Citation: Chenghao Liu, Xiaofeng Lin, Jing Liao, Min Yang, Min Jiang, Yue Huang, Zhizhi Du, Lina Chen, Sanjun Fan, Qitong Huang. Carbon dots-based dopamine sensors: Recent advances and challenges[J]. Chinese Chemical Letters, ;2024, 35(12): 109598. doi: 10.1016/j.cclet.2024.109598 shu

Carbon dots-based dopamine sensors: Recent advances and challenges

    * Corresponding authors.
    E-mail addresses: Linxf@gmu.edu.cn (X. Lin), fan.1113@osu.edu (S. Fan), hqt@gmu.edu.cn (Q. Huang).
  • Received Date: 9 December 2023
    Revised Date: 26 January 2024
    Accepted Date: 29 January 2024
    Available Online: 4 February 2024

Figures(3)

  • Dopamine, a pivotal excitatory neurotransmitter, plays a crucial role in metabolic, cardiovascular, renal, central nervous, and endocrine systems. Abnormal dopamine within the human body can cause various diseases. Therefore, the precise quantification of dopamine levels, both in vivo and in vitro, holds paramount significance for clinical applications and physiological investigations. Carbon dots (CDs) exhibit a plethora of remarkable properties, including a substantial specific surface area, robust electrical conductivity, commendable biocompatibility, minimal toxicity, and high photostability. Considering these unique characteristics, CDs demonstrate substantial potential for fluorescent sensors, colorimetric sensors, and electrochemical sensors for dopamine detection. This review systematically examined the challenges and prospects for the utilization of CDs-based fluorescent sensors, electrochemical biosensors, and colorimetric sensors for monitoring dopamine levels in recent years. These findings unveil promising avenues for further advancements in the field of dopamine detection.
  • Sulfone-containing compounds are frequently found in pharmacologically active compounds, natural products, and materials [1]. Furthermore, they can also be employed as important intermediates in various organic transformations to access a series of useful molecules [2]. Consequently, the introduction of sulfone functionality into organic framework has attracted considerable synthetic pursuit of chemists because of their interesting biological activities and versatile synthetic applications [3]. During the past decades, a number of sulfonylating agents such as sulfonyl chlorides [4], sulfonyl hydrazides [5], sulfinates [6], sulfinic acids [7], thiophenols [8], sulfonyl cyanides [9], sulfonyl selenides [10] and SO2 surrogates [11] have been developed for the construction of organic sulfones. Nevertheless, most of these sulfonylation reactions usually require the use of catalysts or a stoichiometric amount of oxidants, or suffer from complex reaction conditions. It is still highly desirable to develop new strategies to construct sulfone-containing compounds from simple sulfonylating agents under mild conditions.

    Arylazo sulfones are colored and bench stable compounds, which could generate aryl radical and sulfonyl radical along with the release of N2 through the homolytic cleavage of C-N and S-N bonds under visible-light irradiation or heating conditions [12]. Generally, arylazo sulfones are utilized as arylating reagents in photoinduced reactions in the absence of photocatalyst [13]. Recently, arylazo sulfones have alternatively emerged as sulfonylating agents for constructing sulfone-containing compounds [14]. In 2019, our group reported oxysulfonylation of alkenes or alkynes with arylazo sulfones and dioxygen leading to β-oxo sulfones under visible-light irradiation conditions (Scheme 1a) [14a, b]. In 2020, Yadav and co-workers also described an efficient visible-light mediated decarboxylative sulfonylation of cinnamic acids and arylazo sulfones for the synthesis of (E)-vinyl sulfones (Scheme 1b) [14c]. As our ongoing interest in sulfonylation reactions [15], herein, we wish to present a catalyst- and light-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones to synthesize sulfonated γ-butyrolactams under simple heating conditions (Scheme 1c).

    Scheme 1

    Scheme 1.  Sulfonylation reactions using arylazo sulfones.

    The cyclization of 1, n-enynes has become as a powerful protocol for the construction of various important heterocycles such as quinolines, pyrroles, pyridines, furans, indoles and pyrans in terms of its step-economy and high reaction efficiency [16-18]. γ-Butyrolactam is the core structure of a large number of natural and biologically active compounds, which covered a wide spectrum of biological activities [19]. Recently, some functionalized γ-butyrolactams have been elegantly synthesized through the radical 1,6-enyne cyclization strategies under light or strong oxidant mediated conditions [20]. The present reaction, which simply utilizes arylazo sulfones as sulfonylating agents, offers a convenient and regioselective approach to access various sulfonylated γ-butyrolactams under mild and catalyst-free conditions.

    At the beginning of the experiment, the model reaction of N-phenyl-N-(prop-2-yn-1-yl)methacrylamide (1a) with 4-methoxyphenylazo mesylate (2a) was chosen to test the optimized reaction conditions. The product 3a was only isolated in 6% yield when the model reaction was conducted in 1, 4-dioxane at 80 ℃ (Table 1, entry 1). To our delight, the yield of 3a was largely increased when water was added in this reaction system (Table 1, entries 2–6). The highest yield of 3a (70%) was obtained when the ratio of 1, 4-dioxane and water was 2:1 (Table 1, entry 6). The yield would be slightly decreased if we continued to increase the amount of water (Table 1, entry 7). Next, various mixed solvents with organic solvent and water (2/1) were investigated (Table 1, entries 8–15). Generally, low to moderate yields were observed when the reaction was carried out in the mixture of EtOH, DME, THF, DMF, DMSO, or DCE with H2O (2/1). Only a trace amount of product 3a was detected when the reaction was performed in CH2Cl2/H2O (2/1). None of the product was observed in CH3CN/H2O (Table 1, entry 15). The decrease of reaction temperature would lead to lower reaction efficiency. No transformation was observed when the reaction was conducted at room temperature (Table 1, entry 17). The reaction was not improved when the reaction temperature was increased to 90 ℃ (Table 1, entry 18). Furthermore, product 3a was still obtained in good yield when the reaction was carried out under nitrogen atmosphere (Table 1, entry 19). Moreover, the use of other arylazo mesylates (4-methylphenylazo mesylate, 4-fluorophenylazo mesylate or 4-chlorophenylazo mesylate) to replace 4-methoxyphenylazo mesylate also gave the desired product 3a, but lower reaction efficiency was observed (Table 1, entries 20–22). Moreover, when the reaction was carried out under irradiation with 3 W Blue LED lamps, the corresponding product 3a was obtained in 22% yield (Table 1, entry 23).

    Table 1

    Table 1.  Screening of the reaction conditions.a
    DownLoad: CSV

    Under the optimized conditions, the scope and limitation of various 1,6-enyne derivatives and arylazo sulfones were further examined (Scheme 2). Generally, a series of 1,6-enynes with both electron-donating and electron-withdrawing groups on the N-aromatic ring could undergo the reaction efficiently to produce the desired products (3b-3l) in moderate to good yields. Notably, halogen substituents such as F, Cl and Br groups were all tolerated in this reaction system, which could be used for the further modification via coupling reactions. It was found that the reaction efficiency was greatly affected by the steric hindrance of substituent on the aromatic ring, and only a trace amount of product 3e was detected when ortho-methyl N-aromatic ring substrate was employed in this system. Unfortunately, when N-alkyl substituted 1,6-enyne such as N-benzyl-N-(prop-2-ynyl) methacrylamide was tested in the present reaction, none of the desired product 3n was detected. It should be noted that internal alkyne such as N-(but-2-yn-1-yl)-N-phenylmethacrylamide was suitable for this reaction, affording the product 3m in moderate yield. Then, the scope of different arylazo sulfones was investigated. Arylazo alkylsulfone (i.e., 4-methoxyphenylazo ethyl sulfone) could also be utilized in this system to afford the corresponding product 3o in 68% yield. Moreover, a variety of arylazo arylsulfones bearing an electron-donating (methyl and methoxy) or an electron-withdrawing group (fluoro, chloro, bromo and trifluoromethyl) on the aryl rings were suitable substrates, and the corresponding products (3r-3x) were obtained in moderate to good yields.

    Scheme 2

    Scheme 2.  Substrate scope. Reaction condition: 1 (0.1 mmol), 2 (0.25 mmol), 1, 4-dioxane/H2O (2/1, 2 mL), 80 ℃, 24 h. Isolated yields based on 1.

    To investigate the possible reaction mechanism, two control experiments were carried out. When radical scavenger TEMPO (2, 2, 6, 6-tetramethyl-1-piperidinyloxy) was added in the model reaction system, the transformation was extremely inhibited and aryl-TEMPO adduct was observed by LC–MS. This result suggested that a radical process might be involved in the present reaction (Scheme 3a). Furthermore, the cyclization product 1a' was not generated from 1a under standard conditions in the absence of 4-methoxyphenylazo mesylate (2a) (Scheme 3b), suggesting that this cascade cyclization was triggered by in situ generated sulfonyl radical.

    Scheme 3

    Scheme 3.  Control experiments.

    Based on the above experimental results and previous reports [4, 7, 8, 13, 14], a possible reaction pathway was proposed as demonstrated in Scheme 4. Initially, the homolysis of N–S bond of arylazo sulfone 2 generated sulfonyl radical 4 and aryl radical along with the release of N2 under heating conditions. Subsequently, the selective addition of sulfonyl radical 4 to C=C bond gave alkyl radical 5, which further underwent the intramolecular cyclization with the C-C triple bond to give the vinyl radical 6. Finally, the abstraction of a hydrogen from the solvent would produce the desired product 3.

    Scheme 4

    Scheme 4.  Possible reaction pathway.

    In summary, a convenient and efficient method has been developed for the construction of sulfonylated γ-butyrolactams through the regioselective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones. The present transformation could be achieved under catalyst- and additive-free conditions via the sequential formation of C-S and C-C bonds. This protocol simply utilizes arylazo sulfones as sulfonylating agents offering a highly attractive routine to synthesize sulfonylated γ-butyrolactams, which is expected to exhibit potential application in synthetic chemistry.

    The authors report no declarations of interest.

    This work was supported by the International Cooperation Project of Qinghai Province (No. 2018-HZ-806), the Youth Innovation and Technology Project of Higher School in Shandong Province (No. 2019KJC021), the Natural Science Foundation of Shandong Province (No. ZR2018MB009), the Qinghai Key Laboratory of Tibetan Medicine Research (No. 2017- ZJ-Y11) and CAS "Light of West China" Program 2018, and Entrepreneurship Training Program for College Students (No. 201910049).

