Carbon dots-based dopamine sensors: Recent advances and challenges
-
* Corresponding authors.
E-mail addresses: Linxf@gmu.edu.cn (X. Lin), fan.1113@osu.edu (S. Fan), hqt@gmu.edu.cn (Q. Huang).
Citation:
Chenghao Liu, Xiaofeng Lin, Jing Liao, Min Yang, Min Jiang, Yue Huang, Zhizhi Du, Lina Chen, Sanjun Fan, Qitong Huang. Carbon dots-based dopamine sensors: Recent advances and challenges[J]. Chinese Chemical Letters,
;2024, 35(12): 109598.
doi:
10.1016/j.cclet.2024.109598
Sulfone-containing compounds are frequently found in pharmacologically active compounds, natural products, and materials [1]. Furthermore, they can also be employed as important intermediates in various organic transformations to access a series of useful molecules [2]. Consequently, the introduction of sulfone functionality into organic framework has attracted considerable synthetic pursuit of chemists because of their interesting biological activities and versatile synthetic applications [3]. During the past decades, a number of sulfonylating agents such as sulfonyl chlorides [4], sulfonyl hydrazides [5], sulfinates [6], sulfinic acids [7], thiophenols [8], sulfonyl cyanides [9], sulfonyl selenides [10] and SO2 surrogates [11] have been developed for the construction of organic sulfones. Nevertheless, most of these sulfonylation reactions usually require the use of catalysts or a stoichiometric amount of oxidants, or suffer from complex reaction conditions. It is still highly desirable to develop new strategies to construct sulfone-containing compounds from simple sulfonylating agents under mild conditions.
Arylazo sulfones are colored and bench stable compounds, which could generate aryl radical and sulfonyl radical along with the release of N2 through the homolytic cleavage of C-N and S-N bonds under visible-light irradiation or heating conditions [12]. Generally, arylazo sulfones are utilized as arylating reagents in photoinduced reactions in the absence of photocatalyst [13]. Recently, arylazo sulfones have alternatively emerged as sulfonylating agents for constructing sulfone-containing compounds [14]. In 2019, our group reported oxysulfonylation of alkenes or alkynes with arylazo sulfones and dioxygen leading to β-oxo sulfones under visible-light irradiation conditions (Scheme 1a) [14a, b]. In 2020, Yadav and co-workers also described an efficient visible-light mediated decarboxylative sulfonylation of cinnamic acids and arylazo sulfones for the synthesis of (E)-vinyl sulfones (Scheme 1b) [14c]. As our ongoing interest in sulfonylation reactions [15], herein, we wish to present a catalyst- and light-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones to synthesize sulfonated γ-butyrolactams under simple heating conditions (Scheme 1c).
The cyclization of 1, n-enynes has become as a powerful protocol for the construction of various important heterocycles such as quinolines, pyrroles, pyridines, furans, indoles and pyrans in terms of its step-economy and high reaction efficiency [16-18]. γ-Butyrolactam is the core structure of a large number of natural and biologically active compounds, which covered a wide spectrum of biological activities [19]. Recently, some functionalized γ-butyrolactams have been elegantly synthesized through the radical 1,6-enyne cyclization strategies under light or strong oxidant mediated conditions [20]. The present reaction, which simply utilizes arylazo sulfones as sulfonylating agents, offers a convenient and regioselective approach to access various sulfonylated γ-butyrolactams under mild and catalyst-free conditions.
At the beginning of the experiment, the model reaction of N-phenyl-N-(prop-2-yn-1-yl)methacrylamide (1a) with 4-methoxyphenylazo mesylate (2a) was chosen to test the optimized reaction conditions. The product 3a was only isolated in 6% yield when the model reaction was conducted in 1, 4-dioxane at 80 ℃ (Table 1, entry 1). To our delight, the yield of 3a was largely increased when water was added in this reaction system (Table 1, entries 2–6). The highest yield of 3a (70%) was obtained when the ratio of 1, 4-dioxane and water was 2:1 (Table 1, entry 6). The yield would be slightly decreased if we continued to increase the amount of water (Table 1, entry 7). Next, various mixed solvents with organic solvent and water (2/1) were investigated (Table 1, entries 8–15). Generally, low to moderate yields were observed when the reaction was carried out in the mixture of EtOH, DME, THF, DMF, DMSO, or DCE with H2O (2/1). Only a trace amount of product 3a was detected when the reaction was performed in CH2Cl2/H2O (2/1). None of the product was observed in CH3CN/H2O (Table 1, entry 15). The decrease of reaction temperature would lead to lower reaction efficiency. No transformation was observed when the reaction was conducted at room temperature (Table 1, entry 17). The reaction was not improved when the reaction temperature was increased to 90 ℃ (Table 1, entry 18). Furthermore, product 3a was still obtained in good yield when the reaction was carried out under nitrogen atmosphere (Table 1, entry 19). Moreover, the use of other arylazo mesylates (4-methylphenylazo mesylate, 4-fluorophenylazo mesylate or 4-chlorophenylazo mesylate) to replace 4-methoxyphenylazo mesylate also gave the desired product 3a, but lower reaction efficiency was observed (Table 1, entries 20–22). Moreover, when the reaction was carried out under irradiation with 3 W Blue LED lamps, the corresponding product 3a was obtained in 22% yield (Table 1, entry 23).
Under the optimized conditions, the scope and limitation of various 1,6-enyne derivatives and arylazo sulfones were further examined (Scheme 2). Generally, a series of 1,6-enynes with both electron-donating and electron-withdrawing groups on the N-aromatic ring could undergo the reaction efficiently to produce the desired products (3b-3l) in moderate to good yields. Notably, halogen substituents such as F, Cl and Br groups were all tolerated in this reaction system, which could be used for the further modification via coupling reactions. It was found that the reaction efficiency was greatly affected by the steric hindrance of substituent on the aromatic ring, and only a trace amount of product 3e was detected when ortho-methyl N-aromatic ring substrate was employed in this system. Unfortunately, when N-alkyl substituted 1,6-enyne such as N-benzyl-N-(prop-2-ynyl) methacrylamide was tested in the present reaction, none of the desired product 3n was detected. It should be noted that internal alkyne such as N-(but-2-yn-1-yl)-N-phenylmethacrylamide was suitable for this reaction, affording the product 3m in moderate yield. Then, the scope of different arylazo sulfones was investigated. Arylazo alkylsulfone (i.e., 4-methoxyphenylazo ethyl sulfone) could also be utilized in this system to afford the corresponding product 3o in 68% yield. Moreover, a variety of arylazo arylsulfones bearing an electron-donating (methyl and methoxy) or an electron-withdrawing group (fluoro, chloro, bromo and trifluoromethyl) on the aryl rings were suitable substrates, and the corresponding products (3r-3x) were obtained in moderate to good yields.
To investigate the possible reaction mechanism, two control experiments were carried out. When radical scavenger TEMPO (2, 2, 6, 6-tetramethyl-1-piperidinyloxy) was added in the model reaction system, the transformation was extremely inhibited and aryl-TEMPO adduct was observed by LC–MS. This result suggested that a radical process might be involved in the present reaction (Scheme 3a). Furthermore, the cyclization product 1a' was not generated from 1a under standard conditions in the absence of 4-methoxyphenylazo mesylate (2a) (Scheme 3b), suggesting that this cascade cyclization was triggered by in situ generated sulfonyl radical.
Based on the above experimental results and previous reports [4, 7, 8, 13, 14], a possible reaction pathway was proposed as demonstrated in Scheme 4. Initially, the homolysis of N–S bond of arylazo sulfone 2 generated sulfonyl radical 4 and aryl radical along with the release of N2 under heating conditions. Subsequently, the selective addition of sulfonyl radical 4 to C=C bond gave alkyl radical 5, which further underwent the intramolecular cyclization with the C-C triple bond to give the vinyl radical 6. Finally, the abstraction of a hydrogen from the solvent would produce the desired product 3.
In summary, a convenient and efficient method has been developed for the construction of sulfonylated γ-butyrolactams through the regioselective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones. The present transformation could be achieved under catalyst- and additive-free conditions via the sequential formation of C-S and C-C bonds. This protocol simply utilizes arylazo sulfones as sulfonylating agents offering a highly attractive routine to synthesize sulfonylated γ-butyrolactams, which is expected to exhibit potential application in synthetic chemistry.
The authors report no declarations of interest.
This work was supported by the International Cooperation Project of Qinghai Province (No. 2018-HZ-806), the Youth Innovation and Technology Project of Higher School in Shandong Province (No. 2019KJC021), the Natural Science Foundation of Shandong Province (No. ZR2018MB009), the Qinghai Key Laboratory of Tibetan Medicine Research (No. 2017- ZJ-Y11) and CAS "Light of West China" Program 2018, and Entrepreneurship Training Program for College Students (No. 201910049).
Supplementary material related tothis article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.11.059.
