharma, P. Sharma, P. Mehara, P. Das, Chem. Eng. J. 471 (2023) 144666.
doi: 10.1016/j.cej.2023.144666
M.C. Bryan, B. Dillon, L.G. Hamann, et al., J. Med. Chem. 56 (2013) 6007–6021.
doi: 10.1021/jm400250p
J.Y. Chen, J. Huang, K. Sun, W.M. He, Org. Chem. Front. 9 (2022) 1152–1164.
doi: 10.1039/D1QO01504D
Y. Lang, C.J. Li, H. Zeng, Org. Chem. Front. 8 (2021) 3594–3613.
doi: 10.1039/d1qo00359c
X.Y. Yuan, F.L. Zeng, H.L. Zhu, et al., Org. Chem. Front. 7 (2020) 1884–1889.
doi: 10.1039/d0qo00222d
E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–10274.
doi: 10.1021/jm501100b
C. Ma, Q. Li, M. Zhao, et al., J. Med. Chem. 64 (2021) 16242–16270.
doi: 10.1021/acs.jmedchem.1c01559
L.D. Pennington, D.T. Moustakas, J. Med. Chem. 60 (2017) 3552–3579.
doi: 10.1021/acs.jmedchem.6b01807
M.N.R. Ashfold, J.P. Goss, B.L. Green, et al., Chem. Rev. 120 (2020) 5745–5794.
doi: 10.1021/acs.chemrev.9b00518
C. Hamdouchi, P. Maiti, A.M. Warshawsky, et al., J. Med. Chem. 61 (2018) 934–945.
doi: 10.1021/acs.jmedchem.7b01411
C.H. Jin, M. Krishnaiah, D. Sreenu, et al., J. Med. Chem. 57 (2014) 4213–4238.
doi: 10.1021/jm500115w
J. Larsen, M. Lambert, H. Pettersson, et al., J. Med. Chem. 63 (2020) 14502–14521.
doi: 10.1021/acs.jmedchem.0c00797
S. Ahmed, A. Ayscough, G.R. Barker, et al., J. Med. Chem. 60 (2017) 5663–5672.
doi: 10.1021/acs.jmedchem.7b00352
S. Ueda, H. Nagasawa, J. Am. Chem. Soc. 131 (2009) 15080–15081.
doi: 10.1021/ja905056z
X. Meng, C. Yu, P. Zhao, RSC Adv. 4 (2014) 8612–8616.
doi: 10.1039/c3ra47029f
J. Xia, X. Huang, M. Cai, Synthesis 51 (2019) 2014–2022.
doi: 10.1055/s-0037-1611712
Z. Zheng, S. Ma, L. Tang, et al., J. Org. Chem. 79 (2014) 4687–4693.
doi: 10.1021/jo500298j
L. Song, X. Tian, Z. Lv, et al., J. Org. Chem. 80 (2015) 7219–7225.
doi: 10.1021/acs.joc.5b01183
A. Bhatt, R.K. Singh, B.K. Sarma, R. Kant, Tetrahedron Lett. 60 (2019) 151026.
doi: 10.1016/j.tetlet.2019.151026
Y. Li, Z. Ye, N. Chen, Z. Chen, F. Zhang, Green Chem. 21 (2019) 4035–4039.
doi: 10.1039/c9gc01895f
B. Li, P.H. Dixneuf, Chem. Soc. Rev. 42 (2013) 5744–5767.
doi: 10.1039/c3cs60020c
M. Cortes-Clerget, J. Yu, J.R.A. Kincaid, et al., Chem. Sci. 12 (2021) 4237–4266.
doi: 10.1039/d0sc06000c
W.T. Ouyang, F. Xiao, L.J. Ou, W.M. He, Curr. Opin. Green Sust. 40 (2023) 100760.
doi: 10.1016/j.cogsc.2023.100760
L.Y. Xie, S. Peng, F. Liu, et al., ACS Sustain. Chem. Eng. 7 (2019) 7193–7199.