    Supplementary material related tothis article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.11.059.


    * Corresponding author at: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
    ** Corresponding author.
    E-mail addresses: xhzhao@nwipb.cas.cn (X. Zhao), weiweiqfnu@163.com (W. Wei).
    1. [1]

      G.A. Matthews, E.H. Nieh, C.M. Vander Weele, et al., Cell 164 (2016) 617–631.  doi: 10.1016/j.cell.2015.12.040

    2. [2]

      X. Li, S. Zhao, B. Li, et al., Coord. Chem. Rev. 431 (2021) 213686.  doi: 10.1016/j.ccr.2020.213686

    3. [3]

      A.J. Duszkiewicz, C.G. McNamara, T. Takeuchi, et al., Trends Neurosci. 42 (2019) 102–114.  doi: 10.1016/j.tins.2018.10.002

    4. [4]

      C. Bucolo, G.M. Leggio, F. Drago, et al., Pharmacol. Ther. 203 (2019) 107392.  doi: 10.1016/j.pharmthera.2019.07.003

    5. [5]

      Y. Tang, J. Xu, C. Xiong, et al., Analyst 144 (2019) 2643–2648.  doi: 10.1039/c9an00032a

    6. [6]

      R.P. Maas, T. Wassenberg, J.P. Lin, et al., Neurology 88 (2017) 1865–1871.  doi: 10.1212/WNL.0000000000003897

    7. [7]

      Z. Tian, X. Qin, F. Shao, et al., Chin. Chem. Lett. 34 (2023) 107656.  doi: 10.1016/j.cclet.2022.06.079

    8. [8]

      J. Li, A. Reimers, K.M. Dang, et al., Biosens. Bioelectron. 222 (2023) 114942.  doi: 10.1016/j.bios.2022.114942

    9. [9]

      Q. Huang, S. Hu, H. Zhang, et al., Analyst 138 (2013) 5417–5423.  doi: 10.1039/c3an00510k

    10. [10]

      Q. Huang, H. Zhang, S. Hu, et al., Biosens. Bioelectron. 52 (2014) 277–280.  doi: 10.1002/9781118889954.index

    11. [11]

      M.A. Elchisak, J.H. Carlson, Life Sci. 30 (1982) 2325–2336.  doi: 10.1016/0024-3205(82)90260-0

    12. [12]

      J. Kim, M. Jeon, K.J. Paeng, et al., Anal. Chim. Acta 619 (2008) 87–93.  doi: 10.1016/j.aca.2008.02.042

    13. [13]

      Z. Chen, F. Zhang, Y. Lu, et al., Chin. Chem. Lett. 33 (2022) 3144–3150.  doi: 10.1016/j.cclet.2021.10.027

    14. [14]

      X. Xu, R. Ray, Y. Gu, et al., J. Am. Chem. Soc. 126 (2004) 12736–12737.  doi: 10.1021/ja040082h

    15. [15]

      Y.P. Sun, B. Zhou, Y. Lin, et al., J. Am. Chem. Soc. 128 (2006) 7756–7757.  doi: 10.1021/ja062677d

    16. [16]

      W. Meng, B. Yang, S. Lu, Chin. J. Lumin. 42 (2021) 1075–1094.  doi: 10.37188/cjl.20210155

    17. [17]

      N. Dhull, G. Kaur, P. Jain, et al., Appl. Surf. Sci. 495 (2019) 143548.  doi: 10.1016/j.apsusc.2019.143548

    18. [18]

      Z. Zeng, F.X. Xiao, H. Phan, et al., J. Mater. Chem. A 6 (2018) 1700–1713.  doi: 10.1039/c7ta09119b

    19. [19]

      Y. Wang, J. Sheng, X. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107967.  doi: 10.1016/j.cclet.2022.107967

    20. [20]

      Y. Zhang, Q. Xie, Z. Xia, et al., J. Electroanal. Chem. 863 (2020) 114058.  doi: 10.1016/j.jelechem.2020.114058

    21. [21]

      Q. Zeng, T. Feng, S. Tao, et al., Light: Sci. Appl. 10 (2021) 142.  doi: 10.1038/s41377-021-00579-6

    22. [22]

      C. Xia, S. Zhu, T. Feng, et al., Adv. Sci. 6 (2019) 1901316.  doi: 10.1002/advs.201901316

    23. [23]

      S. Zhang, Y. Yang, Y. Zhai, et al., Chin. Chem. Lett. 34 (2023) 107652.  doi: 10.1016/j.cclet.2022.06.075

    24. [24]

      B. Wang, H. Wang, Y. Hu, et al., Nano Lett. 23 (2023) 8794–8800.  doi: 10.1021/acs.nanolett.3c02271

    25. [25]

      P. Gao, Z. Xie, M. Zheng, Chin. Chem. Lett. 33 (2022) 1659–1672.  doi: 10.1016/j.cclet.2021.09.085

    26. [26]

      X. Niu, W. Zheng, T. Song, et al., Chin. Chem. Lett. 34 (2023) 107560.  doi: 10.1016/j.cclet.2022.05.074

    27. [27]

      X. Yang, X. Li, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 613–625.  doi: 10.1016/j.cclet.2021.08.077

    28. [28]

      B. Wang, S. Lu, Matter 5 (2022) 110–149.  doi: 10.1016/j.matt.2021.10.016

    29. [29]

      Y. Zhang, S. Lu, Chem 10 (2024) 134–171.  doi: 10.1016/j.chempr.2023.09.020

    30. [30]

      Z. Wei, B. Wang, M. Xie, et al., Chin. Chem. Lett. 33 (2022) 751–756.  doi: 10.1016/j.cclet.2021.08.014

    31. [31]

      Y. Zhang, J. Wang, L. Wang, et al., Adv. Mater. 35 (2023) 2302536.  doi: 10.1002/adma.202302536

    32. [32]

      B. Wang, G.I.N. Waterhouse, S. Lu, Trends Chem. 5 (2023) 76–87.  doi: 10.1016/j.trechm.2022.10.005

    33. [33]

      Y. Zhang, L. Wang, Y. Hu, et al., Small 19 (2023) 2207983.  doi: 10.1002/smll.202207983

    34. [34]

      S. Wang, Y. Zhang, G. Pang, et al., Anal. Chem. 89 (2017) 1704–1709.  doi: 10.1021/acs.analchem.6b03913

    35. [35]

      L. Ding, S. Kang, Y. Wang, et al., Chin. J. Lumin. 44 (2023) 2002–2010.  doi: 10.37188/cjl.20230177

    36. [36]

      J. Du, N. Xu, J. Fan, et al., Small 15 (2019) e1805087.  doi: 10.1002/smll.201805087

    37. [37]

      B. Wang, H. Cai, G.I.N. Waterhouse, et al., Small Sci. 2 (2022) 2200012.  doi: 10.1002/smsc.202200012

    38. [38]

      Y. Zhang, M. Li, S. Lu, Small 19 (2023) 2206080.  doi: 10.1002/smll.202206080

    39. [39]

      M. Fang, B. Wang, X. Qu, et al., Chin. Chem. Lett. 35 (2024) 108423.  doi: 10.1016/j.cclet.2023.108423

    40. [40]

      B. Wang, H. Song, Z. Tang, et al., Nano Res. 15 (2022) 942–949.  doi: 10.1007/s12274-021-3579-5

    41. [41]

      C. Liu, R. Cheng, J. Guo, et al., Chin. Chem. Lett. 33 (2022) 304–307.  doi: 10.1016/j.cclet.2021.06.073

    42. [42]

      Y. Zhai, P. Wang, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 783–787.  doi: 10.1016/j.cclet.2021.08.075

    43. [43]

      W. Zhao, Y. Wang, K. Liu, et al., Chin. Chem. Lett. 33 (2022) 798–802.  doi: 10.1016/j.cclet.2021.08.084

    44. [44]

      G. Zou, S. Chen, N. Liu, et al., Chin. Chem. Lett. 33 (2022) 778–782.  doi: 10.1016/j.cclet.2021.08.076

    45. [45]

      X. Li, X. Xing, S. Zhao, et al., Chin. Chem. Lett. 33 (2022) 1632–1636.  doi: 10.1016/j.cclet.2021.09.086

    46. [46]

      X. Zhou, X. Wang, L. Shang, Chin. Chem. Lett. 34 (2023) 108093.  doi: 10.1016/j.cclet.2022.108093

    47. [47]

      N. Ahmed, W. Zareen, Y. Ye, et al., Chin. Chem. Lett. 33 (2022) 2765–2772.  doi: 10.1016/j.cclet.2021.12.092

    48. [48]

      Q. Zhou, S. Wang, X. Ran, et al., Chin. Chem. Lett. 34 (2023) 107922.  doi: 10.1016/j.cclet.2022.107922

    49. [49]

      S. Zhuo, Y. Guan, H. Li, et al., Analyst 144 (2019) 656–662.  doi: 10.1039/c8an01741g

    50. [50]

      X. Yang, F. Tian, S. Wen, et al., Processes 9 (2021) 170.  doi: 10.3390/pr9010170

    51. [51]

      M. Lakshmanakumar, N. Nesakumar, A.J. Kulandaisamy, et al., Measurement 183 (2021) 109873.  doi: 10.1016/j.measurement.2021.109873

    52. [52]

      L. Zhao, J. Liu, Y. Bai, et al., Colloids Surf. A. 627 (2021) 127179.  doi: 10.1016/j.colsurfa.2021.127179

    53. [53]

      M. Lan, S. Zhao, X. Wei, et al., Dyes Pigments 170 (2019) 107574.  doi: 10.1016/j.dyepig.2019.107574

    54. [54]

      D.M. Liu, C. Dong, Process Biochem. 92 (2020) 464–475.  doi: 10.1016/j.procbio.2020.02.005

    55. [55]

      Y.K. Cen, Y.X. Liu, Y.P. Xue, et al., Adv. Synth. Catal. 361 (2019) 5500–5515.  doi: 10.1002/adsc.201900439

    56. [56]

      S. Patra, S. Sene, C. Mousty, et al., ACS Appl. Mater. Interfaces 8 (2016) 20012–20022.  doi: 10.1021/acsami.6b05289

    57. [57]

      Z. Tang, K. Jiang, S. Sun, et al., Analyst 144 (2019) 468–473.  doi: 10.1039/c8an01659c

    58. [58]