G.A. Matthews, E.H. Nieh, C.M. Vander Weele, et al., Cell 164 (2016) 617–631.
doi: 10.1016/j.cell.2015.12.040
X. Li, S. Zhao, B. Li, et al., Coord. Chem. Rev. 431 (2021) 213686.
doi: 10.1016/j.ccr.2020.213686
A.J. Duszkiewicz, C.G. McNamara, T. Takeuchi, et al., Trends Neurosci. 42 (2019) 102–114.
doi: 10.1016/j.tins.2018.10.002
C. Bucolo, G.M. Leggio, F. Drago, et al., Pharmacol. Ther. 203 (2019) 107392.
doi: 10.1016/j.pharmthera.2019.07.003
Y. Tang, J. Xu, C. Xiong, et al., Analyst 144 (2019) 2643–2648.
doi: 10.1039/c9an00032a
R.P. Maas, T. Wassenberg, J.P. Lin, et al., Neurology 88 (2017) 1865–1871.
doi: 10.1212/WNL.0000000000003897
Z. Tian, X. Qin, F. Shao, et al., Chin. Chem. Lett. 34 (2023) 107656.
doi: 10.1016/j.cclet.2022.06.079
J. Li, A. Reimers, K.M. Dang, et al., Biosens. Bioelectron. 222 (2023) 114942.
doi: 10.1016/j.bios.2022.114942
Q. Huang, S. Hu, H. Zhang, et al., Analyst 138 (2013) 5417–5423.
doi: 10.1039/c3an00510k
Q. Huang, H. Zhang, S. Hu, et al., Biosens. Bioelectron. 52 (2014) 277–280.
doi: 10.1002/9781118889954.index
M.A. Elchisak, J.H. Carlson, Life Sci. 30 (1982) 2325–2336.
doi: 10.1016/0024-3205(82)90260-0
J. Kim, M. Jeon, K.J. Paeng, et al., Anal. Chim. Acta 619 (2008) 87–93.
doi: 10.1016/j.aca.2008.02.042
Z. Chen, F. Zhang, Y. Lu, et al., Chin. Chem. Lett. 33 (2022) 3144–3150.
doi: 10.1016/j.cclet.2021.10.027
X. Xu, R. Ray, Y. Gu, et al., J. Am. Chem. Soc. 126 (2004) 12736–12737.
doi: 10.1021/ja040082h
Y.P. Sun, B. Zhou, Y. Lin, et al., J. Am. Chem. Soc. 128 (2006) 7756–7757.
doi: 10.1021/ja062677d
W. Meng, B. Yang, S. Lu, Chin. J. Lumin. 42 (2021) 1075–1094.
doi: 10.37188/cjl.20210155
N. Dhull, G. Kaur, P. Jain, et al., Appl. Surf. Sci. 495 (2019) 143548.
doi: 10.1016/j.apsusc.2019.143548
Z. Zeng, F.X. Xiao, H. Phan, et al., J. Mater. Chem. A 6 (2018) 1700–1713.
doi: 10.1039/c7ta09119b
Y. Wang, J. Sheng, X. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107967.
doi: 10.1016/j.cclet.2022.107967
Y. Zhang, Q. Xie, Z. Xia, et al., J. Electroanal. Chem. 863 (2020) 114058.
doi: 10.1016/j.jelechem.2020.114058
Q. Zeng, T. Feng, S. Tao, et al., Light: Sci. Appl. 10 (2021) 142.
doi: 10.1038/s41377-021-00579-6
C. Xia, S. Zhu, T. Feng, et al., Adv. Sci. 6 (2019) 1901316.
doi: 10.1002/advs.201901316
S. Zhang, Y. Yang, Y. Zhai, et al., Chin. Chem. Lett. 34 (2023) 107652.
doi: 10.1016/j.cclet.2022.06.075
B. Wang, H. Wang, Y. Hu, et al., Nano Lett. 23 (2023) 8794–8800.
doi: 10.1021/acs.nanolett.3c02271
P. Gao, Z. Xie, M. Zheng, Chin. Chem. Lett. 33 (2022) 1659–1672.
doi: 10.1016/j.cclet.2021.09.085
X. Niu, W. Zheng, T. Song, et al., Chin. Chem. Lett. 34 (2023) 107560.
doi: 10.1016/j.cclet.2022.05.074
X. Yang, X. Li, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 613–625.
doi: 10.1016/j.cclet.2021.08.077
B. Wang, S. Lu, Matter 5 (2022) 110–149.
doi: 10.1016/j.matt.2021.10.016
Y. Zhang, S. Lu, Chem 10 (2024) 134–171.
doi: 10.1016/j.chempr.2023.09.020
Z. Wei, B. Wang, M. Xie, et al., Chin. Chem. Lett. 33 (2022) 751–756.
doi: 10.1016/j.cclet.2021.08.014
Y. Zhang, J. Wang, L. Wang, et al., Adv. Mater. 35 (2023) 2302536.
doi: 10.1002/adma.202302536
B. Wang, G.I.N. Waterhouse, S. Lu, Trends Chem. 5 (2023) 76–87.
doi: 10.1016/j.trechm.2022.10.005
Y. Zhang, L. Wang, Y. Hu, et al., Small 19 (2023) 2207983.
doi: 10.1002/smll.202207983
S. Wang, Y. Zhang, G. Pang, et al., Anal. Chem. 89 (2017) 1704–1709.
doi: 10.1021/acs.analchem.6b03913
L. Ding, S. Kang, Y. Wang, et al., Chin. J. Lumin. 44 (2023) 2002–2010.
doi: 10.37188/cjl.20230177
J. Du, N. Xu, J. Fan, et al., Small 15 (2019) e1805087.
doi: 10.1002/smll.201805087
B. Wang, H. Cai, G.I.N. Waterhouse, et al., Small Sci. 2 (2022) 2200012.
doi: 10.1002/smsc.202200012
Y. Zhang, M. Li, S. Lu, Small 19 (2023) 2206080.
doi: 10.1002/smll.202206080
M. Fang, B. Wang, X. Qu, et al., Chin. Chem. Lett. 35 (2024) 108423.
doi: 10.1016/j.cclet.2023.108423
B. Wang, H. Song, Z. Tang, et al., Nano Res. 15 (2022) 942–949.
doi: 10.1007/s12274-021-3579-5
C. Liu, R. Cheng, J. Guo, et al., Chin. Chem. Lett. 33 (2022) 304–307.
doi: 10.1016/j.cclet.2021.06.073
Y. Zhai, P. Wang, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 783–787.
doi: 10.1016/j.cclet.2021.08.075
W. Zhao, Y. Wang, K. Liu, et al., Chin. Chem. Lett. 33 (2022) 798–802.
doi: 10.1016/j.cclet.2021.08.084
G. Zou, S. Chen, N. Liu, et al., Chin. Chem. Lett. 33 (2022) 778–782.
doi: 10.1016/j.cclet.2021.08.076
X. Li, X. Xing, S. Zhao, et al., Chin. Chem. Lett. 33 (2022) 1632–1636.
doi: 10.1016/j.cclet.2021.09.086
X. Zhou, X. Wang, L. Shang, Chin. Chem. Lett. 34 (2023) 108093.
doi: 10.1016/j.cclet.2022.108093
N. Ahmed, W. Zareen, Y. Ye, et al., Chin. Chem. Lett. 33 (2022) 2765–2772.
doi: 10.1016/j.cclet.2021.12.092
Q. Zhou, S. Wang, X. Ran, et al., Chin. Chem. Lett. 34 (2023) 107922.
doi: 10.1016/j.cclet.2022.107922
S. Zhuo, Y. Guan, H. Li, et al., Analyst 144 (2019) 656–662.
doi: 10.1039/c8an01741g
X. Yang, F. Tian, S. Wen, et al., Processes 9 (2021) 170.
doi: 10.3390/pr9010170
M. Lakshmanakumar, N. Nesakumar, A.J. Kulandaisamy, et al., Measurement 183 (2021) 109873.
doi: 10.1016/j.measurement.2021.109873
L. Zhao, J. Liu, Y. Bai, et al., Colloids Surf. A. 627 (2021) 127179.
doi: 10.1016/j.colsurfa.2021.127179
M. Lan, S. Zhao, X. Wei, et al., Dyes Pigments 170 (2019) 107574.
doi: 10.1016/j.dyepig.2019.107574
D.M. Liu, C. Dong, Process Biochem. 92 (2020) 464–475.
doi: 10.1016/j.procbio.2020.02.005
Y.K. Cen, Y.X. Liu, Y.P. Xue, et al., Adv. Synth. Catal. 361 (2019) 5500–5515.
doi: 10.1002/adsc.201900439
S. Patra, S. Sene, C. Mousty, et al., ACS Appl. Mater. Interfaces 8 (2016) 20012–20022.
doi: 10.1021/acsami.6b05289
Z. Tang, K. Jiang, S. Sun, et al., Analyst 144 (2019) 468–473.
doi: 10.1039/c8an01659c
K.J. Mintz, Y. Zhou, R.M. Leblanc, Nanoscale 11 (2019) 4634–4652.