doi: 10.1021/acssuschemeng.9b00200
S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287–2290.
doi: 10.1016/j.cclet.2019.08.002
L.Y. Xie, S. Peng, J.X. Tan, et al., ACS Sustain. Chem. Eng. 6 (2018) 16976–16981.
doi: 10.1021/acssuschemeng.8b04339
L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19 (2017) 5642–5646.
doi: 10.1039/C7GC02304A
S.S. Zhu, L. Zuo, Y. Liu, B. Yu, Green Chem. 24 (2022) 8725–8732.
doi: 10.1039/d2gc02950b
L. Tang, Y. Ouyang, K. Sun, B. Yu, RSC Adv. 12 (2022) 19736–19740.
doi: 10.1039/d2ra03467k
X.Y. Li, Y. Liu, X.L. Chen, et al., Green Chem. 22 (2020) 4445–4449.
doi: 10.1039/c9gc04445k
F. Li, L. Lu, J. Ma, Org. Chem. Front. 2 (2015) 1589–1597.
doi: 10.1039/C5QO00255A
B. Lin, X. Zhang, C.Y. Zhou, C.M. Che, Org. Chem. Front. 8 (2021) 1216–1222.
doi: 10.1039/d0qo01266a
X. Liu, W.Z. Dong, Y. Li, et al., Org. Chem. Front. 10 (2023) 355–362.
doi: 10.1039/d2qo01541b
D. Ye, R. Huang, H. Zhu, L.H. Zou, D. Wang, Org. Chem. Front. 6 (2019) 62–69.
doi: 10.1039/c8qo00941d
Z. Zhang, L. Ji, X. Liu, et al., Org. Chem. Front. 9 (2022) 5154–5159.
doi: 10.1039/d2qo01081j
J.K. Laha, A. Gupta, U. Gulati, et al., Org. Chem. Front. 9 (2022) 6902–6908.
doi: 10.1039/d2qo01465c
M.A. Morozova, M.S. Yusubov, B. Kratochvil, et al., Org. Chem. Front. 4 (2017) 978–985.
doi: 10.1039/C6QO00787B
W. Shi, C. Yang, L. Guo, W. Xia, Org. Chem. Front. 9 (2022) 6513–6519.
doi: 10.1039/d2qo01424f
S. Liu, Y. Zhou, Y. Sui, H. Liu, H. Zhou, Org. Chem. Front. 4 (2017) 2175–2178.
doi: 10.1039/C7QO00604G
J. Zhen, Y. Li, H. Yuan, et al., Org. Chem. Front. 10 (2023) 404–409.
doi: 10.1039/d2qo01429g
S. Xu, P. Wu, W. Zhang, Org. Biomol. Chem. 14 (2016) 11389–11395.
doi: 10.1039/C6OB02200F
M. Liu, F. Zhou, Z. Jia, C.J. Li, Org. Chem. Front. 1 (2014) 161–166.
doi: 10.1039/c3qo00063j
S. Liu, P. Zhang, Y. Zhang, et al., Org. Chem. Front. 8 (2021) 5858–5865.
doi: 10.1039/d1qo01068a
H.X. Song, Q.Y. Han, C.L. Zhao, C.P. Zhang, Green Chem. 20 (2018) 1662–1731.
doi: 10.1039/c8gc00078f
P. Norcott, C. Spielman, C.S.P. McErlean, Green Chem. 14 (2012) 605–609.
doi: 10.1039/c2gc16259h
J. Tomasek, J. Schatz, Green Chem. 15 (2013) 2317–2338.
doi: 10.1039/c3gc41042k
D.N. Kommi, P.S. Jadhavar, D. Kumar, A.K. Chakraborti, Green Chem. 15 (2013) 798–810.
doi: 10.1039/c3gc37004f
Y.H. Lu, Z.T. Zhang, H.Y. Wu, et al., Chin. Chem. Lett. 34 (2023) 108036.