      K.J. Mintz, Y. Zhou, R.M. Leblanc, Nanoscale 11 (2019) 4634–4652.  doi: 10.1039/c8nr10059d

    59. [59]

      S. Miao, K. Liang, J. Zhu, et al., Nano Today 33 (2020) 100879.  doi: 10.1016/j.nantod.2020.100879

    60. [60]

      S. Sun, Q. Guan, Y. Liu, et al., Chin. Chem. Lett. 30 (2019) 1051–1054.  doi: 10.1016/j.cclet.2019.01.014

    61. [61]

      P. Krishnaiah, R. Atchudan, S. Perumal, et al., Chemosphere 286 (2022) 131764.  doi: 10.1016/j.chemosphere.2021.131764

    62. [62]

      J. Guo, W. Lu, H. Zhang, et al., Sens. Actuator. B: Chem. 330 (2021) 129360.  doi: 10.1016/j.snb.2020.129360

    63. [63]

      L. Jiang, H. Ding, S. Lu, et al., Angew. Chem. Int. Ed. 59 (2020) 9986–9991.  doi: 10.1002/anie.201913800

    64. [64]

      M. He, J. Zhang, H. Wang, et al., Nanoscale Res. Lett. 13 (2018) 175.  doi: 10.1186/s11671-018-2581-7

    65. [65]

      M.E. Mahmoud, N.A. Fekry, A.M. Abdelfattah, J. Hazard. Mater. 397 (2020) 122770.  doi: 10.1016/j.jhazmat.2020.122770

    66. [66]

      F. Yang, W. Bao, T. Liu, B. Zhang, et al., Microchim. Acta 187 (2020) 322.  doi: 10.1007/s00604-020-04294-8

    67. [67]

      J. Wang, X. Hu, H. Ding, et al., ACS Appl. Mater. Interfaces 11 (2019) 18203–18212.  doi: 10.1021/acsami.9b03644

    68. [68]

      C. Wang, H. Shi, M. Yang, et al., J. Photochem. Photobiol. A 391 (2020) 112374.  doi: 10.1016/j.jphotochem.2020.112374

    69. [69]

      Y. Ma, A.Y. Chen, X.F. Xie, et al., Talanta 196 (2019) 563–571.  doi: 10.1016/j.talanta.2019.01.001

    70. [70]

      C. Wang, H. Shi, M. Yang, et al., Colloids Surf. B 205 (2021) 111874.  doi: 10.1016/j.colsurfb.2021.111874

    71. [71]

      D. Mathivanan, A. Mohan, Y. Yang, J. Mater. Sci.: Mater. Electron. 32 (2021) 9005–9017.  doi: 10.1007/s10854-021-05571-9

    72. [72]

      Q. Zhu, H. Mao, J. Li, et al., Spectrochim. Acta Part A 247 (2021) 119090.  doi: 10.1016/j.saa.2020.119090

    73. [73]

      H. Liu, Y. Sun, Z. Li, et al., Nanoscale 11 (2019) 8458–8463.  doi: 10.1039/c9nr01678c

    74. [74]

      A.M. Mahmoud, M.H. Mahnashi, K. Alhazzani, et al., Spectrochim. Acta Part A 252 (2021) 119516.  doi: 10.1016/j.saa.2021.119516

    75. [75]

      T. Zhao, J. Han, X. Jin, et al., Angew. Chem. Int. Ed. 58 (2019) 4978–4982.  doi: 10.1002/anie.201900052

    76. [76]

      L.D. Rosales-Vazquez, A. Dorazco-Gonzalez, V. Sanchez-Mendieta, Dalton Trans. 50 (2021) 4470–4485.  doi: 10.1039/d0dt04403b

    77. [77]

      W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev. 46 (2017) 3242–3285.  doi: 10.1039/C6CS00930A

    78. [78]

      L. Li, Z. Li, W. Yang, et al., Chem 7 (2021) 686–698.  doi: 10.1016/j.chempr.2020.11.023

    79. [79]

      X.X. Chen, M.J. Hou, G.J. Mao, Microchim. Acta 188 (2021) 287.  doi: 10.1080/10864415.2021.1943170

    80. [80]

      D.X. Xue, Q. Wang, J. Bai, Coord. Chem. Rev. 378 (2019) 2–16.  doi: 10.1016/j.ccr.2017.10.026

    81. [81]

      S. Xie, X. Li, L. Wang, et al., Microchem. J. 160 (2021) 105718.  doi: 10.1016/j.microc.2020.105718

    82. [82]

      Y. Zhang, H. Xu, Y. Yang, et al., J. Photochem. Photobiol. A 411 (2021) 113195.  doi: 10.1016/j.jphotochem.2021.113195

    83. [83]

      Q. Yang, J. Li, X. Wang, et al., Sens. Actuator. B: Chem. 284 (2019) 428–436.  doi: 10.1016/j.snb.2018.12.134

    84. [84]

      M. Sun, L. Zhang, S. Xu, et al., Analyst 147 (2022) 947–955.  doi: 10.1039/D2AN00049K

    85. [85]

      C. Zhao, Y. Jiao, J. Hua, et al., J. Fluoresc. 28 (2018) 269–276.  doi: 10.1007/s10895-017-2189-9

    86. [86]

      L. Wang, J. Jana, J.S. Chung, et al., Dyes Pigments 186 (2021) 109028.  doi: 10.1016/j.dyepig.2020.109028

    87. [87]

      X.Y. Tang, Y.M. Liu, X.L. Bai, et al., Anal. Chim. Acta 1157 (2021) 338394.  doi: 10.1016/j.aca.2021.338394

    88. [88]

      S.K. Tammina, D. Yang, S. Koppala, et al., J. Photochem. Photobiol. B 194 (2019) 61–70.  doi: 10.1016/j.jphotobiol.2019.01.004

    89. [89]

      R. Sangubotla, J. Kim, Dyes Pigments 191 (2021) 109364.  doi: 10.1016/j.dyepig.2021.109364

    90. [90]

      R. Sangubotla, J. Kim, Mater. Sci. Eng. C 122 (2021) 111916.  doi: 10.1016/j.msec.2021.111916

    91. [91]

      L. Ren, X. Hang, Z. Qin, et al., Optik 208 (2020) 163560.  doi: 10.1016/j.ijleo.2019.163560

    92. [92]

      C. Ratlam, S. Phanichphant, S. Sriwichai, J. Polym. Res. 27 (2020) 183.  doi: 10.1007/s10965-020-02158-6

    93. [93]

      S.W. Park, T.E. Kim, Y.K. Jung, Anal. Chim. Acta 1165 (2021) 338513.  doi: 10.1016/j.aca.2021.338513

    94. [94]

      G. Mi, M. Yang, C. Wang, et al., Spectrochim. Acta Part A 253 (2021) 119555.  doi: 10.1016/j.saa.2021.119555

    95. [95]

      M. Louleb, L. Latrous, Á. Ríos, et al., ACS Appl. Nano Mater. 3 (2020) 8004–8011.  doi: 10.1021/acsanm.0c01461

    96. [96]

      H. Lin, J. Huang, L. Ding, J. Nanomater. 2019 (2019) 5037243.

    97. [97]

      A. Kumar, S. Asu, P. Mukherjee, et al., J. Photochem. Photobiol. A 406 (2021) 113019.  doi: 10.1016/j.jphotochem.2020.113019

    98. [98]

      J. Jana, J.S. Chung, S.H. Hur, ACS Omega 4 (2019) 17031–17038.  doi: 10.1021/acsomega.9b02637

    99. [99]

      S. Dadkhah, A. Mehdinia, A. Jabbari, et al., Microchim. Acta 187 (2020) 569.  doi: 10.1007/s00604-020-04543-w

    100. [100]

      N. Chavoshi, B. Hemmateenejad, J. Fluoresc. 31 (2021) 455–463.  doi: 10.1007/s10895-020-02668-y

    101. [101]

      J. Bai, X. Chen, G. Yuan, et al., Nano 16 (2021) 2150030.  doi: 10.1142/s1793292021500302

    102. [102]

      J. An, M. Chen, N. Hu, et al., Spectrochim. Acta Part A 243 (2020) 118804.  doi: 10.1016/j.saa.2020.118804

    103. [103]

      A.O. Alqarni, S.A. Alkahtani, A.M. Mahmoud, et al., Spectrochim. Acta Part A 248 (2021) 119180.  doi: 10.1016/j.saa.2020.119180

    104. [104]

      X. Tan, P. Zhang, C. Ye, et al., Dyes Pigments 180 (2020) 108515.  doi: 10.1016/j.dyepig.2020.108515

    105. [105]

      R. Das, K.K. Paul, P.K. Giri, Appl. Surf. Sci. 490 (2019) 318–330.  doi: 10.1016/j.apsusc.2019.06.065

    106. [106]

      J. Wang, R. Du, W. Liu, et al., Sens. Actuator. B: Chem. 290 (2019) 125–132.

    107. [107]

      G. Chellasamy, S.R. Ankireddy, K.N. Lee, et al., Mater. Today Bio 12 (2021) 100168.  doi: 10.1016/j.mtbio.2021.100168

    108. [108]

      Q. Bai, H. Luo, X. Yi, et al., Microchem. J. 179 (2022) 107521.  doi: 10.1016/j.microc.2022.107521

    109. [109]

      R. Zhang, Z. Fan, J. Photochem. Photobiol. A 392 (2020) 112438.  doi: 10.1016/j.jphotochem.2020.112438

    110. [110]

      Y. Liu, W. Li, P. Wu, et al., Sens. Actuator. B: Chem. 281 (2019) 34–43.  doi: 10.1016/j.snb.2018.10.075

    111. [111]

      K. Chaiendoo, S. Ittisanronnachai, V. Promarak, et al., Carbon 146 (2019) 728–735.  doi: 10.1016/j.carbon.2019.02.030

    112. [112]

      S. Wei, B. Liu, X. Shi, et al., Talanta 252 (2023) 123865.  doi: 10.1016/j.talanta.2022.123865

    113. [113]

      R. Sangubotla, J. Kim, Ceram. Int. 49 (2023) 16272–16282.  doi: 10.1016/j.ceramint.2023.01.225

    114. [114]

      X. Liu, W. Yu, X. Mu, et al., Spectrochim. Acta Part A 287 (2023) 122112.  doi: 10.1016/j.saa.2022.122112

    115. [115]

      A. Tiwari, S. Walia, S. Sharma, et al., J. Mater. Chem. B 11 (2023) 1029–1043.  doi: 10.1039/d2tb02188a

    116. [116]