doi: 10.1039/c8nr10059d
S. Miao, K. Liang, J. Zhu, et al., Nano Today 33 (2020) 100879.
doi: 10.1016/j.nantod.2020.100879
S. Sun, Q. Guan, Y. Liu, et al., Chin. Chem. Lett. 30 (2019) 1051–1054.
doi: 10.1016/j.cclet.2019.01.014
P. Krishnaiah, R. Atchudan, S. Perumal, et al., Chemosphere 286 (2022) 131764.
doi: 10.1016/j.chemosphere.2021.131764
J. Guo, W. Lu, H. Zhang, et al., Sens. Actuator. B: Chem. 330 (2021) 129360.
doi: 10.1016/j.snb.2020.129360
L. Jiang, H. Ding, S. Lu, et al., Angew. Chem. Int. Ed. 59 (2020) 9986–9991.
doi: 10.1002/anie.201913800
M. He, J. Zhang, H. Wang, et al., Nanoscale Res. Lett. 13 (2018) 175.
doi: 10.1186/s11671-018-2581-7
M.E. Mahmoud, N.A. Fekry, A.M. Abdelfattah, J. Hazard. Mater. 397 (2020) 122770.
doi: 10.1016/j.jhazmat.2020.122770
F. Yang, W. Bao, T. Liu, B. Zhang, et al., Microchim. Acta 187 (2020) 322.
doi: 10.1007/s00604-020-04294-8
J. Wang, X. Hu, H. Ding, et al., ACS Appl. Mater. Interfaces 11 (2019) 18203–18212.
doi: 10.1021/acsami.9b03644
C. Wang, H. Shi, M. Yang, et al., J. Photochem. Photobiol. A 391 (2020) 112374.
doi: 10.1016/j.jphotochem.2020.112374
Y. Ma, A.Y. Chen, X.F. Xie, et al., Talanta 196 (2019) 563–571.
doi: 10.1016/j.talanta.2019.01.001
C. Wang, H. Shi, M. Yang, et al., Colloids Surf. B 205 (2021) 111874.
doi: 10.1016/j.colsurfb.2021.111874
D. Mathivanan, A. Mohan, Y. Yang, J. Mater. Sci.: Mater. Electron. 32 (2021) 9005–9017.
doi: 10.1007/s10854-021-05571-9
Q. Zhu, H. Mao, J. Li, et al., Spectrochim. Acta Part A 247 (2021) 119090.
doi: 10.1016/j.saa.2020.119090
H. Liu, Y. Sun, Z. Li, et al., Nanoscale 11 (2019) 8458–8463.
doi: 10.1039/c9nr01678c
A.M. Mahmoud, M.H. Mahnashi, K. Alhazzani, et al., Spectrochim. Acta Part A 252 (2021) 119516.
doi: 10.1016/j.saa.2021.119516
T. Zhao, J. Han, X. Jin, et al., Angew. Chem. Int. Ed. 58 (2019) 4978–4982.
doi: 10.1002/anie.201900052
L.D. Rosales-Vazquez, A. Dorazco-Gonzalez, V. Sanchez-Mendieta, Dalton Trans. 50 (2021) 4470–4485.
doi: 10.1039/d0dt04403b
W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev. 46 (2017) 3242–3285.
doi: 10.1039/C6CS00930A
L. Li, Z. Li, W. Yang, et al., Chem 7 (2021) 686–698.
doi: 10.1016/j.chempr.2020.11.023
X.X. Chen, M.J. Hou, G.J. Mao, Microchim. Acta 188 (2021) 287.
doi: 10.1080/10864415.2021.1943170
D.X. Xue, Q. Wang, J. Bai, Coord. Chem. Rev. 378 (2019) 2–16.
doi: 10.1016/j.ccr.2017.10.026
S. Xie, X. Li, L. Wang, et al., Microchem. J. 160 (2021) 105718.
doi: 10.1016/j.microc.2020.105718
Y. Zhang, H. Xu, Y. Yang, et al., J. Photochem. Photobiol. A 411 (2021) 113195.
doi: 10.1016/j.jphotochem.2021.113195
Q. Yang, J. Li, X. Wang, et al., Sens. Actuator. B: Chem. 284 (2019) 428–436.
doi: 10.1016/j.snb.2018.12.134
M. Sun, L. Zhang, S. Xu, et al., Analyst 147 (2022) 947–955.
doi: 10.1039/D2AN00049K
C. Zhao, Y. Jiao, J. Hua, et al., J. Fluoresc. 28 (2018) 269–276.
doi: 10.1007/s10895-017-2189-9
L. Wang, J. Jana, J.S. Chung, et al., Dyes Pigments 186 (2021) 109028.
doi: 10.1016/j.dyepig.2020.109028
X.Y. Tang, Y.M. Liu, X.L. Bai, et al., Anal. Chim. Acta 1157 (2021) 338394.
doi: 10.1016/j.aca.2021.338394
S.K. Tammina, D. Yang, S. Koppala, et al., J. Photochem. Photobiol. B 194 (2019) 61–70.
doi: 10.1016/j.jphotobiol.2019.01.004
R. Sangubotla, J. Kim, Dyes Pigments 191 (2021) 109364.
doi: 10.1016/j.dyepig.2021.109364
R. Sangubotla, J. Kim, Mater. Sci. Eng. C 122 (2021) 111916.
doi: 10.1016/j.msec.2021.111916
L. Ren, X. Hang, Z. Qin, et al., Optik 208 (2020) 163560.
doi: 10.1016/j.ijleo.2019.163560
C. Ratlam, S. Phanichphant, S. Sriwichai, J. Polym. Res. 27 (2020) 183.
doi: 10.1007/s10965-020-02158-6
S.W. Park, T.E. Kim, Y.K. Jung, Anal. Chim. Acta 1165 (2021) 338513.
doi: 10.1016/j.aca.2021.338513
G. Mi, M. Yang, C. Wang, et al., Spectrochim. Acta Part A 253 (2021) 119555.
doi: 10.1016/j.saa.2021.119555
M. Louleb, L. Latrous, Á. Ríos, et al., ACS Appl. Nano Mater. 3 (2020) 8004–8011.
doi: 10.1021/acsanm.0c01461
H. Lin, J. Huang, L. Ding, J. Nanomater. 2019 (2019) 5037243.
A. Kumar, S. Asu, P. Mukherjee, et al., J. Photochem. Photobiol. A 406 (2021) 113019.
doi: 10.1016/j.jphotochem.2020.113019
J. Jana, J.S. Chung, S.H. Hur, ACS Omega 4 (2019) 17031–17038.
doi: 10.1021/acsomega.9b02637
S. Dadkhah, A. Mehdinia, A. Jabbari, et al., Microchim. Acta 187 (2020) 569.
doi: 10.1007/s00604-020-04543-w
N. Chavoshi, B. Hemmateenejad, J. Fluoresc. 31 (2021) 455–463.
doi: 10.1007/s10895-020-02668-y
J. Bai, X. Chen, G. Yuan, et al., Nano 16 (2021) 2150030.
doi: 10.1142/s1793292021500302
J. An, M. Chen, N. Hu, et al., Spectrochim. Acta Part A 243 (2020) 118804.
doi: 10.1016/j.saa.2020.118804
A.O. Alqarni, S.A. Alkahtani, A.M. Mahmoud, et al., Spectrochim. Acta Part A 248 (2021) 119180.
