Bioinspired synthesis of cochlearol B and ganocin A
-
* Corresponding authors.
E-mail addresses: tangyu@ouc.edu.cn (Y. Tang), dehaili@ouc.edu.cn (D. Li).
Citation:
Zhenhao Wang, Yuliang Tang, Ruyu Li, Shuai Tian, Yu Tang, Dehai Li. Bioinspired synthesis of cochlearol B and ganocin A[J]. Chinese Chemical Letters,
;2024, 35(7): 109247.
doi:
10.1016/j.cclet.2023.109247
M. Dou, L. Di, L.L. Zhou, et al., Org. Lett. 16 (2014) 6064–6067.
doi: 10.1021/ol502806j
X.R. Peng, J.Q. Liu, L.S. Wan, et al., Org. Lett. 16 (2014) 5262–5265.
doi: 10.1021/ol5023189
R.R.M. Paterson, Phytochemistry 67 (2006) 1985–2001.
doi: 10.1016/j.phytochem.2006.07.004
Z.L. Yang, B. Feng, Mycology 4 (2013) 1–4.
doi: 10.1080/21501203.2013.774299
Y.L. Yang, Q.Q. Tao, J.J. Han, L. Bao, H.W. Liu, Recent advance on bioactive compounds from the edible and medicinal fungi in China, in: D. Agrawal, H.S. Tsay, L.F. Shyur, Y.C. Wu, S.Y. Wang (Eds. ), Medicinal Plants and Fungi: Recent Advances in Research and Development, Springer, Singapore, 2017, p. 253.
Z.B. Lin, Modern Research on Lingzhi, 2nd ed., Beijing Medical University Press, Beijing, 2001.
K. Naruse, R. Katsuta, A. Yajima, et al., Tetrahedron Lett. 61 (2020) 151845–151848.
doi: 10.1016/j.tetlet.2020.151845
M.J. Song, W.W. Sun, H.Y. Bao, Mycosystema 31 (2012) 762–768.
D.W. Zhang, W.D. Xu, H.L. Fan, et al., Org. Lett. 21 (2019) 6761–6764.
doi: 10.1021/acs.orglett.9b02391
T. Venkatesh, P.S. Mainkar, S. Chandrasekhar, J. Org. Chem. 86 (2021) 5412–5416.
doi: 10.1021/acs.joc.1c00205
Y. Liu, C.J. Zhou, Q.J. Li, H.G. Wang, Org. Biomol. Chem. 14 (2016) 10362–10365.
doi: 10.1039/C6OB02049F
P. Weyerstahl, H. Marschall, C. Christiansen, I. Seelmann, Liebigs Ann. (1996) 1641–1644.
doi: 10.1002/jlac.199619961022
H. Shao, X.N. Gao, Z.T. Wang, Z.W. Gao, Y.M. Zhao, Angew. Chem. Int. Ed. 59 (2020) 7419–7424.
doi: 10.1002/anie.202000677
T. Mashiko, Y. Shingai, J. Sakai, et al., Angew. Chem. Int. Ed. 60 (2021) 24484–24487.
doi: 10.1002/anie.202110556
A.D. Richardson, T.R. Vogel, E.F. Traficante, K.J. Glover, C.S. Schindler, Angew. Chem. Int. Ed. 61 (2022) e202201213.
doi: 10.1002/anie.202201213
Z. Gao, L. Yu, L. Ren, et al., ChemRxiv (2022), doi: 10.26434/chemrxiv-2022-xxmgl.
doi: 10.26434/chemrxiv-2022-xxmgl
H. Wu, R.P. Hsung, Y. Tang, J. Org. Chem. 82 (2017) 1545–1551.
doi: 10.1021/acs.joc.6b02739
H. Wu, R.P. Hsung, Y. Tang, Org. Lett. 19 (2017) 3505–3507.
doi: 10.1021/acs.orglett.7b01463
X.X. Du, H.N. Liu, Y.M. Wu, Y. Tang, Org. Chem. Front. 10 (2023) 1042–1046.
doi: 10.1039/d2qo01697d
B.X. Zhao, Y. Wang, C. Li, et al., Tetrahedron Lett. 54 (2013) 4708–4711.
doi: 10.1016/j.tetlet.2013.06.097
B.I. Kamara, D.T.L. Manong, E.V. Brandt, Phytochemistry 66 (2005) 1126–1132.
doi: 10.1016/j.phytochem.2005.04.007
S. Tilvi, C. Moriou, M.T. Martin, et al., J. Nat. Prod. 73 (2010) 720–723.
doi: 10.1021/np900539j
A. Garcia, D. Borchardt, C.E.A. Chang, M.J. Marsella, J. Am. Chem. Soc. 131 (2009) 16640–16641.
doi: 10.1021/ja907062v
F. Loermann, P. Mayer, D. Trauner, Angew. Chem. Int. Ed. 49 (2010) 6199–6202.
doi: 10.1002/anie.201001862
C.C. Yuan, B. Du, L. Yang, B. Liu, J. Am. Chem. Soc. 135 (2013) 9291–9294.
doi: 10.1021/ja4040335
J.J. Talley, J. Org. Chem. 50 (1985) 1695–1699.