      W. Guo, Q. Wang, X. Zhan, et al., Part. Part. Syst. Charact. 39 (2022) 2200089.  doi: 10.1002/ppsc.202200089

    117. [117]

      S. Kanagasubbulakshmi, K. Kadirvelu, Spectrochim. Acta Part A 206 (2019) 512–519.  doi: 10.1016/j.saa.2018.08.050

    118. [118]

      W. Liu, X.J.T. Zhu, Talanta 197 (2019) 59–67.  doi: 10.1016/j.talanta.2019.01.008

    119. [119]

      H. Liu, N. Li, H. Zhang, et al., Talanta 189 (2018) 190–195.  doi: 10.1016/j.talanta.2018.05.014

    120. [120]

      Y. Guo, S. Guo, Y. Fang, et al., Electrochim. Acta 55 (2010) 3927–3931.  doi: 10.1016/j.electacta.2010.02.024

    121. [121]

      Y. Mei, C. He, W. Zeng, et al., Food Bioprocess Technol. 15 (2022) 498–513.  doi: 10.1007/s11947-022-02759-7

    122. [122]

      Y. Sun, M. Luo, X. Meng, et al., Anal. Chem. 89 (2017) 3761–3767.  doi: 10.1021/acs.analchem.7b00248

    123. [123]

      H. Zhang, K.-T. Huang, L. Ding, et al., Chin. Chem. Lett. 33 (2022) 1537–1540.  doi: 10.1016/j.cclet.2021.09.002

    124. [124]

      Y. Yu, M. Pan, J. Peng, et al., Chin. Chem. Lett. 33 (2022) 4133–4145.  doi: 10.1016/j.cclet.2022.02.045

    125. [125]

      H. Liu, Y. Yu, T. Xue, et al., Chin. Chem. Lett. 35 (2024) 108574.  doi: 10.1016/j.cclet.2023.108574

    126. [126]

      X. Lin, Y. Mei, C. He, et al., Front. Chem. 9 (2021) 769648.  doi: 10.3389/fchem.2021.769648

    127. [127]

      Y. Jiang, X. Xiao, C. Li, et al., Anal. Chem. 92 (2020) 3981–3989.  doi: 10.1021/acs.analchem.9b05484

    128. [128]

      H. Wei, F. Wu, L. Li, et al., Anal. Chem. 92 (2020) 11374–11379.  doi: 10.1021/acs.analchem.0c02240

    129. [129]

      A. Joshi, W. Schuhmann, T.C. Nagaiah, Sens. Actuator. B: Chem. 230 (2016) 544–555.  doi: 10.1016/j.snb.2016.02.050

    130. [130]

      Y. Wu, P. Deng, Y. Tian, et al., J. Nanobiotechnol. 18 (2020) 112.  doi: 10.1186/s12951-020-00672-9

    131. [131]

      Q. Huang, X. Lin, D. Chen, et al., Food Chem. 373 (2022) 131415.  doi: 10.1016/j.foodchem.2021.131415

    132. [132]

      Z. Wang, Int. J. Electrochem. Sci. 16 (2021) 210450.  doi: 10.20964/2021.04.39

    133. [133]

      L. Li, Y. Chen, J.J. Zhu, Anal. Chem. 89 (2017) 358–371.  doi: 10.1021/acs.analchem.6b04675

    134. [134]

      J. Zhou, Y. Li, W. Wang, et al., Biosens. Bioelectron. 164 (2020) 112332.  doi: 10.1016/j.bios.2020.112332

    135. [135]

      J. Liu, Y. Zhang, R. Yuan, Sens. Actuator. B: Chem. 379 (2023) 133260.  doi: 10.1016/j.snb.2022.133260

    136. [136]

      Z. Zhu, H. Niu, R. Li, et al., Biosens. Bioelectron. 10 (2022) 100141.

    137. [137]

      F. Xie, M. Yang, M. Jiang, et al., TrAC Trends Anal. Chem. 119 (2019) 115624.  doi: 10.1016/j.trac.2019.115624

    138. [138]

      A. Chen, S. Chatterjee, Chem. Soc. Rev. 42 (2013) 5425–5438.  doi: 10.1039/c3cs35518g

    139. [139]

      B.R. Adhikari, M. Govindhan, A. Chen, Sensors 15 (2015) 22490–22508.  doi: 10.3390/s150922490

    140. [140]

      Q. Huang, X. Lin, L. Tong, et al., ACS Sustain. Chem. Eng. 8 (2020) 1644–1650.  doi: 10.1021/acssuschemeng.9b06623

    141. [141]

      Q. Pan, Z. Xu, S. Deng, et al., RSC Adv. 9 (2019) 39332–39337.  doi: 10.1039/c9ra06912g

    142. [142]

      Y.Y. Li, P. Kang, S.Q. Wang, et al., Sens. Actuator. B: Chem. 327 (2021) 128878.  doi: 10.1016/j.snb.2020.128878

    143. [143]

      G. Han, J. Cai, C. Liu, J. Ren, et al., Appl. Surf. Sci. 541 (2021) 148566.  doi: 10.1016/j.apsusc.2020.148566

    144. [144]

      E. Saeb, K. Asadpour-Zeynali, Microchem. J. 160 (2021) 105603.  doi: 10.1016/j.microc.2020.105603

    145. [145]

      M. Mehmandoust, P. Pourhakkak, F. Hasannia, et al., Food Chem. Toxicol. 164 (2022) 113080.  doi: 10.1016/j.fct.2022.113080

    146. [146]

      N. Ahmadi, M. Bagherzadeh, A. Nemati, Biosens. Bioelectron. 151 (2020) 111977.  doi: 10.1016/j.bios.2019.111977

    147. [147]

      J.M. Moon, N. Thapliyal, K.K. Hussain, et al., Biosens. Bioelectron. 102 (2018) 540–552.  doi: 10.1016/j.bios.2017.11.069

    148. [148]

      S. Samanta, P. Roy, P. Kar, Mater. Sci. Eng. B 256 (2020) 114541.  doi: 10.1016/j.mseb.2020.114541

    149. [149]

      A. John, L. Benny, A.R. Cherian, et al., J. Nanostruct. Chem. 11 (2021) 1–31.  doi: 10.1007/s40097-020-00372-8

    150. [150]

      Y. Wang, A. Liu, Y. Han, et al., Polym. Int. 69 (2019) 7–17.

    151. [151]

      M.Z. Iqbal, M.M. Faisal, S.R. Ali, et al., Electrochim. Acta 346 (2020) 136039.  doi: 10.1016/j.electacta.2020.136039

    152. [152]

      Q. Wang, J. Li, D. Wang, et al., Electrochim. Acta 349 (2020) 136348.  doi: 10.1016/j.electacta.2020.136348

    153. [153]

      Y. Prykhodko, K. Fatyeyeva, L. Hespel, et al., Chem. Eng. J. 409 (2021) 127329.  doi: 10.1016/j.cej.2020.127329

    154. [154]

      P. Senthil Kumar, B.S. Sreeja, K. Krishna Kumar, et al., Food Chem. Toxicol. 167 (2022) 113311.  doi: 10.1016/j.fct.2022.113311

    155. [155]

      H.S. Jang, D. Kim, C. Lee, et al., Inorg. Chem. Commun. 105 (2019) 174–181.  doi: 10.1016/j.inoche.2019.05.009

    156. [156]

      L. Yang, T. Wang, C. Bao, et al., J. Electroanal. Chem. 895 (2021) 115512.  doi: 10.1016/j.jelechem.2021.115512

    157. [157]

      B. Wu, M. Li, Z. Xu, et al., Simultaneous electrochemical detection of dopamine and uric acid with graphene quantum dots decorated cobalt phthalocyanine nanocomposite, in: 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), IEEE, 2021, pp. 533–536, doi:10.1109/Transducers50396.2021.9495550.

    158. [158]

      Y. Wei, Z. Xu, S. Wang, et al., Ionics 26 (2020) 5817–5828.  doi: 10.1007/s11581-020-03703-5

    159. [159]

      J. Wang, C. Lu, T. Chen, et al., Nanophotonics 9 (2020) 3831–3839.  doi: 10.1515/nanoph-2019-0418

    160. [160]

      V. Vinoth, L.N. Natarajan, R.V. Mangalaraja, et al., Microchim. Acta 186 (2019) 681.  doi: 10.1007/s00604-019-3779-9

    161. [161]

      P. Thondaiman, R. Manikandan, C.J. Raj, et al., Synth. Met. 278 (2021) 116831.  doi: 10.1016/j.synthmet.2021.116831

    162. [162]

      S. Saisree, N.J.S. Arya, K.Y. Sandhya, J. Mater. Chem. B 10 (2022) 3974–3988.  doi: 10.1039/D1TB02368C

    163. [163]

      T.M. Prado, A. Carrico, F.H. Cincotto, et al., Sens. Actuator. B: Chem. 285 (2019) 248–253.  doi: 10.1016/j.snb.2019.01.059

    164. [164]

      P.K. Pandey, Preeti, K. Rawat, T. Prasad, et al., J. Mater. Chem. B 8 (2020) 1277–1289.  doi: 10.1039/c9tb01863h

    165. [165]

      N. Ndebele, P. Sen, T. Nyokong, J. Electroanal. Chem. 886 (2021) 115111.  doi: 10.1016/j.jelechem.2021.115111

    166. [166]

      M. Li, Int. J. Electrochem. Sci. 16 (2021) 21084.  doi: 10.20964/2021.08.04

    167. [167]

      K. Kunpatee, S. Traipop, O. Chailapakul, et al., Sens. Actuator. B: Chem. 314 (2020) 128059.  doi: 10.1016/j.snb.2020.128059

    168. [168]

      W.F. Hsu, T.M. Wu, J. Mater. Sci. 30 (2019) 8449–8456.  doi: 10.1007/s10854-019-01165-8

    169. [169]

      S.E. Elugoke, O.E. Fayemi, A.S. Adekunle, et al., FlatChem 33 (2022) 100372.  doi: 10.1016/j.flatc.2022.100372

    170. [170]

      S.K. Arumugasamy, S. Govindaraju, K. Yun, Appl. Surf. Sci. 508 (2020) 145294.  doi: 10.1016/j.apsusc.2020.145294

    171. [171]

      G. Huang, X. Yang, R. Huang, Int. J. Electrochem. Sci. 15 (2020) 9888–9901.  doi: 10.20964/2020.10.47

    172. [172]