doi: 10.1016/j.saa.2020.119180
X. Tan, P. Zhang, C. Ye, et al., Dyes Pigments 180 (2020) 108515.
doi: 10.1016/j.dyepig.2020.108515
R. Das, K.K. Paul, P.K. Giri, Appl. Surf. Sci. 490 (2019) 318–330.
doi: 10.1016/j.apsusc.2019.06.065
J. Wang, R. Du, W. Liu, et al., Sens. Actuator. B: Chem. 290 (2019) 125–132.
G. Chellasamy, S.R. Ankireddy, K.N. Lee, et al., Mater. Today Bio 12 (2021) 100168.
doi: 10.1016/j.mtbio.2021.100168
Q. Bai, H. Luo, X. Yi, et al., Microchem. J. 179 (2022) 107521.
doi: 10.1016/j.microc.2022.107521
R. Zhang, Z. Fan, J. Photochem. Photobiol. A 392 (2020) 112438.
doi: 10.1016/j.jphotochem.2020.112438
Y. Liu, W. Li, P. Wu, et al., Sens. Actuator. B: Chem. 281 (2019) 34–43.
doi: 10.1016/j.snb.2018.10.075
K. Chaiendoo, S. Ittisanronnachai, V. Promarak, et al., Carbon 146 (2019) 728–735.
doi: 10.1016/j.carbon.2019.02.030
S. Wei, B. Liu, X. Shi, et al., Talanta 252 (2023) 123865.
doi: 10.1016/j.talanta.2022.123865
R. Sangubotla, J. Kim, Ceram. Int. 49 (2023) 16272–16282.
doi: 10.1016/j.ceramint.2023.01.225
X. Liu, W. Yu, X. Mu, et al., Spectrochim. Acta Part A 287 (2023) 122112.
doi: 10.1016/j.saa.2022.122112
A. Tiwari, S. Walia, S. Sharma, et al., J. Mater. Chem. B 11 (2023) 1029–1043.
doi: 10.1039/d2tb02188a
W. Guo, Q. Wang, X. Zhan, et al., Part. Part. Syst. Charact. 39 (2022) 2200089.
doi: 10.1002/ppsc.202200089
S. Kanagasubbulakshmi, K. Kadirvelu, Spectrochim. Acta Part A 206 (2019) 512–519.
doi: 10.1016/j.saa.2018.08.050
W. Liu, X.J.T. Zhu, Talanta 197 (2019) 59–67.
doi: 10.1016/j.talanta.2019.01.008
H. Liu, N. Li, H. Zhang, et al., Talanta 189 (2018) 190–195.
doi: 10.1016/j.talanta.2018.05.014
Y. Guo, S. Guo, Y. Fang, et al., Electrochim. Acta 55 (2010) 3927–3931.
doi: 10.1016/j.electacta.2010.02.024
Y. Mei, C. He, W. Zeng, et al., Food Bioprocess Technol. 15 (2022) 498–513.
doi: 10.1007/s11947-022-02759-7
Y. Sun, M. Luo, X. Meng, et al., Anal. Chem. 89 (2017) 3761–3767.
doi: 10.1021/acs.analchem.7b00248
H. Zhang, K.-T. Huang, L. Ding, et al., Chin. Chem. Lett. 33 (2022) 1537–1540.
doi: 10.1016/j.cclet.2021.09.002
Y. Yu, M. Pan, J. Peng, et al., Chin. Chem. Lett. 33 (2022) 4133–4145.
doi: 10.1016/j.cclet.2022.02.045
H. Liu, Y. Yu, T. Xue, et al., Chin. Chem. Lett. 35 (2024) 108574.
doi: 10.1016/j.cclet.2023.108574
X. Lin, Y. Mei, C. He, et al., Front. Chem. 9 (2021) 769648.
doi: 10.3389/fchem.2021.769648
Y. Jiang, X. Xiao, C. Li, et al., Anal. Chem. 92 (2020) 3981–3989.
doi: 10.1021/acs.analchem.9b05484
H. Wei, F. Wu, L. Li, et al., Anal. Chem. 92 (2020) 11374–11379.
doi: 10.1021/acs.analchem.0c02240
A. Joshi, W. Schuhmann, T.C. Nagaiah, Sens. Actuator. B: Chem. 230 (2016) 544–555.
doi: 10.1016/j.snb.2016.02.050
Y. Wu, P. Deng, Y. Tian, et al., J. Nanobiotechnol. 18 (2020) 112.
doi: 10.1186/s12951-020-00672-9
Q. Huang, X. Lin, D. Chen, et al., Food Chem. 373 (2022) 131415.
doi: 10.1016/j.foodchem.2021.131415
Z. Wang, Int. J. Electrochem. Sci. 16 (2021) 210450.
doi: 10.20964/2021.04.39
L. Li, Y. Chen, J.J. Zhu, Anal. Chem. 89 (2017) 358–371.
doi: 10.1021/acs.analchem.6b04675
J. Zhou, Y. Li, W. Wang, et al., Biosens. Bioelectron. 164 (2020) 112332.
doi: 10.1016/j.bios.2020.112332
J. Liu, Y. Zhang, R. Yuan, Sens. Actuator. B: Chem. 379 (2023) 133260.
doi: 10.1016/j.snb.2022.133260
Z. Zhu, H. Niu, R. Li, et al., Biosens. Bioelectron. 10 (2022) 100141.
F. Xie, M. Yang, M. Jiang, et al., TrAC Trends Anal. Chem. 119 (2019) 115624.
doi: 10.1016/j.trac.2019.115624
A. Chen, S. Chatterjee, Chem. Soc. Rev. 42 (2013) 5425–5438.
doi: 10.1039/c3cs35518g
B.R. Adhikari, M. Govindhan, A. Chen, Sensors 15 (2015) 22490–22508.
doi: 10.3390/s150922490
Q. Huang, X. Lin, L. Tong, et al., ACS Sustain. Chem. Eng. 8 (2020) 1644–1650.
doi: 10.1021/acssuschemeng.9b06623
Q. Pan, Z. Xu, S. Deng, et al., RSC Adv. 9 (2019) 39332–39337.
doi: 10.1039/c9ra06912g
Y.Y. Li, P. Kang, S.Q. Wang, et al., Sens. Actuator. B: Chem. 327 (2021) 128878.
doi: 10.1016/j.snb.2020.128878
G. Han, J. Cai, C. Liu, J. Ren, et al., Appl. Surf. Sci. 541 (2021) 148566.
doi: 10.1016/j.apsusc.2020.148566
E. Saeb, K. Asadpour-Zeynali, Microchem. J. 160 (2021) 105603.
doi: 10.1016/j.microc.2020.105603
M. Mehmandoust, P. Pourhakkak, F. Hasannia, et al., Food Chem. Toxicol. 164 (2022) 113080.
doi: 10.1016/j.fct.2022.113080
N. Ahmadi, M. Bagherzadeh, A. Nemati, Biosens. Bioelectron. 151 (2020) 111977.
doi: 10.1016/j.bios.2019.111977
J.M. Moon, N. Thapliyal, K.K. Hussain, et al., Biosens. Bioelectron. 102 (2018) 540–552.
doi: 10.1016/j.bios.2017.11.069
S. Samanta, P. Roy, P. Kar, Mater. Sci. Eng. B 256 (2020) 114541.
doi: 10.1016/j.mseb.2020.114541
A. John, L. Benny, A.R. Cherian, et al., J. Nanostruct. Chem. 11 (2021) 1–31.
doi: 10.1007/s40097-020-00372-8
Y. Wang, A. Liu, Y. Han, et al., Polym. Int. 69 (2019) 7–17.
M.Z. Iqbal, M.M. Faisal, S.R. Ali, et al., Electrochim. Acta 346 (2020) 136039.
doi: 10.1016/j.electacta.2020.136039
Q. Wang, J. Li, D. Wang, et al., Electrochim. Acta 349 (2020) 136348.
doi: 10.1016/j.electacta.2020.136348
Y. Prykhodko, K. Fatyeyeva, L. Hespel, et al., Chem. Eng. J. 409 (2021) 127329.
doi: 10.1016/j.cej.2020.127329
P. Senthil Kumar, B.S. Sreeja, K. Krishna Kumar, et al., Food Chem. Toxicol. 167 (2022) 113311.
doi: 10.1016/j.fct.2022.113311
H.S. Jang, D. Kim, C. Lee, et al., Inorg. Chem. Commun. 105 (2019) 174–181.
doi: 10.1016/j.inoche.2019.05.009
L. Yang, T. Wang, C. Bao, et al., J. Electroanal. Chem. 895 (2021) 115512.
doi: 10.1016/j.jelechem.2021.115512
B. Wu, M. Li, Z. Xu, et al., Simultaneous electrochemical detection of dopamine and uric acid with graphene quantum dots decorated cobalt phthalocyanine nanocomposite, in: 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), IEEE, 2021, pp. 533–536, doi:
Y. Wei, Z. Xu, S. Wang, et al., Ionics 26 (2020) 5817–5828.
doi: 10.1007/s11581-020-03703-5
J. Wang, C. Lu, T. Chen, et al., Nanophotonics 9 (2020) 3831–3839.
doi: 10.1515/nanoph-2019-0418
V. Vinoth, L.N. Natarajan, R.V. Mangalaraja, et al., Microchim. Acta 186 (2019) 681.
doi: 10.1007/s00604-019-3779-9
P. Thondaiman, R. Manikandan, C.J. Raj, et al., Synth. Met. 278 (2021) 116831.
doi: 10.1016/j.synthmet.2021.116831
S. Saisree, N.J.S. Arya, K.Y. Sandhya, J. Mater. Chem. B 10 (2022) 3974–3988.
doi: 10.1039/D1TB02368C
T.M. Prado, A. Carrico, F.H. Cincotto, et al., Sens. Actuator. B: Chem. 285 (2019) 248–253.
doi: 10.1016/j.snb.2019.01.059
P.K. Pandey, Preeti, K. Rawat, T. Prasad, et al., J. Mater. Chem. B 8 (2020) 1277–1289.
doi: 10.1039/c9tb01863h
N. Ndebele, P. Sen, T. Nyokong, J. Electroanal. Chem. 886 (2021) 115111.
doi: 10.1016/j.jelechem.2021.115111
M. Li, Int. J. Electrochem. Sci. 16 (2021) 21084.
doi: 10.20964/2021.08.04
K. Kunpatee, S. Traipop, O. Chailapakul, et al., Sens. Actuator. B: Chem. 314 (2020) 128059.
doi: 10.1016/j.snb.2020.128059
W.F. Hsu, T.M. Wu, J. Mater. Sci. 30 (2019) 8449–8456.
doi: 10.1007/s10854-019-01165-8
S.E. Elugoke, O.E. Fayemi, A.S. Adekunle, et al., FlatChem 33 (2022) 100372.
doi: 10.1016/j.flatc.2022.100372
S.K. Arumugasamy, S. Govindaraju, K. Yun, Appl. Surf. Sci. 508 (2020) 145294.