doi: 10.1016/j.cclet.2022.108036
S. Laulhé, S.S. Gori, M.H. Nantz, J. Org. Chem. 77 (2012) 9334–9337.
doi: 10.1021/jo301133y
J.A. Smulik, E. Vedejs, Org. Lett. 5 (2003) 4187–4190.
doi: 10.1021/ol035629w
A. Armstrong, R.D.C. Pullin, C.R. Jenner, J.N. Scutt, J. Org. Chem. 75 (2010) 3499–3502.
doi: 10.1021/jo100407s
A. Armstrong, C.A. Baxter, S.G. Lamont, A.R. Pape, R. Wincewicz, Org. Lett. 9 (2007) 351–353.
doi: 10.1021/ol062852v
M. Ong, M. Arnold, A.W. Walz, J.M. Wahl, Org. Lett. 24 (2022) 6171–6175.
doi: 10.1021/acs.orglett.2c02361
C. Ma, Z. Feng, J. Li, et al., Org. Chem. Front. 8 (2021) 3286–3291.
doi: 10.1039/d1qo00064k
C.H. Ma, L. Zhao, X. He, Y.Q. Jiang, B. Yu, Org. Chem. Front. 9 (2022) 1445–1450.
doi: 10.1039/d1qo01870a
C.H. Ma, M. Chen, Z.W. Feng, et al., New J. Chem. 45 (2021) 9302–9314.
doi: 10.1039/d1nj00704a
C.H. Ma, Y. Ji, J. Zhao, et al., Chin. J. Catal. 43 (2022) 571–583.
doi: 10.1016/S1872-2067(21)63917-7
C. Ma, Y. Tian, J. Wang, et al., Org. Lett. 24 (2022) 8265–8270.
doi: 10.1021/acs.orglett.2c02949
C. Ma, H. Meng, J. Li, et al., Chin. J. Chem. 40 (2022) 2655–2662.
doi: 10.1002/cjoc.202200386
Y.Q. Jiang, J. Li, Z.W. Feng, et al., Adv. Synth. Catal. 362 (2020) 2609–2614.
doi: 10.1002/adsc.202000233
C. Ma, X. Li, X. Chen, et al., Org. Lett. 25 (2023) 8016–8021.
doi: 10.1021/acs.orglett.3c03193
W. Klötzer, H. Baldinger, E.M. Karpitschka, J. Knoflach, Synthesis 1982 (1982) 592–595.
doi: 10.1055/s-1982-29875
M. Fernández, R. Alonso, Org. Lett. 5 (2003) 2461–2464.
doi: 10.1021/ol034696n
A.G. Draffan, B. Frey, B. Pool, et al., ACS Med. Chem. Lett. 5 (2014) 679–684.
doi: 10.1021/ml500077j
A. Armstrong, R.D.C. Pullin, C.R. Jenner, et al., Tetrahedron: Asymmetry 25 (2014) 74–86.
doi: 10.1016/j.tetasy.2013.11.008
J.S.W. Klötzer, J. Raneburger, Org. Synth. 64 (1986) 96.
doi: 10.15227/orgsyn.064.0096
H. Hikawa, M. Imani, H. Suzuki, Y. Yokoyama, I. Azumaya, RSC Adv. 4 (2014) 3768–3773.
doi: 10.1039/C3RA46749J
A.K. Sharma, P. Sharma, P. Mehara, P. Das, Chem. Eng. J. 471 (2023) 144666.
doi: 10.1016/j.cej.2023.144666
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Bofei JIA , Zhihao LIU , Zongyuan GAO , Shuai ZHOU , Mengxiang WU , Qian ZHANG , Xiamei ZHANG , Shuzhong CHEN , Xiaohan YANG , Yahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157
Huaixiang Yang , Miao-Miao Li , Aijun Zhang , Jiefei Guo , Yongqi Yu , Wei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425
Qiang Feng , Jindong Hao , Ya Hu , Rong Fu , Wei Wei , Dong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602