      C. Luhana, I. Moyo, K. Tshenkeng, et al., Microchem. J. 180 (2022) 107605.  doi: 10.1016/j.microc.2022.107605

    173. [173]

      T. Zhang, D. Long, X. Gu, et al., Microchim. Acta 189 (2022) 389.  doi: 10.1007/s00604-022-05483-3

    174. [174]

      R. Wu, S. Yu, S. Chen, et al., Anal. Chim. Acta 1229 (2022) 340365.  doi: 10.1016/j.aca.2022.340365

    175. [175]

      J. Zhou, Y. Xia, Z. Zou, et al., Anal. Chim. Acta 1237 (2023) 340631.  doi: 10.1016/j.aca.2022.340631

    176. [176]

      F. Nosratzehi, H. Halakoei, M. Rostami, et al., Diamond Relat. Mater. 127 (2022) 109120.  doi: 10.1016/j.diamond.2022.109120

    177. [177]

      A. Thadathil, D. Thacharakkal, Y.A. Ismail, et al., Biosensors 12 (2022) 1063.  doi: 10.3390/bios12121063

    178. [178]

      H. Chul Lim, S.J. Jang, Y. Cho, et al., ChemElectroChem 9 (2022) e202200557.  doi: 10.1002/celc.202200557

    179. [179]

      Z. Nazari, M. Hadi Nematollahi, F. Zareh, et al., ChemistrySelect 8 (2023) e202203630.  doi: 10.1002/slct.202203630

    180. [180]

      K. Wang, Y. Li, M. Qi, et al., Microchim. Acta 189 (2022) 382.  doi: 10.1007/s00604-022-05479-z

    181. [181]

      M. Hasheena, A. Ratnamala, M. Noorjahan, et al., J. Appl. Electrochem. 53 (2022) 571–583.

    182. [182]

      J.H.A. Ferreira, R.M. Peres, M. Nakamura, et al., J. Nanopart. Res. 25 (2023) 9.  doi: 10.1007/s11051-022-05659-1

    183. [183]

      B. Liu, J. Zhuang, G. Wei, Environ. Sci. 7 (2020) 2195–2213.  doi: 10.1039/d0en00449a

    184. [184]

      S. He, Q. Huang, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1462–1465.  doi: 10.1016/j.cclet.2020.09.047

    185. [185]

      Y. Chen, X. Yang, C. Lu, et al., Chin. Chem. Lett. 34 (2023) 108099.  doi: 10.1016/j.cclet.2022.108099

    186. [186]

      Y.T. Huang, M. Xue, Y. Yang, Chin. Chem. Lett. 34 (2023) 108294.  doi: 10.1016/j.cclet.2023.108294

    187. [187]

      Z. Jia, Y. Liu, L. Cheng, et al., Talanta 11 (2023) 1288418.

    188. [188]

      T. Alawsi, G.P. Mattia, Z. Al-Bawi, et al., Sens. Bio-Sensing Res. 32 (2021) 100404.  doi: 10.1016/j.sbsr.2021.100404

    189. [189]

      C. Dong, X. Ma, N. Qiu, et al., Sens. Actuator. B: Chem. 329 (2021) 129066.  doi: 10.1016/j.snb.2020.129066

    190. [190]

      Monisha, K. Shrivas, T. Kant, et al., J. Hazard. Mater. 414 (2021) 125440.  doi: 10.1016/j.jhazmat.2021.125440

    191. [191]

      R. Wang, G. Ruan, Y. Sun, et al., Dyes Pigments 191 (2021) 109383.  doi: 10.1016/j.dyepig.2021.109383

    192. [192]

      Y. Zhang, Q. Luo, K. Ding, et al., Sens. Actuator. B: Chem. 335 (2021) 129708.  doi: 10.1016/j.snb.2021.129708

    193. [193]

      W. Liu, Z. Li, H. Jia, et al., Appl. Surf. Sci. 481 (2019) 678–683.  doi: 10.1016/j.apsusc.2019.03.175

    194. [194]

      H. Singh, A. Bamrah, S.K. Bhardwaj, et al., Environ. Sci. 8 (2021) 863–889.  doi: 10.1039/d0en00963f

    195. [195]

      R. Singh, R. Mehra, A. Walia, et al., Int. J. Environ. Anal. Chem. 103 (2023) 1361–1376.  doi: 10.1080/03067319.2021.1873315

    196. [196]

      M. Amiri, S. Dadfarnia, A.M. Haji Shabani, et al., J. Pharm. Biomed. Anal. 172 (2019) 223–229.  doi: 10.1016/j.jpba.2019.04.037

    197. [197]

      Y.F. Wang, L. Li, M. Jiang, et al., Appl. Surf. Sci. 573 (2022) 151457.  doi: 10.1016/j.apsusc.2021.151457

    198. [198]

      Y. Xu, J. Wang, Y. Lu, et al., Spectrochim. Acta Part A 219 (2019) 225–231.  doi: 10.1016/j.saa.2019.04.035

    199. [199]

      V. Naik, P. Zantye, D. Gunjal, et al., ACS Appl. Bio Mater. 2 (2019) 2069–2077.  doi: 10.1021/acsabm.9b00101

    1. [1]

      G.A. Matthews, E.H. Nieh, C.M. Vander Weele, et al., Cell 164 (2016) 617–631.  doi: 10.1016/j.cell.2015.12.040

    2. [2]

      X. Li, S. Zhao, B. Li, et al., Coord. Chem. Rev. 431 (2021) 213686.  doi: 10.1016/j.ccr.2020.213686

    3. [3]

      A.J. Duszkiewicz, C.G. McNamara, T. Takeuchi, et al., Trends Neurosci. 42 (2019) 102–114.  doi: 10.1016/j.tins.2018.10.002

    4. [4]

      C. Bucolo, G.M. Leggio, F. Drago, et al., Pharmacol. Ther. 203 (2019) 107392.  doi: 10.1016/j.pharmthera.2019.07.003

    5. [5]

      Y. Tang, J. Xu, C. Xiong, et al., Analyst 144 (2019) 2643–2648.  doi: 10.1039/c9an00032a

    6. [6]

      R.P. Maas, T. Wassenberg, J.P. Lin, et al., Neurology 88 (2017) 1865–1871.  doi: 10.1212/WNL.0000000000003897

    7. [7]

      Z. Tian, X. Qin, F. Shao, et al., Chin. Chem. Lett. 34 (2023) 107656.  doi: 10.1016/j.cclet.2022.06.079

    8. [8]

      J. Li, A. Reimers, K.M. Dang, et al., Biosens. Bioelectron. 222 (2023) 114942.  doi: 10.1016/j.bios.2022.114942

    9. [9]

      Q. Huang, S. Hu, H. Zhang, et al., Analyst 138 (2013) 5417–5423.  doi: 10.1039/c3an00510k

    10. [10]

      Q. Huang, H. Zhang, S. Hu, et al., Biosens. Bioelectron. 52 (2014) 277–280.  doi: 10.1002/9781118889954.index

    11. [11]

      M.A. Elchisak, J.H. Carlson, Life Sci. 30 (1982) 2325–2336.  doi: 10.1016/0024-3205(82)90260-0

    12. [12]

      J. Kim, M. Jeon, K.J. Paeng, et al., Anal. Chim. Acta 619 (2008) 87–93.  doi: 10.1016/j.aca.2008.02.042

    13. [13]

      Z. Chen, F. Zhang, Y. Lu, et al., Chin. Chem. Lett. 33 (2022) 3144–3150.  doi: 10.1016/j.cclet.2021.10.027

    14. [14]

      X. Xu, R. Ray, Y. Gu, et al., J. Am. Chem. Soc. 126 (2004) 12736–12737.  doi: 10.1021/ja040082h

    15. [15]

      Y.P. Sun, B. Zhou, Y. Lin, et al., J. Am. Chem. Soc. 128 (2006) 7756–7757.  doi: 10.1021/ja062677d

    16. [16]

      W. Meng, B. Yang, S. Lu, Chin. J. Lumin. 42 (2021) 1075–1094.  doi: 10.37188/cjl.20210155

    17. [17]

      N. Dhull, G. Kaur, P. Jain, et al., Appl. Surf. Sci. 495 (2019) 143548.  doi: 10.1016/j.apsusc.2019.143548

    18. [18]

      Z. Zeng, F.X. Xiao, H. Phan, et al., J. Mater. Chem. A 6 (2018) 1700–1713.  doi: 10.1039/c7ta09119b

    19. [19]

      Y. Wang, J. Sheng, X. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107967.  doi: 10.1016/j.cclet.2022.107967

    20. [20]

      Y. Zhang, Q. Xie, Z. Xia, et al., J. Electroanal. Chem. 863 (2020) 114058.  doi: 10.1016/j.jelechem.2020.114058

    21. [21]

      Q. Zeng, T. Feng, S. Tao, et al., Light: Sci. Appl. 10 (2021) 142.  doi: 10.1038/s41377-021-00579-6

    22. [22]

      C. Xia, S. Zhu, T. Feng, et al., Adv. Sci. 6 (2019) 1901316.  doi: 10.1002/advs.201901316

    23. [23]

      S. Zhang, Y. Yang, Y. Zhai, et al., Chin. Chem. Lett. 34 (2023) 107652.  doi: 10.1016/j.cclet.2022.06.075

    24. [24]

      B. Wang, H. Wang, Y. Hu, et al., Nano Lett. 23 (2023) 8794–8800.  doi: 10.1021/acs.nanolett.3c02271

    25. [25]

      P. Gao, Z. Xie, M. Zheng, Chin. Chem. Lett. 33 (2022) 1659–1672.  doi: 10.1016/j.cclet.2021.09.085

    26. [26]

      X. Niu, W. Zheng, T. Song, et al., Chin. Chem. Lett. 34 (2023) 107560.  doi: 10.1016/j.cclet.2022.05.074

    27. [27]

      X. Yang, X. Li, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 613–625.  doi: 10.1016/j.cclet.2021.08.077

    28. [28]

      B. Wang, S. Lu, Matter 5 (2022) 110–149.  doi: 10.1016/j.matt.2021.10.016

    29. [29]

      Y. Zhang, S. Lu, Chem 10 (2024) 134–171.  doi: 10.1016/j.chempr.2023.09.020

    30. [30]

      Z. Wei, B. Wang, M. Xie, et al., Chin. Chem. Lett. 33 (2022) 751–756.  doi: 10.1016/j.cclet.2021.08.014

    31. [31]