doi: 10.1016/j.apsusc.2020.145294
G. Huang, X. Yang, R. Huang, Int. J. Electrochem. Sci. 15 (2020) 9888–9901.
doi: 10.20964/2020.10.47
C. Luhana, I. Moyo, K. Tshenkeng, et al., Microchem. J. 180 (2022) 107605.
doi: 10.1016/j.microc.2022.107605
T. Zhang, D. Long, X. Gu, et al., Microchim. Acta 189 (2022) 389.
doi: 10.1007/s00604-022-05483-3
R. Wu, S. Yu, S. Chen, et al., Anal. Chim. Acta 1229 (2022) 340365.
doi: 10.1016/j.aca.2022.340365
J. Zhou, Y. Xia, Z. Zou, et al., Anal. Chim. Acta 1237 (2023) 340631.
doi: 10.1016/j.aca.2022.340631
F. Nosratzehi, H. Halakoei, M. Rostami, et al., Diamond Relat. Mater. 127 (2022) 109120.
doi: 10.1016/j.diamond.2022.109120
A. Thadathil, D. Thacharakkal, Y.A. Ismail, et al., Biosensors 12 (2022) 1063.
doi: 10.3390/bios12121063
H. Chul Lim, S.J. Jang, Y. Cho, et al., ChemElectroChem 9 (2022) e202200557.
doi: 10.1002/celc.202200557
Z. Nazari, M. Hadi Nematollahi, F. Zareh, et al., ChemistrySelect 8 (2023) e202203630.
doi: 10.1002/slct.202203630
K. Wang, Y. Li, M. Qi, et al., Microchim. Acta 189 (2022) 382.
doi: 10.1007/s00604-022-05479-z
M. Hasheena, A. Ratnamala, M. Noorjahan, et al., J. Appl. Electrochem. 53 (2022) 571–583.
J.H.A. Ferreira, R.M. Peres, M. Nakamura, et al., J. Nanopart. Res. 25 (2023) 9.
doi: 10.1007/s11051-022-05659-1
B. Liu, J. Zhuang, G. Wei, Environ. Sci. 7 (2020) 2195–2213.
doi: 10.1039/d0en00449a
S. He, Q. Huang, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1462–1465.
doi: 10.1016/j.cclet.2020.09.047
Y. Chen, X. Yang, C. Lu, et al., Chin. Chem. Lett. 34 (2023) 108099.
doi: 10.1016/j.cclet.2022.108099
Y.T. Huang, M. Xue, Y. Yang, Chin. Chem. Lett. 34 (2023) 108294.
doi: 10.1016/j.cclet.2023.108294
Z. Jia, Y. Liu, L. Cheng, et al., Talanta 11 (2023) 1288418.
T. Alawsi, G.P. Mattia, Z. Al-Bawi, et al., Sens. Bio-Sensing Res. 32 (2021) 100404.
doi: 10.1016/j.sbsr.2021.100404
C. Dong, X. Ma, N. Qiu, et al., Sens. Actuator. B: Chem. 329 (2021) 129066.
doi: 10.1016/j.snb.2020.129066
Monisha, K. Shrivas, T. Kant, et al., J. Hazard. Mater. 414 (2021) 125440.
doi: 10.1016/j.jhazmat.2021.125440
R. Wang, G. Ruan, Y. Sun, et al., Dyes Pigments 191 (2021) 109383.
doi: 10.1016/j.dyepig.2021.109383
Y. Zhang, Q. Luo, K. Ding, et al., Sens. Actuator. B: Chem. 335 (2021) 129708.
doi: 10.1016/j.snb.2021.129708
W. Liu, Z. Li, H. Jia, et al., Appl. Surf. Sci. 481 (2019) 678–683.
doi: 10.1016/j.apsusc.2019.03.175
H. Singh, A. Bamrah, S.K. Bhardwaj, et al., Environ. Sci. 8 (2021) 863–889.
doi: 10.1039/d0en00963f
R. Singh, R. Mehra, A. Walia, et al., Int. J. Environ. Anal. Chem. 103 (2023) 1361–1376.
doi: 10.1080/03067319.2021.1873315
M. Amiri, S. Dadfarnia, A.M. Haji Shabani, et al., J. Pharm. Biomed. Anal. 172 (2019) 223–229.
doi: 10.1016/j.jpba.2019.04.037
Y.F. Wang, L. Li, M. Jiang, et al., Appl. Surf. Sci. 573 (2022) 151457.
doi: 10.1016/j.apsusc.2021.151457
Y. Xu, J. Wang, Y. Lu, et al., Spectrochim. Acta Part A 219 (2019) 225–231.
doi: 10.1016/j.saa.2019.04.035
V. Naik, P. Zantye, D. Gunjal, et al., ACS Appl. Bio Mater. 2 (2019) 2069–2077.
doi: 10.1021/acsabm.9b00101
G.A. Matthews, E.H. Nieh, C.M. Vander Weele, et al., Cell 164 (2016) 617–631.
doi: 10.1016/j.cell.2015.12.040
X. Li, S. Zhao, B. Li, et al., Coord. Chem. Rev. 431 (2021) 213686.
doi: 10.1016/j.ccr.2020.213686
A.J. Duszkiewicz, C.G. McNamara, T. Takeuchi, et al., Trends Neurosci. 42 (2019) 102–114.
doi: 10.1016/j.tins.2018.10.002
C. Bucolo, G.M. Leggio, F. Drago, et al., Pharmacol. Ther. 203 (2019) 107392.
doi: 10.1016/j.pharmthera.2019.07.003
Y. Tang, J. Xu, C. Xiong, et al., Analyst 144 (2019) 2643–2648.
doi: 10.1039/c9an00032a
R.P. Maas, T. Wassenberg, J.P. Lin, et al., Neurology 88 (2017) 1865–1871.
doi: 10.1212/WNL.0000000000003897
Z. Tian, X. Qin, F. Shao, et al., Chin. Chem. Lett. 34 (2023) 107656.
doi: 10.1016/j.cclet.2022.06.079
J. Li, A. Reimers, K.M. Dang, et al., Biosens. Bioelectron. 222 (2023) 114942.
doi: 10.1016/j.bios.2022.114942
Q. Huang, S. Hu, H. Zhang, et al., Analyst 138 (2013) 5417–5423.
doi: 10.1039/c3an00510k
Q. Huang, H. Zhang, S. Hu, et al., Biosens. Bioelectron. 52 (2014) 277–280.
doi: 10.1002/9781118889954.index
M.A. Elchisak, J.H. Carlson, Life Sci. 30 (1982) 2325–2336.
doi: 10.1016/0024-3205(82)90260-0
J. Kim, M. Jeon, K.J. Paeng, et al., Anal. Chim. Acta 619 (2008) 87–93.
doi: 10.1016/j.aca.2008.02.042
Z. Chen, F. Zhang, Y. Lu, et al., Chin. Chem. Lett. 33 (2022) 3144–3150.
doi: 10.1016/j.cclet.2021.10.027
X. Xu, R. Ray, Y. Gu, et al., J. Am. Chem. Soc. 126 (2004) 12736–12737.
doi: 10.1021/ja040082h
Y.P. Sun, B. Zhou, Y. Lin, et al., J. Am. Chem. Soc. 128 (2006) 7756–7757.
doi: 10.1021/ja062677d
W. Meng, B. Yang, S. Lu, Chin. J. Lumin. 42 (2021) 1075–1094.
doi: 10.37188/cjl.20210155
N. Dhull, G. Kaur, P. Jain, et al., Appl. Surf. Sci. 495 (2019) 143548.
doi: 10.1016/j.apsusc.2019.143548
Z. Zeng, F.X. Xiao, H. Phan, et al., J. Mater. Chem. A 6 (2018) 1700–1713.
doi: 10.1039/c7ta09119b
Y. Wang, J. Sheng, X. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107967.
doi: 10.1016/j.cclet.2022.107967
Y. Zhang, Q. Xie, Z. Xia, et al., J. Electroanal. Chem. 863 (2020) 114058.
doi: 10.1016/j.jelechem.2020.114058
Q. Zeng, T. Feng, S. Tao, et al., Light: Sci. Appl. 10 (2021) 142.
doi: 10.1038/s41377-021-00579-6
C. Xia, S. Zhu, T. Feng, et al., Adv. Sci. 6 (2019) 1901316.
doi: 10.1002/advs.201901316
S. Zhang, Y. Yang, Y. Zhai, et al., Chin. Chem. Lett. 34 (2023) 107652.
doi: 10.1016/j.cclet.2022.06.075
B. Wang, H. Wang, Y. Hu, et al., Nano Lett. 23 (2023) 8794–8800.
doi: 10.1021/acs.nanolett.3c02271
P. Gao, Z. Xie, M. Zheng, Chin. Chem. Lett. 33 (2022) 1659–1672.
doi: 10.1016/j.cclet.2021.09.085
X. Niu, W. Zheng, T. Song, et al., Chin. Chem. Lett. 34 (2023) 107560.
doi: 10.1016/j.cclet.2022.05.074
X. Yang, X. Li, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 613–625.
doi: 10.1016/j.cclet.2021.08.077
B. Wang, S. Lu, Matter 5 (2022) 110–149.
doi: 10.1016/j.matt.2021.10.016
Y. Zhang, S. Lu, Chem 10 (2024) 134–171.
doi: 10.1016/j.chempr.2023.09.020
Z. Wei, B. Wang, M. Xie, et al., Chin. Chem. Lett. 33 (2022) 751–756.
doi: 10.1016/j.cclet.2021.08.014
Y. Zhang, J. Wang, L. Wang, et al., Adv. Mater. 35 (2023) 2302536.
doi: 10.1002/adma.202302536
B. Wang, G.I.N. Waterhouse, S. Lu, Trends Chem. 5 (2023) 76–87.
doi: 10.1016/j.trechm.2022.10.005
Y. Zhang, L. Wang, Y. Hu, et al., Small 19 (2023) 2207983.
doi: 10.1002/smll.202207983
S. Wang, Y. Zhang, G. Pang, et al., Anal. Chem. 89 (2017) 1704–1709.
doi: 10.1021/acs.analchem.6b03913
L. Ding, S. Kang, Y. Wang, et al., Chin. J. Lumin. 44 (2023) 2002–2010.
doi: 10.37188/cjl.20230177
J. Du, N. Xu, J. Fan, et al., Small 15 (2019) e1805087.
doi: 10.1002/smll.201805087
B. Wang, H. Cai, G.I.N. Waterhouse, et al., Small Sci. 2 (2022) 2200012.
doi: 10.1002/smsc.202200012
Y. Zhang, M. Li, S. Lu, Small 19 (2023) 2206080.
doi: 10.1002/smll.202206080
M. Fang, B. Wang, X. Qu, et al., Chin. Chem. Lett. 35 (2024) 108423.
doi: 10.1016/j.cclet.2023.108423
B. Wang, H. Song, Z. Tang, et al., Nano Res. 15 (2022) 942–949.
doi: 10.1007/s12274-021-3579-5
C. Liu, R. Cheng, J. Guo, et al., Chin. Chem. Lett. 33 (2022) 304–307.
doi: 10.1016/j.cclet.2021.06.073
Y. Zhai, P. Wang, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 783–787.
doi: 10.1016/j.cclet.2021.08.075
W. Zhao, Y. Wang, K. Liu, et al., Chin. Chem. Lett. 33 (2022) 798–802.
doi: 10.1016/j.cclet.2021.08.084
G. Zou, S. Chen, N. Liu, et al., Chin. Chem. Lett. 33 (2022) 778–782.
doi: 10.1016/j.cclet.2021.08.076
X. Li, X. Xing, S. Zhao, et al., Chin. Chem. Lett. 33 (2022) 1632–1636.
doi: 10.1016/j.cclet.2021.09.086
X. Zhou, X. Wang, L. Shang, Chin. Chem. Lett. 34 (2023) 108093.
doi: 10.1016/j.cclet.2022.108093
N. Ahmed, W. Zareen, Y. Ye, et al., Chin. Chem. Lett. 33 (2022) 2765–2772.
doi: 10.1016/j.cclet.2021.12.092
Q. Zhou, S. Wang, X. Ran, et al., Chin. Chem. Lett. 34 (2023) 107922.
doi: 10.1016/j.cclet.2022.107922
S. Zhuo, Y. Guan, H. Li, et al., Analyst 144 (2019) 656–662.
doi: 10.1039/c8an01741g
X. Yang, F. Tian, S. Wen, et al., Processes 9 (2021) 170.
doi: 10.3390/pr9010170
M. Lakshmanakumar, N. Nesakumar, A.J. Kulandaisamy, et al., Measurement 183 (2021) 109873.
doi: 10.1016/j.measurement.2021.109873
L. Zhao, J. Liu, Y. Bai, et al., Colloids Surf. A. 627 (2021) 127179.
doi: 10.1016/j.colsurfa.2021.127179
M. Lan, S. Zhao, X. Wei, et al., Dyes Pigments 170 (2019) 107574.
doi: 10.1016/j.dyepig.2019.107574
D.M. Liu, C. Dong, Process Biochem. 92 (2020) 464–475.
doi: 10.1016/j.procbio.2020.02.005
Y.K. Cen, Y.X. Liu, Y.P. Xue, et al., Adv. Synth. Catal. 361 (2019) 5500–5515.
doi: 10.1002/adsc.201900439
S. Patra, S. Sene, C. Mousty, et al., ACS Appl. Mater. Interfaces 8 (2016) 20012–20022.
doi: 10.1021/acsami.6b05289
Z. Tang, K. Jiang, S. Sun, et al., Analyst 144 (2019) 468–473.
doi: 10.1039/c8an01659c
K.J. Mintz, Y. Zhou, R.M. Leblanc, Nanoscale 11 (2019) 4634–4652.
doi: 10.1039/c8nr10059d
S. Miao, K. Liang, J. Zhu, et al., Nano Today 33 (2020) 100879.
doi: 10.1016/j.nantod.2020.100879
S. Sun, Q. Guan, Y. Liu, et al., Chin. Chem. Lett. 30 (2019) 1051–1054.
doi: 10.1016/j.cclet.2019.01.014
P. Krishnaiah, R. Atchudan, S. Perumal, et al., Chemosphere 286 (2022) 131764.
doi: 10.1016/j.chemosphere.2021.131764
J. Guo, W. Lu, H. Zhang, et al., Sens. Actuator. B: Chem. 330 (2021) 129360.
doi: 10.1016/j.snb.2020.129360
L. Jiang, H. Ding, S. Lu, et al., Angew. Chem. Int. Ed. 59 (2020) 9986–9991.
doi: 10.1002/anie.201913800
M. He, J. Zhang, H. Wang, et al., Nanoscale Res. Lett. 13 (2018) 175.
doi: 10.1186/s11671-018-2581-7
M.E. Mahmoud, N.A. Fekry, A.M. Abdelfattah, J. Hazard. Mater. 397 (2020) 122770.
doi: 10.1016/j.jhazmat.2020.122770
F. Yang, W. Bao, T. Liu, B. Zhang, et al., Microchim. Acta 187 (2020) 322.
doi: 10.1007/s00604-020-04294-8
J. Wang, X. Hu, H. Ding, et al., ACS Appl. Mater. Interfaces 11 (2019) 18203–18212.
doi: 10.1021/acsami.9b03644
C. Wang, H. Shi, M. Yang, et al., J. Photochem. Photobiol. A 391 (2020) 112374.
doi: 10.1016/j.jphotochem.2020.112374
Y. Ma, A.Y. Chen, X.F. Xie, et al., Talanta 196 (2019) 563–571.
doi: 10.1016/j.talanta.2019.01.001
C. Wang, H. Shi, M. Yang, et al., Colloids Surf. B 205 (2021) 111874.
doi: 10.1016/j.colsurfb.2021.111874
D. Mathivanan, A. Mohan, Y. Yang, J. Mater. Sci.: Mater. Electron. 32 (2021) 9005–9017.
doi: 10.1007/s10854-021-05571-9
Q. Zhu, H. Mao, J. Li, et al., Spectrochim. Acta Part A 247 (2021) 119090.
doi: 10.1016/j.saa.2020.119090
H. Liu, Y. Sun, Z. Li, et al., Nanoscale 11 (2019) 8458–8463.
doi: 10.1039/c9nr01678c
A.M. Mahmoud, M.H. Mahnashi, K. Alhazzani, et al., Spectrochim. Acta Part A 252 (2021) 119516.
doi: 10.1016/j.saa.2021.119516
T. Zhao, J. Han, X. Jin, et al., Angew. Chem. Int. Ed. 58 (2019) 4978–4982.
doi: 10.1002/anie.201900052
L.D. Rosales-Vazquez, A. Dorazco-Gonzalez, V. Sanchez-Mendieta, Dalton Trans. 50 (2021) 4470–4485.
doi: 10.1039/d0dt04403b
W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev. 46 (2017) 3242–3285.
doi: 10.1039/C6CS00930A
L. Li, Z. Li, W. Yang, et al., Chem 7 (2021) 686–698.
doi: 10.1016/j.chempr.2020.11.023
X.X. Chen, M.J. Hou, G.J. Mao, Microchim. Acta 188 (2021) 287.
doi: 10.1080/10864415.2021.1943170
D.X. Xue, Q. Wang, J. Bai, Coord. Chem. Rev. 378 (2019) 2–16.
doi: 10.1016/j.ccr.2017.10.026
S. Xie, X. Li, L. Wang, et al., Microchem. J. 160 (2021) 105718.
doi: 10.1016/j.microc.2020.105718
Y. Zhang, H. Xu, Y. Yang, et al., J. Photochem. Photobiol. A 411 (2021) 113195.
doi: 10.1016/j.jphotochem.2021.113195
Q. Yang, J. Li, X. Wang, et al., Sens. Actuator. B: Chem. 284 (2019) 428–436.
doi: 10.1016/j.snb.2018.12.134
M. Sun, L. Zhang, S. Xu, et al., Analyst 147 (2022) 947–955.
doi: 10.1039/D2AN00049K
C. Zhao, Y. Jiao, J. Hua, et al., J. Fluoresc. 28 (2018) 269–276.
doi: 10.1007/s10895-017-2189-9
L. Wang, J. Jana, J.S. Chung, et al., Dyes Pigments 186 (2021) 109028.
doi: 10.1016/j.dyepig.2020.109028
X.Y. Tang, Y.M. Liu, X.L. Bai, et al., Anal. Chim. Acta 1157 (2021) 338394.
doi: 10.1016/j.aca.2021.338394
S.K. Tammina, D. Yang, S. Koppala, et al., J. Photochem. Photobiol. B 194 (2019) 61–70.