      Y. Zhang, J. Wang, L. Wang, et al., Adv. Mater. 35 (2023) 2302536.  doi: 10.1002/adma.202302536

    32. [32]

      B. Wang, G.I.N. Waterhouse, S. Lu, Trends Chem. 5 (2023) 76–87.  doi: 10.1016/j.trechm.2022.10.005

    33. [33]

      Y. Zhang, L. Wang, Y. Hu, et al., Small 19 (2023) 2207983.  doi: 10.1002/smll.202207983

    34. [34]

      S. Wang, Y. Zhang, G. Pang, et al., Anal. Chem. 89 (2017) 1704–1709.  doi: 10.1021/acs.analchem.6b03913

    35. [35]

      L. Ding, S. Kang, Y. Wang, et al., Chin. J. Lumin. 44 (2023) 2002–2010.  doi: 10.37188/cjl.20230177

    36. [36]

      J. Du, N. Xu, J. Fan, et al., Small 15 (2019) e1805087.  doi: 10.1002/smll.201805087

    37. [37]

      B. Wang, H. Cai, G.I.N. Waterhouse, et al., Small Sci. 2 (2022) 2200012.  doi: 10.1002/smsc.202200012

    38. [38]

      Y. Zhang, M. Li, S. Lu, Small 19 (2023) 2206080.  doi: 10.1002/smll.202206080

    39. [39]

      M. Fang, B. Wang, X. Qu, et al., Chin. Chem. Lett. 35 (2024) 108423.  doi: 10.1016/j.cclet.2023.108423

    40. [40]

      B. Wang, H. Song, Z. Tang, et al., Nano Res. 15 (2022) 942–949.  doi: 10.1007/s12274-021-3579-5

    41. [41]

      C. Liu, R. Cheng, J. Guo, et al., Chin. Chem. Lett. 33 (2022) 304–307.  doi: 10.1016/j.cclet.2021.06.073

    42. [42]

      Y. Zhai, P. Wang, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 783–787.  doi: 10.1016/j.cclet.2021.08.075

    43. [43]

      W. Zhao, Y. Wang, K. Liu, et al., Chin. Chem. Lett. 33 (2022) 798–802.  doi: 10.1016/j.cclet.2021.08.084

    44. [44]

      G. Zou, S. Chen, N. Liu, et al., Chin. Chem. Lett. 33 (2022) 778–782.  doi: 10.1016/j.cclet.2021.08.076

    45. [45]

      X. Li, X. Xing, S. Zhao, et al., Chin. Chem. Lett. 33 (2022) 1632–1636.  doi: 10.1016/j.cclet.2021.09.086

    46. [46]

      X. Zhou, X. Wang, L. Shang, Chin. Chem. Lett. 34 (2023) 108093.  doi: 10.1016/j.cclet.2022.108093

    47. [47]

      N. Ahmed, W. Zareen, Y. Ye, et al., Chin. Chem. Lett. 33 (2022) 2765–2772.  doi: 10.1016/j.cclet.2021.12.092

    48. [48]

      Q. Zhou, S. Wang, X. Ran, et al., Chin. Chem. Lett. 34 (2023) 107922.  doi: 10.1016/j.cclet.2022.107922

    49. [49]

      S. Zhuo, Y. Guan, H. Li, et al., Analyst 144 (2019) 656–662.  doi: 10.1039/c8an01741g

    50. [50]

      X. Yang, F. Tian, S. Wen, et al., Processes 9 (2021) 170.  doi: 10.3390/pr9010170

    51. [51]

      M. Lakshmanakumar, N. Nesakumar, A.J. Kulandaisamy, et al., Measurement 183 (2021) 109873.  doi: 10.1016/j.measurement.2021.109873

    52. [52]

      L. Zhao, J. Liu, Y. Bai, et al., Colloids Surf. A. 627 (2021) 127179.  doi: 10.1016/j.colsurfa.2021.127179

    53. [53]

      M. Lan, S. Zhao, X. Wei, et al., Dyes Pigments 170 (2019) 107574.  doi: 10.1016/j.dyepig.2019.107574

    54. [54]

      D.M. Liu, C. Dong, Process Biochem. 92 (2020) 464–475.  doi: 10.1016/j.procbio.2020.02.005

    55. [55]

      Y.K. Cen, Y.X. Liu, Y.P. Xue, et al., Adv. Synth. Catal. 361 (2019) 5500–5515.  doi: 10.1002/adsc.201900439

    56. [56]

      S. Patra, S. Sene, C. Mousty, et al., ACS Appl. Mater. Interfaces 8 (2016) 20012–20022.  doi: 10.1021/acsami.6b05289

    57. [57]

      Z. Tang, K. Jiang, S. Sun, et al., Analyst 144 (2019) 468–473.  doi: 10.1039/c8an01659c

    58. [58]

      K.J. Mintz, Y. Zhou, R.M. Leblanc, Nanoscale 11 (2019) 4634–4652.  doi: 10.1039/c8nr10059d

    59. [59]

      S. Miao, K. Liang, J. Zhu, et al., Nano Today 33 (2020) 100879.  doi: 10.1016/j.nantod.2020.100879

    60. [60]

      S. Sun, Q. Guan, Y. Liu, et al., Chin. Chem. Lett. 30 (2019) 1051–1054.  doi: 10.1016/j.cclet.2019.01.014

    61. [61]

      P. Krishnaiah, R. Atchudan, S. Perumal, et al., Chemosphere 286 (2022) 131764.  doi: 10.1016/j.chemosphere.2021.131764

    62. [62]

      J. Guo, W. Lu, H. Zhang, et al., Sens. Actuator. B: Chem. 330 (2021) 129360.  doi: 10.1016/j.snb.2020.129360

    63. [63]

      L. Jiang, H. Ding, S. Lu, et al., Angew. Chem. Int. Ed. 59 (2020) 9986–9991.  doi: 10.1002/anie.201913800

    64. [64]

      M. He, J. Zhang, H. Wang, et al., Nanoscale Res. Lett. 13 (2018) 175.  doi: 10.1186/s11671-018-2581-7

    65. [65]

      M.E. Mahmoud, N.A. Fekry, A.M. Abdelfattah, J. Hazard. Mater. 397 (2020) 122770.  doi: 10.1016/j.jhazmat.2020.122770

    66. [66]

      F. Yang, W. Bao, T. Liu, B. Zhang, et al., Microchim. Acta 187 (2020) 322.  doi: 10.1007/s00604-020-04294-8

    67. [67]

      J. Wang, X. Hu, H. Ding, et al., ACS Appl. Mater. Interfaces 11 (2019) 18203–18212.  doi: 10.1021/acsami.9b03644

    68. [68]

      C. Wang, H. Shi, M. Yang, et al., J. Photochem. Photobiol. A 391 (2020) 112374.  doi: 10.1016/j.jphotochem.2020.112374

    69. [69]

      Y. Ma, A.Y. Chen, X.F. Xie, et al., Talanta 196 (2019) 563–571.  doi: 10.1016/j.talanta.2019.01.001

    70. [70]

      C. Wang, H. Shi, M. Yang, et al., Colloids Surf. B 205 (2021) 111874.  doi: 10.1016/j.colsurfb.2021.111874

    71. [71]

      D. Mathivanan, A. Mohan, Y. Yang, J. Mater. Sci.: Mater. Electron. 32 (2021) 9005–9017.  doi: 10.1007/s10854-021-05571-9

    72. [72]

      Q. Zhu, H. Mao, J. Li, et al., Spectrochim. Acta Part A 247 (2021) 119090.  doi: 10.1016/j.saa.2020.119090

    73. [73]

      H. Liu, Y. Sun, Z. Li, et al., Nanoscale 11 (2019) 8458–8463.  doi: 10.1039/c9nr01678c

    74. [74]

      A.M. Mahmoud, M.H. Mahnashi, K. Alhazzani, et al., Spectrochim. Acta Part A 252 (2021) 119516.  doi: 10.1016/j.saa.2021.119516

    75. [75]

      T. Zhao, J. Han, X. Jin, et al., Angew. Chem. Int. Ed. 58 (2019) 4978–4982.  doi: 10.1002/anie.201900052

    76. [76]

      L.D. Rosales-Vazquez, A. Dorazco-Gonzalez, V. Sanchez-Mendieta, Dalton Trans. 50 (2021) 4470–4485.  doi: 10.1039/d0dt04403b

    77. [77]

      W.P. Lustig, S. Mukherjee, N.D. Rudd, et al., Chem. Soc. Rev. 46 (2017) 3242–3285.  doi: 10.1039/C6CS00930A

    78. [78]

      L. Li, Z. Li, W. Yang, et al., Chem 7 (2021) 686–698.  doi: 10.1016/j.chempr.2020.11.023

    79. [79]

      X.X. Chen, M.J. Hou, G.J. Mao, Microchim. Acta 188 (2021) 287.  doi: 10.1080/10864415.2021.1943170

    80. [80]

      D.X. Xue, Q. Wang, J. Bai, Coord. Chem. Rev. 378 (2019) 2–16.  doi: 10.1016/j.ccr.2017.10.026

    81. [81]

      S. Xie, X. Li, L. Wang, et al., Microchem. J. 160 (2021) 105718.  doi: 10.1016/j.microc.2020.105718

    82. [82]

      Y. Zhang, H. Xu, Y. Yang, et al., J. Photochem. Photobiol. A 411 (2021) 113195.  doi: 10.1016/j.jphotochem.2021.113195

    83. [83]

      Q. Yang, J. Li, X. Wang, et al., Sens. Actuator. B: Chem. 284 (2019) 428–436.  doi: 10.1016/j.snb.2018.12.134

    84. [84]

      M. Sun, L. Zhang, S. Xu, et al., Analyst 147 (2022) 947–955.  doi: 10.1039/D2AN00049K

    85. [85]

      C. Zhao, Y. Jiao, J. Hua, et al., J. Fluoresc. 28 (2018) 269–276.  doi: 10.1007/s10895-017-2189-9

    86. [86]

      L. Wang, J. Jana, J.S. Chung, et al., Dyes Pigments 186 (2021) 109028.  doi: 10.1016/j.dyepig.2020.109028

    87. [87]

      X.Y. Tang, Y.M. Liu, X.L. Bai, et al., Anal. Chim. Acta 1157 (2021) 338394.  doi: 10.1016/j.aca.2021.338394

    88. [88]