doi: 10.1016/j.jphotobiol.2019.01.004
R. Sangubotla, J. Kim, Dyes Pigments 191 (2021) 109364.
doi: 10.1016/j.dyepig.2021.109364
R. Sangubotla, J. Kim, Mater. Sci. Eng. C 122 (2021) 111916.
doi: 10.1016/j.msec.2021.111916
L. Ren, X. Hang, Z. Qin, et al., Optik 208 (2020) 163560.
doi: 10.1016/j.ijleo.2019.163560
C. Ratlam, S. Phanichphant, S. Sriwichai, J. Polym. Res. 27 (2020) 183.
doi: 10.1007/s10965-020-02158-6
S.W. Park, T.E. Kim, Y.K. Jung, Anal. Chim. Acta 1165 (2021) 338513.
doi: 10.1016/j.aca.2021.338513
G. Mi, M. Yang, C. Wang, et al., Spectrochim. Acta Part A 253 (2021) 119555.
doi: 10.1016/j.saa.2021.119555
M. Louleb, L. Latrous, Á. Ríos, et al., ACS Appl. Nano Mater. 3 (2020) 8004–8011.
doi: 10.1021/acsanm.0c01461
H. Lin, J. Huang, L. Ding, J. Nanomater. 2019 (2019) 5037243.
A. Kumar, S. Asu, P. Mukherjee, et al., J. Photochem. Photobiol. A 406 (2021) 113019.
doi: 10.1016/j.jphotochem.2020.113019
J. Jana, J.S. Chung, S.H. Hur, ACS Omega 4 (2019) 17031–17038.
doi: 10.1021/acsomega.9b02637
S. Dadkhah, A. Mehdinia, A. Jabbari, et al., Microchim. Acta 187 (2020) 569.
doi: 10.1007/s00604-020-04543-w
N. Chavoshi, B. Hemmateenejad, J. Fluoresc. 31 (2021) 455–463.
doi: 10.1007/s10895-020-02668-y
J. Bai, X. Chen, G. Yuan, et al., Nano 16 (2021) 2150030.
doi: 10.1142/s1793292021500302
J. An, M. Chen, N. Hu, et al., Spectrochim. Acta Part A 243 (2020) 118804.
doi: 10.1016/j.saa.2020.118804
A.O. Alqarni, S.A. Alkahtani, A.M. Mahmoud, et al., Spectrochim. Acta Part A 248 (2021) 119180.
doi: 10.1016/j.saa.2020.119180
X. Tan, P. Zhang, C. Ye, et al., Dyes Pigments 180 (2020) 108515.
doi: 10.1016/j.dyepig.2020.108515
R. Das, K.K. Paul, P.K. Giri, Appl. Surf. Sci. 490 (2019) 318–330.
doi: 10.1016/j.apsusc.2019.06.065
J. Wang, R. Du, W. Liu, et al., Sens. Actuator. B: Chem. 290 (2019) 125–132.
G. Chellasamy, S.R. Ankireddy, K.N. Lee, et al., Mater. Today Bio 12 (2021) 100168.
doi: 10.1016/j.mtbio.2021.100168
Q. Bai, H. Luo, X. Yi, et al., Microchem. J. 179 (2022) 107521.
doi: 10.1016/j.microc.2022.107521
R. Zhang, Z. Fan, J. Photochem. Photobiol. A 392 (2020) 112438.
doi: 10.1016/j.jphotochem.2020.112438
Y. Liu, W. Li, P. Wu, et al., Sens. Actuator. B: Chem. 281 (2019) 34–43.
doi: 10.1016/j.snb.2018.10.075
K. Chaiendoo, S. Ittisanronnachai, V. Promarak, et al., Carbon 146 (2019) 728–735.
doi: 10.1016/j.carbon.2019.02.030
S. Wei, B. Liu, X. Shi, et al., Talanta 252 (2023) 123865.
doi: 10.1016/j.talanta.2022.123865
R. Sangubotla, J. Kim, Ceram. Int. 49 (2023) 16272–16282.
doi: 10.1016/j.ceramint.2023.01.225
X. Liu, W. Yu, X. Mu, et al., Spectrochim. Acta Part A 287 (2023) 122112.
doi: 10.1016/j.saa.2022.122112
A. Tiwari, S. Walia, S. Sharma, et al., J. Mater. Chem. B 11 (2023) 1029–1043.
doi: 10.1039/d2tb02188a
W. Guo, Q. Wang, X. Zhan, et al., Part. Part. Syst. Charact. 39 (2022) 2200089.
doi: 10.1002/ppsc.202200089
S. Kanagasubbulakshmi, K. Kadirvelu, Spectrochim. Acta Part A 206 (2019) 512–519.
doi: 10.1016/j.saa.2018.08.050
W. Liu, X.J.T. Zhu, Talanta 197 (2019) 59–67.
doi: 10.1016/j.talanta.2019.01.008
H. Liu, N. Li, H. Zhang, et al., Talanta 189 (2018) 190–195.
doi: 10.1016/j.talanta.2018.05.014
Y. Guo, S. Guo, Y. Fang, et al., Electrochim. Acta 55 (2010) 3927–3931.
doi: 10.1016/j.electacta.2010.02.024
Y. Mei, C. He, W. Zeng, et al., Food Bioprocess Technol. 15 (2022) 498–513.
doi: 10.1007/s11947-022-02759-7
Y. Sun, M. Luo, X. Meng, et al., Anal. Chem. 89 (2017) 3761–3767.
doi: 10.1021/acs.analchem.7b00248
H. Zhang, K.-T. Huang, L. Ding, et al., Chin. Chem. Lett. 33 (2022) 1537–1540.
doi: 10.1016/j.cclet.2021.09.002
Y. Yu, M. Pan, J. Peng, et al., Chin. Chem. Lett. 33 (2022) 4133–4145.
doi: 10.1016/j.cclet.2022.02.045
H. Liu, Y. Yu, T. Xue, et al., Chin. Chem. Lett. 35 (2024) 108574.
doi: 10.1016/j.cclet.2023.108574
X. Lin, Y. Mei, C. He, et al., Front. Chem. 9 (2021) 769648.
doi: 10.3389/fchem.2021.769648
Y. Jiang, X. Xiao, C. Li, et al., Anal. Chem. 92 (2020) 3981–3989.
doi: 10.1021/acs.analchem.9b05484
H. Wei, F. Wu, L. Li, et al., Anal. Chem. 92 (2020) 11374–11379.
doi: 10.1021/acs.analchem.0c02240
A. Joshi, W. Schuhmann, T.C. Nagaiah, Sens. Actuator. B: Chem. 230 (2016) 544–555.
doi: 10.1016/j.snb.2016.02.050
Y. Wu, P. Deng, Y. Tian, et al., J. Nanobiotechnol. 18 (2020) 112.
doi: 10.1186/s12951-020-00672-9
Q. Huang, X. Lin, D. Chen, et al., Food Chem. 373 (2022) 131415.
doi: 10.1016/j.foodchem.2021.131415
Z. Wang, Int. J. Electrochem. Sci. 16 (2021) 210450.
doi: 10.20964/2021.04.39
L. Li, Y. Chen, J.J. Zhu, Anal. Chem. 89 (2017) 358–371.
doi: 10.1021/acs.analchem.6b04675
J. Zhou, Y. Li, W. Wang, et al., Biosens. Bioelectron. 164 (2020) 112332.
doi: 10.1016/j.bios.2020.112332
J. Liu, Y. Zhang, R. Yuan, Sens. Actuator. B: Chem. 379 (2023) 133260.
doi: 10.1016/j.snb.2022.133260
Z. Zhu, H. Niu, R. Li, et al., Biosens. Bioelectron. 10 (2022) 100141.
F. Xie, M. Yang, M. Jiang, et al., TrAC Trends Anal. Chem. 119 (2019) 115624.
doi: 10.1016/j.trac.2019.115624
A. Chen, S. Chatterjee, Chem. Soc. Rev. 42 (2013) 5425–5438.
doi: 10.1039/c3cs35518g
B.R. Adhikari, M. Govindhan, A. Chen, Sensors 15 (2015) 22490–22508.
doi: 10.3390/s150922490
Q. Huang, X. Lin, L. Tong, et al., ACS Sustain. Chem. Eng. 8 (2020) 1644–1650.
doi: 10.1021/acssuschemeng.9b06623
Q. Pan, Z. Xu, S. Deng, et al., RSC Adv. 9 (2019) 39332–39337.
doi: 10.1039/c9ra06912g
Y.Y. Li, P. Kang, S.Q. Wang, et al., Sens. Actuator. B: Chem. 327 (2021) 128878.
doi: 10.1016/j.snb.2020.128878
G. Han, J. Cai, C. Liu, J. Ren, et al., Appl. Surf. Sci. 541 (2021) 148566.
doi: 10.1016/j.apsusc.2020.148566
E. Saeb, K. Asadpour-Zeynali, Microchem. J. 160 (2021) 105603.
doi: 10.1016/j.microc.2020.105603
M. Mehmandoust, P. Pourhakkak, F. Hasannia, et al., Food Chem. Toxicol. 164 (2022) 113080.
doi: 10.1016/j.fct.2022.113080
N. Ahmadi, M. Bagherzadeh, A. Nemati, Biosens. Bioelectron. 151 (2020) 111977.
doi: 10.1016/j.bios.2019.111977
J.M. Moon, N. Thapliyal, K.K. Hussain, et al., Biosens. Bioelectron. 102 (2018) 540–552.
doi: 10.1016/j.bios.2017.11.069
S. Samanta, P. Roy, P. Kar, Mater. Sci. Eng. B 256 (2020) 114541.
doi: 10.1016/j.mseb.2020.114541
A. John, L. Benny, A.R. Cherian, et al., J. Nanostruct. Chem. 11 (2021) 1–31.
doi: 10.1007/s40097-020-00372-8
Y. Wang, A. Liu, Y. Han, et al., Polym. Int. 69 (2019) 7–17.
M.Z. Iqbal, M.M. Faisal, S.R. Ali, et al., Electrochim. Acta 346 (2020) 136039.
doi: 10.1016/j.electacta.2020.136039
Q. Wang, J. Li, D. Wang, et al., Electrochim. Acta 349 (2020) 136348.
doi: 10.1016/j.electacta.2020.136348
Y. Prykhodko, K. Fatyeyeva, L. Hespel, et al., Chem. Eng. J. 409 (2021) 127329.
doi: 10.1016/j.cej.2020.127329
P. Senthil Kumar, B.S. Sreeja, K. Krishna Kumar, et al., Food Chem. Toxicol. 167 (2022) 113311.
doi: 10.1016/j.fct.2022.113311
H.S. Jang, D. Kim, C. Lee, et al., Inorg. Chem. Commun. 105 (2019) 174–181.
doi: 10.1016/j.inoche.2019.05.009
L. Yang, T. Wang, C. Bao, et al., J. Electroanal. Chem. 895 (2021) 115512.
doi: 10.1016/j.jelechem.2021.115512
B. Wu, M. Li, Z. Xu, et al., Simultaneous electrochemical detection of dopamine and uric acid with graphene quantum dots decorated cobalt phthalocyanine nanocomposite, in: 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), IEEE, 2021, pp. 533–536, doi:
Y. Wei, Z. Xu, S. Wang, et al., Ionics 26 (2020) 5817–5828.
doi: 10.1007/s11581-020-03703-5
J. Wang, C. Lu, T. Chen, et al., Nanophotonics 9 (2020) 3831–3839.
doi: 10.1515/nanoph-2019-0418
V. Vinoth, L.N. Natarajan, R.V. Mangalaraja, et al., Microchim. Acta 186 (2019) 681.
doi: 10.1007/s00604-019-3779-9
P. Thondaiman, R. Manikandan, C.J. Raj, et al., Synth. Met. 278 (2021) 116831.
doi: 10.1016/j.synthmet.2021.116831
S. Saisree, N.J.S. Arya, K.Y. Sandhya, J. Mater. Chem. B 10 (2022) 3974–3988.
doi: 10.1039/D1TB02368C
T.M. Prado, A. Carrico, F.H. Cincotto, et al., Sens. Actuator. B: Chem. 285 (2019) 248–253.
doi: 10.1016/j.snb.2019.01.059
P.K. Pandey, Preeti, K. Rawat, T. Prasad, et al., J. Mater. Chem. B 8 (2020) 1277–1289.
doi: 10.1039/c9tb01863h
N. Ndebele, P. Sen, T. Nyokong, J. Electroanal. Chem. 886 (2021) 115111.
doi: 10.1016/j.jelechem.2021.115111
M. Li, Int. J. Electrochem. Sci. 16 (2021) 21084.
doi: 10.20964/2021.08.04
K. Kunpatee, S. Traipop, O. Chailapakul, et al., Sens. Actuator. B: Chem. 314 (2020) 128059.
doi: 10.1016/j.snb.2020.128059
W.F. Hsu, T.M. Wu, J. Mater. Sci. 30 (2019) 8449–8456.
doi: 10.1007/s10854-019-01165-8
S.E. Elugoke, O.E. Fayemi, A.S. Adekunle, et al., FlatChem 33 (2022) 100372.
doi: 10.1016/j.flatc.2022.100372
S.K. Arumugasamy, S. Govindaraju, K. Yun, Appl. Surf. Sci. 508 (2020) 145294.
doi: 10.1016/j.apsusc.2020.145294
G. Huang, X. Yang, R. Huang, Int. J. Electrochem. Sci. 15 (2020) 9888–9901.
doi: 10.20964/2020.10.47
C. Luhana, I. Moyo, K. Tshenkeng, et al., Microchem. J. 180 (2022) 107605.
doi: 10.1016/j.microc.2022.107605
T. Zhang, D. Long, X. Gu, et al., Microchim. Acta 189 (2022) 389.
doi: 10.1007/s00604-022-05483-3
R. Wu, S. Yu, S. Chen, et al., Anal. Chim. Acta 1229 (2022) 340365.
doi: 10.1016/j.aca.2022.340365
J. Zhou, Y. Xia, Z. Zou, et al., Anal. Chim. Acta 1237 (2023) 340631.
doi: 10.1016/j.aca.2022.340631
F. Nosratzehi, H. Halakoei, M. Rostami, et al., Diamond Relat. Mater. 127 (2022) 109120.
doi: 10.1016/j.diamond.2022.109120
A. Thadathil, D. Thacharakkal, Y.A. Ismail, et al., Biosensors 12 (2022) 1063.
doi: 10.3390/bios12121063
H. Chul Lim, S.J. Jang, Y. Cho, et al., ChemElectroChem 9 (2022) e202200557.
doi: 10.1002/celc.202200557
Z. Nazari, M. Hadi Nematollahi, F. Zareh, et al., ChemistrySelect 8 (2023) e202203630.
doi: 10.1002/slct.202203630
K. Wang, Y. Li, M. Qi, et al., Microchim. Acta 189 (2022) 382.
doi: 10.1007/s00604-022-05479-z
M. Hasheena, A. Ratnamala, M. Noorjahan, et al., J. Appl. Electrochem. 53 (2022) 571–583.
J.H.A. Ferreira, R.M. Peres, M. Nakamura, et al., J. Nanopart. Res. 25 (2023) 9.
doi: 10.1007/s11051-022-05659-1
B. Liu, J. Zhuang, G. Wei, Environ. Sci. 7 (2020) 2195–2213.
doi: 10.1039/d0en00449a
S. He, Q. Huang, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1462–1465.
doi: 10.1016/j.cclet.2020.09.047
Y. Chen, X. Yang, C. Lu, et al., Chin. Chem. Lett. 34 (2023) 108099.
doi: 10.1016/j.cclet.2022.108099
Y.T. Huang, M. Xue, Y. Yang, Chin. Chem. Lett. 34 (2023) 108294.
doi: 10.1016/j.cclet.2023.108294
Z. Jia, Y. Liu, L. Cheng, et al., Talanta 11 (2023) 1288418.
T. Alawsi, G.P. Mattia, Z. Al-Bawi, et al., Sens. Bio-Sensing Res. 32 (2021) 100404.
doi: 10.1016/j.sbsr.2021.100404
C. Dong, X. Ma, N. Qiu, et al., Sens. Actuator. B: Chem. 329 (2021) 129066.
doi: 10.1016/j.snb.2020.129066
Monisha, K. Shrivas, T. Kant, et al., J. Hazard. Mater. 414 (2021) 125440.
doi: 10.1016/j.jhazmat.2021.125440
R. Wang, G. Ruan, Y. Sun, et al., Dyes Pigments 191 (2021) 109383.
doi: 10.1016/j.dyepig.2021.109383
Y. Zhang, Q. Luo, K. Ding, et al., Sens. Actuator. B: Chem. 335 (2021) 129708.
doi: 10.1016/j.snb.2021.129708
W. Liu, Z. Li, H. Jia, et al., Appl. Surf. Sci. 481 (2019) 678–683.
doi: 10.1016/j.apsusc.2019.03.175
H. Singh, A. Bamrah, S.K. Bhardwaj, et al., Environ. Sci. 8 (2021) 863–889.
doi: 10.1039/d0en00963f
R. Singh, R. Mehra, A. Walia, et al., Int. J. Environ. Anal. Chem. 103 (2023) 1361–1376.
doi: 10.1080/03067319.2021.1873315
M. Amiri, S. Dadfarnia, A.M. Haji Shabani, et al., J. Pharm. Biomed. Anal. 172 (2019) 223–229.
doi: 10.1016/j.jpba.2019.04.037
Y.F. Wang, L. Li, M. Jiang, et al., Appl. Surf. Sci. 573 (2022) 151457.
doi: 10.1016/j.apsusc.2021.151457
Y. Xu, J. Wang, Y. Lu, et al., Spectrochim. Acta Part A 219 (2019) 225–231.
doi: 10.1016/j.saa.2019.04.035
V. Naik, P. Zantye, D. Gunjal, et al., ACS Appl. Bio Mater. 2 (2019) 2069–2077.
doi: 10.1021/acsabm.9b00101
Xilin Bai , Wei Deng , Jingjuan Wang , Ming Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Yupeng Liu , Hui Wang , Songnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921