      S.K. Tammina, D. Yang, S. Koppala, et al., J. Photochem. Photobiol. B 194 (2019) 61–70.  doi: 10.1016/j.jphotobiol.2019.01.004

    89. [89]

      R. Sangubotla, J. Kim, Dyes Pigments 191 (2021) 109364.  doi: 10.1016/j.dyepig.2021.109364

    90. [90]

      R. Sangubotla, J. Kim, Mater. Sci. Eng. C 122 (2021) 111916.  doi: 10.1016/j.msec.2021.111916

    91. [91]

      L. Ren, X. Hang, Z. Qin, et al., Optik 208 (2020) 163560.  doi: 10.1016/j.ijleo.2019.163560

    92. [92]

      C. Ratlam, S. Phanichphant, S. Sriwichai, J. Polym. Res. 27 (2020) 183.  doi: 10.1007/s10965-020-02158-6

    93. [93]

      S.W. Park, T.E. Kim, Y.K. Jung, Anal. Chim. Acta 1165 (2021) 338513.  doi: 10.1016/j.aca.2021.338513

    94. [94]

      G. Mi, M. Yang, C. Wang, et al., Spectrochim. Acta Part A 253 (2021) 119555.  doi: 10.1016/j.saa.2021.119555

    95. [95]

      M. Louleb, L. Latrous, Á. Ríos, et al., ACS Appl. Nano Mater. 3 (2020) 8004–8011.  doi: 10.1021/acsanm.0c01461

    96. [96]

      H. Lin, J. Huang, L. Ding, J. Nanomater. 2019 (2019) 5037243.

    97. [97]

      A. Kumar, S. Asu, P. Mukherjee, et al., J. Photochem. Photobiol. A 406 (2021) 113019.  doi: 10.1016/j.jphotochem.2020.113019

    98. [98]

      J. Jana, J.S. Chung, S.H. Hur, ACS Omega 4 (2019) 17031–17038.  doi: 10.1021/acsomega.9b02637

    99. [99]

      S. Dadkhah, A. Mehdinia, A. Jabbari, et al., Microchim. Acta 187 (2020) 569.  doi: 10.1007/s00604-020-04543-w

    100. [100]

      N. Chavoshi, B. Hemmateenejad, J. Fluoresc. 31 (2021) 455–463.  doi: 10.1007/s10895-020-02668-y

    101. [101]

      J. Bai, X. Chen, G. Yuan, et al., Nano 16 (2021) 2150030.  doi: 10.1142/s1793292021500302

    102. [102]

      J. An, M. Chen, N. Hu, et al., Spectrochim. Acta Part A 243 (2020) 118804.  doi: 10.1016/j.saa.2020.118804

    103. [103]

      A.O. Alqarni, S.A. Alkahtani, A.M. Mahmoud, et al., Spectrochim. Acta Part A 248 (2021) 119180.  doi: 10.1016/j.saa.2020.119180

    104. [104]

      X. Tan, P. Zhang, C. Ye, et al., Dyes Pigments 180 (2020) 108515.  doi: 10.1016/j.dyepig.2020.108515

    105. [105]

      R. Das, K.K. Paul, P.K. Giri, Appl. Surf. Sci. 490 (2019) 318–330.  doi: 10.1016/j.apsusc.2019.06.065

    106. [106]

      J. Wang, R. Du, W. Liu, et al., Sens. Actuator. B: Chem. 290 (2019) 125–132.

    107. [107]

      G. Chellasamy, S.R. Ankireddy, K.N. Lee, et al., Mater. Today Bio 12 (2021) 100168.  doi: 10.1016/j.mtbio.2021.100168

    108. [108]

      Q. Bai, H. Luo, X. Yi, et al., Microchem. J. 179 (2022) 107521.  doi: 10.1016/j.microc.2022.107521

    109. [109]

      R. Zhang, Z. Fan, J. Photochem. Photobiol. A 392 (2020) 112438.  doi: 10.1016/j.jphotochem.2020.112438

    110. [110]

      Y. Liu, W. Li, P. Wu, et al., Sens. Actuator. B: Chem. 281 (2019) 34–43.  doi: 10.1016/j.snb.2018.10.075

    111. [111]

      K. Chaiendoo, S. Ittisanronnachai, V. Promarak, et al., Carbon 146 (2019) 728–735.  doi: 10.1016/j.carbon.2019.02.030

    112. [112]

      S. Wei, B. Liu, X. Shi, et al., Talanta 252 (2023) 123865.  doi: 10.1016/j.talanta.2022.123865

    113. [113]

      R. Sangubotla, J. Kim, Ceram. Int. 49 (2023) 16272–16282.  doi: 10.1016/j.ceramint.2023.01.225

    114. [114]

      X. Liu, W. Yu, X. Mu, et al., Spectrochim. Acta Part A 287 (2023) 122112.  doi: 10.1016/j.saa.2022.122112

    115. [115]

      A. Tiwari, S. Walia, S. Sharma, et al., J. Mater. Chem. B 11 (2023) 1029–1043.  doi: 10.1039/d2tb02188a

    116. [116]

      W. Guo, Q. Wang, X. Zhan, et al., Part. Part. Syst. Charact. 39 (2022) 2200089.  doi: 10.1002/ppsc.202200089

    117. [117]

      S. Kanagasubbulakshmi, K. Kadirvelu, Spectrochim. Acta Part A 206 (2019) 512–519.  doi: 10.1016/j.saa.2018.08.050

    118. [118]

      W. Liu, X.J.T. Zhu, Talanta 197 (2019) 59–67.  doi: 10.1016/j.talanta.2019.01.008

    119. [119]

      H. Liu, N. Li, H. Zhang, et al., Talanta 189 (2018) 190–195.  doi: 10.1016/j.talanta.2018.05.014

    120. [120]

      Y. Guo, S. Guo, Y. Fang, et al., Electrochim. Acta 55 (2010) 3927–3931.  doi: 10.1016/j.electacta.2010.02.024

    121. [121]

      Y. Mei, C. He, W. Zeng, et al., Food Bioprocess Technol. 15 (2022) 498–513.  doi: 10.1007/s11947-022-02759-7

    122. [122]

      Y. Sun, M. Luo, X. Meng, et al., Anal. Chem. 89 (2017) 3761–3767.  doi: 10.1021/acs.analchem.7b00248

    123. [123]

      H. Zhang, K.-T. Huang, L. Ding, et al., Chin. Chem. Lett. 33 (2022) 1537–1540.  doi: 10.1016/j.cclet.2021.09.002

    124. [124]

      Y. Yu, M. Pan, J. Peng, et al., Chin. Chem. Lett. 33 (2022) 4133–4145.  doi: 10.1016/j.cclet.2022.02.045

    125. [125]

      H. Liu, Y. Yu, T. Xue, et al., Chin. Chem. Lett. 35 (2024) 108574.  doi: 10.1016/j.cclet.2023.108574

    126. [126]

      X. Lin, Y. Mei, C. He, et al., Front. Chem. 9 (2021) 769648.  doi: 10.3389/fchem.2021.769648

    127. [127]

      Y. Jiang, X. Xiao, C. Li, et al., Anal. Chem. 92 (2020) 3981–3989.  doi: 10.1021/acs.analchem.9b05484

    128. [128]

      H. Wei, F. Wu, L. Li, et al., Anal. Chem. 92 (2020) 11374–11379.  doi: 10.1021/acs.analchem.0c02240

    129. [129]

      A. Joshi, W. Schuhmann, T.C. Nagaiah, Sens. Actuator. B: Chem. 230 (2016) 544–555.  doi: 10.1016/j.snb.2016.02.050

    130. [130]

      Y. Wu, P. Deng, Y. Tian, et al., J. Nanobiotechnol. 18 (2020) 112.  doi: 10.1186/s12951-020-00672-9

    131. [131]

      Q. Huang, X. Lin, D. Chen, et al., Food Chem. 373 (2022) 131415.  doi: 10.1016/j.foodchem.2021.131415

    132. [132]

      Z. Wang, Int. J. Electrochem. Sci. 16 (2021) 210450.  doi: 10.20964/2021.04.39

    133. [133]

      L. Li, Y. Chen, J.J. Zhu, Anal. Chem. 89 (2017) 358–371.  doi: 10.1021/acs.analchem.6b04675

    134. [134]

      J. Zhou, Y. Li, W. Wang, et al., Biosens. Bioelectron. 164 (2020) 112332.  doi: 10.1016/j.bios.2020.112332

    135. [135]

      J. Liu, Y. Zhang, R. Yuan, Sens. Actuator. B: Chem. 379 (2023) 133260.  doi: 10.1016/j.snb.2022.133260

    136. [136]

      Z. Zhu, H. Niu, R. Li, et al., Biosens. Bioelectron. 10 (2022) 100141.

    137. [137]

      F. Xie, M. Yang, M. Jiang, et al., TrAC Trends Anal. Chem. 119 (2019) 115624.  doi: 10.1016/j.trac.2019.115624

    138. [138]

      A. Chen, S. Chatterjee, Chem. Soc. Rev. 42 (2013) 5425–5438.  doi: 10.1039/c3cs35518g

    139. [139]

      B.R. Adhikari, M. Govindhan, A. Chen, Sensors 15 (2015) 22490–22508.  doi: 10.3390/s150922490

    140. [140]

      Q. Huang, X. Lin, L. Tong, et al., ACS Sustain. Chem. Eng. 8 (2020) 1644–1650.  doi: 10.1021/acssuschemeng.9b06623

    141. [141]

      Q. Pan, Z. Xu, S. Deng, et al., RSC Adv. 9 (2019) 39332–39337.  doi: 10.1039/c9ra06912g

    142. [142]

      Y.Y. Li, P. Kang, S.Q. Wang, et al., Sens. Actuator. B: Chem. 327 (2021) 128878.  doi: 10.1016/j.snb.2020.128878

    143. [143]

      G. Han, J. Cai, C. Liu, J. Ren, et al., Appl. Surf. Sci. 541 (2021) 148566.  doi: 10.1016/j.apsusc.2020.148566

    144. [144]

      E. Saeb, K. Asadpour-Zeynali, Microchem. J. 160 (2021) 105603.  doi: 10.1016/j.microc.2020.105603

    145. [145]

      M. Mehmandoust, P. Pourhakkak, F. Hasannia, et al., Food Chem. Toxicol. 164 (2022) 113080.  doi: 10.1016/j.fct.2022.113080

    146. [146]

      N. Ahmadi, M. Bagherzadeh, A. Nemati, Biosens. Bioelectron. 151 (2020) 111977.  doi: 10.1016/j.bios.2019.111977

    147. [147]

      J.M. Moon, N. Thapliyal, K.K. Hussain, et al., Biosens. Bioelectron. 102 (2018) 540–552.  doi: 10.1016/j.bios.2017.11.069

    148. [148]

      S. Samanta, P. Roy, P. Kar, Mater. Sci. Eng. B 256 (2020) 114541.  doi: 10.1016/j.mseb.2020.114541

    149. [149]

      A. John, L. Benny, A.R. Cherian, et al., J. Nanostruct. Chem. 11 (2021) 1–31.  doi: 10.1007/s40097-020-00372-8

    150. [150]

      Y. Wang, A. Liu, Y. Han, et al., Polym. Int. 69 (2019) 7–17.

    151. [151]

      M.Z. Iqbal, M.M. Faisal, S.R. Ali, et al., Electrochim. Acta 346 (2020) 136039.  doi: 10.1016/j.electacta.2020.136039

    152. [152]

      Q. Wang, J. Li, D. Wang, et al., Electrochim. Acta 349 (2020) 136348.  doi: 10.1016/j.electacta.2020.136348

    153. [153]

      Y. Prykhodko, K. Fatyeyeva, L. Hespel, et al., Chem. Eng. J. 409 (2021) 127329.  doi: 10.1016/j.cej.2020.127329

    154. [154]

      P. Senthil Kumar, B.S. Sreeja, K. Krishna Kumar, et al., Food Chem. Toxicol. 167 (2022) 113311.  doi: 10.1016/j.fct.2022.113311

    155. [155]

      H.S. Jang, D. Kim, C. Lee, et al., Inorg. Chem. Commun. 105 (2019) 174–181.  doi: 10.1016/j.inoche.2019.05.009

    156. [156]

      L. Yang, T. Wang, C. Bao, et al., J. Electroanal. Chem. 895 (2021) 115512.  doi: 10.1016/j.jelechem.2021.115512

    157. [157]

      B. Wu, M. Li, Z. Xu, et al., Simultaneous electrochemical detection of dopamine and uric acid with graphene quantum dots decorated cobalt phthalocyanine nanocomposite, in: 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), IEEE, 2021, pp. 533–536, doi:10.1109/Transducers50396.2021.9495550.

    158. [158]

      Y. Wei, Z. Xu, S. Wang, et al., Ionics 26 (2020) 5817–5828.  doi: 10.1007/s11581-020-03703-5

    159. [159]

      J. Wang, C. Lu, T. Chen, et al., Nanophotonics 9 (2020) 3831–3839.  doi: 10.1515/nanoph-2019-0418

    160. [160]

      V. Vinoth, L.N. Natarajan, R.V. Mangalaraja, et al., Microchim. Acta 186 (2019) 681.  doi: 10.1007/s00604-019-3779-9

    161. [161]

      P. Thondaiman, R. Manikandan, C.J. Raj, et al., Synth. Met. 278 (2021) 116831.  doi: 10.1016/j.synthmet.2021.116831

    162. [162]

      S. Saisree, N.J.S. Arya, K.Y. Sandhya, J. Mater. Chem. B 10 (2022) 3974–3988.  doi: 10.1039/D1TB02368C

    163. [163]

      T.M. Prado, A. Carrico, F.H. Cincotto, et al., Sens. Actuator. B: Chem. 285 (2019) 248–253.  doi: 10.1016/j.snb.2019.01.059

    164. [164]

      P.K. Pandey, Preeti, K. Rawat, T. Prasad, et al., J. Mater. Chem. B 8 (2020) 1277–1289.  doi: 10.1039/c9tb01863h

    165. [165]

      N. Ndebele, P. Sen, T. Nyokong, J. Electroanal. Chem. 886 (2021) 115111.  doi: 10.1016/j.jelechem.2021.115111

    166. [166]

      M. Li, Int. J. Electrochem. Sci. 16 (2021) 21084.  doi: 10.20964/2021.08.04

    167. [167]

      K. Kunpatee, S. Traipop, O. Chailapakul, et al., Sens. Actuator. B: Chem. 314 (2020) 128059.  doi: 10.1016/j.snb.2020.128059

    168. [168]

      W.F. Hsu, T.M. Wu, J. Mater. Sci. 30 (2019) 8449–8456.  doi: 10.1007/s10854-019-01165-8

    169. [169]

      S.E. Elugoke, O.E. Fayemi, A.S. Adekunle, et al., FlatChem 33 (2022) 100372.  doi: 10.1016/j.flatc.2022.100372

    170. [170]

      S.K. Arumugasamy, S. Govindaraju, K. Yun, Appl. Surf. Sci. 508 (2020) 145294.  doi: 10.1016/j.apsusc.2020.145294

    171. [171]

      G. Huang, X. Yang, R. Huang, Int. J. Electrochem. Sci. 15 (2020) 9888–9901.  doi: 10.20964/2020.10.47

    172. [172]

      C. Luhana, I. Moyo, K. Tshenkeng, et al., Microchem. J. 180 (2022) 107605.  doi: 10.1016/j.microc.2022.107605

    173. [173]

      T. Zhang, D. Long, X. Gu, et al., Microchim. Acta 189 (2022) 389.  doi: 10.1007/s00604-022-05483-3

    174. [174]

      R. Wu, S. Yu, S. Chen, et al., Anal. Chim. Acta 1229 (2022) 340365.  doi: 10.1016/j.aca.2022.340365

    175. [175]

      J. Zhou, Y. Xia, Z. Zou, et al., Anal. Chim. Acta 1237 (2023) 340631.  doi: 10.1016/j.aca.2022.340631

    176. [176]

      F. Nosratzehi, H. Halakoei, M. Rostami, et al., Diamond Relat. Mater. 127 (2022) 109120.  doi: 10.1016/j.diamond.2022.109120

    177. [177]

      A. Thadathil, D. Thacharakkal, Y.A. Ismail, et al., Biosensors 12 (2022) 1063.  doi: 10.3390/bios12121063

    178. [178]

      H. Chul Lim, S.J. Jang, Y. Cho, et al., ChemElectroChem 9 (2022) e202200557.  doi: 10.1002/celc.202200557

    179. [179]

      Z. Nazari, M. Hadi Nematollahi, F. Zareh, et al., ChemistrySelect 8 (2023) e202203630.  doi: 10.1002/slct.202203630

    180. [180]

      K. Wang, Y. Li, M. Qi, et al., Microchim. Acta 189 (2022) 382.  doi: 10.1007/s00604-022-05479-z

    181. [181]

      M. Hasheena, A. Ratnamala, M. Noorjahan, et al., J. Appl. Electrochem. 53 (2022) 571–583.

    182. [182]

      J.H.A. Ferreira, R.M. Peres, M. Nakamura, et al., J. Nanopart. Res. 25 (2023) 9.  doi: 10.1007/s11051-022-05659-1

    183. [183]

      B. Liu, J. Zhuang, G. Wei, Environ. Sci. 7 (2020) 2195–2213.  doi: 10.1039/d0en00449a

    184. [184]

      S. He, Q. Huang, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1462–1465.  doi: 10.1016/j.cclet.2020.09.047

    185. [185]

      Y. Chen, X. Yang, C. Lu, et al., Chin. Chem. Lett. 34 (2023) 108099.  doi: 10.1016/j.cclet.2022.108099

    186. [186]

      Y.T. Huang, M. Xue, Y. Yang, Chin. Chem. Lett. 34 (2023) 108294.  doi: 10.1016/j.cclet.2023.108294

    187. [187]

      Z. Jia, Y. Liu, L. Cheng, et al., Talanta 11 (2023) 1288418.

    188. [188]

      T. Alawsi, G.P. Mattia, Z. Al-Bawi, et al., Sens. Bio-Sensing Res. 32 (2021) 100404.  doi: 10.1016/j.sbsr.2021.100404

    189. [189]

      C. Dong, X. Ma, N. Qiu, et al., Sens. Actuator. B: Chem. 329 (2021) 129066.  doi: 10.1016/j.snb.2020.129066

    190. [190]

      Monisha, K. Shrivas, T. Kant, et al., J. Hazard. Mater. 414 (2021) 125440.  doi: 10.1016/j.jhazmat.2021.125440

    191. [191]

      R. Wang, G. Ruan, Y. Sun, et al., Dyes Pigments 191 (2021) 109383.  doi: 10.1016/j.dyepig.2021.109383

    192. [192]

      Y. Zhang, Q. Luo, K. Ding, et al., Sens. Actuator. B: Chem. 335 (2021) 129708.  doi: 10.1016/j.snb.2021.129708

    193. [193]

      W. Liu, Z. Li, H. Jia, et al., Appl. Surf. Sci. 481 (2019) 678–683.  doi: 10.1016/j.apsusc.2019.03.175

    194. [194]

      H. Singh, A. Bamrah, S.K. Bhardwaj, et al., Environ. Sci. 8 (2021) 863–889.  doi: 10.1039/d0en00963f

    195. [195]

      R. Singh, R. Mehra, A. Walia, et al., Int. J. Environ. Anal. Chem. 103 (2023) 1361–1376.  doi: 10.1080/03067319.2021.1873315

    196. [196]

      M. Amiri, S. Dadfarnia, A.M. Haji Shabani, et al., J. Pharm. Biomed. Anal. 172 (2019) 223–229.  doi: 10.1016/j.jpba.2019.04.037

    197. [197]

      Y.F. Wang, L. Li, M. Jiang, et al., Appl. Surf. Sci. 573 (2022) 151457.  doi: 10.1016/j.apsusc.2021.151457

    198. [198]

      Y. Xu, J. Wang, Y. Lu, et al., Spectrochim. Acta Part A 219 (2019) 225–231.  doi: 10.1016/j.saa.2019.04.035

    199. [199]

      V. Naik, P. Zantye, D. Gunjal, et al., ACS Appl. Bio Mater. 2 (2019) 2069–2077.  doi: 10.1021/acsabm.9b00101

  • 加载中
    1. [1]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    4. [4]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    5. [5]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    6. [6]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    7. [7]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    8. [8]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    9. [9]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    10. [10]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    11. [11]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    12. [12]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    13. [13]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    14. [14]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    15. [15]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    16. [16]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    17. [17]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    18. [18]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

Metrics
  • PDF Downloads(3)
  • Abstract views(643)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return