doi: 10.1021/jo00210a025
M.A. Burchill, L. Jumby, S.C. Coleman, J.H. George, Org. Lett. 21 (2019) 8776–8778.
doi: 10.1021/acs.orglett.9b03392
V. Escande, A. Velati, C. Grison, Environ. Sci. Pollut. Res. 22 (2015) 5677– 5685.
doi: 10.1007/s11356-014-3433-3
V.R.L.J. Bloemendal, J.C.M. van Hest, F.P.J.T. Rutjes, Org. Biomol. Chem. 18 (2020) 3203–3215.
doi: 10.1039/d0ob00464b
J.Y. Goujon, F. Zammattio, B. Kirschleger, J. Chem. Soc., Perkin Trans. 1 (2002) 1564–1567.
M. B. Loewinger, D. H. Young, R. Clair, Patent: US2022033373A1, 2022.
H.J. Chen, H.F. Jiang, C.B. Cai, J. Dong, W. Fu, Org. Lett. 13 (2011) 922–924.
F.Y. Qin, W.F. Dai, Y.X. Cheng, Nat. Prod. Res. Dev. 28 (2016) 821–824.
X. Peng, J. Liu, C. Wang, et al., Food Chem. 171 (2015) 251–257.
doi: 10.1016/j.foodchem.2014.08.127
M. Iwamoto, M. Miyano, M. Utsugi, H. Kawada, M. Nakada, Tetrahedron Lett. 45 (2004) 8653–8657.
doi: 10.1016/j.tetlet.2004.09.142
R. Giri, B.F. Shi, K.M. Engle, N. Maugelc, J.Q. Yu, Chem. Soc. Rev. 38 (2009) 3242–3272.
doi: 10.1039/b816707a
H.M.L. Davies, A.M. Walji, Angew. Chem. Int. Ed. 44 (2005) 1733–1735.
doi: 10.1002/anie.200462227
X. Chen, X.S. Hao, C.E. Goodhue, J.Q. Yu, J. Am. Chem. Soc. 128 (2006) 6790–6791.
doi: 10.1021/ja061715q
H.J. Zhang, A.W. Schuppe, S.T. Pan, et al., J. Am. Chem. Soc. 140 (2018) 5300–5310.
doi: 10.1021/jacs.8b01886
B. Siekmeyer, D. Lübken, K. Bajerke, et al., Org. Lett. 24 (2022) 5812–5816.
doi: 10.1021/acs.orglett.2c02347
A. Skiredj, M.A. Beniddir, D. Joseph, et al., Angew. Chem. Int. Ed. 53 (2014) 6419–6424.
doi: 10.1002/anie.201403454
M. Zhou, X.R. Li, J.W. Tang, et al., Org. Lett. 17 (2015) 6062–6065.
doi: 10.1021/acs.orglett.5b03079
H.B. Liao, C. Lei, L.X. Gao, et al., Org. Lett. 17 (2015) 5040–5043.
doi: 10.1021/acs.orglett.5b02515
L.L. Sun, W.S. Li, J. Li, et al., J. Org. Chem. 86 (2021) 3367–3376.
doi: 10.1021/acs.joc.0c02742
J.D. Hart, L. Burchill, A.J. Day, et al., Angew. Chem. Int. Ed. 58 (2019) 2791–2794.
doi: 10.1002/anie.201814089
Y.L. Zhang, X.W. Zhou, X.B. Wang, et al., Org. Lett. 19 (2017) 3013–3016.
doi: 10.1021/acs.orglett.7b01276
M.S.C. Pedras, Q.A. Zheng, G. Schatte, A.M. Adio, Phytochemistry 70 (2009) 2010–2016.
doi: 10.1016/j.phytochem.2009.09.008
W.L. Wang, Y.Z. Tang, Y.X. Liu, et al., Org. Chem. Front. 6 (2019) 2850–2859.
doi: 10.1039/c9qo00678h
S. Qian, G. Zhao, Chem. Commun. 48 (2012) 3530–3532.
doi: 10.1039/c2cc17882f
B.B. Sheng, Y. Vo, P. Lan, et al., Org. Lett. 21 (2019) 6295–6299.
doi: 10.1021/acs.orglett.9b02172
K. Teegardin, J.I. Day, J. Chan, J. Weaver, Org. Process Res. Dev. 20 (2016) 1156–1163.
doi: 10.1021/acs.oprd.6b00101
T.R. Hoye, P.E. Humpal, B. Moon, J. Am. Chem. Soc. 122 (2000) 4982–4983.
doi: 10.1021/ja000429q
H. Ikeda, F. Tanaka, C. Kabuto, Tetrahedron Lett. 46 (2005) 2663–2667.
doi: 10.1016/j.tetlet.2005.02.109
H. Ikeda, F. Tanaka, C. Kabuto, Tetrahedron Lett. 46 (2005) 3863–3866.
doi: 10.1016/j.tetlet.2005.03.196
V.S. Batista, R.H. Crabtree, S.J. Konezny, O.R. Luca, J.M. Praetorius, New J. Chem. 36 (2012) 1141–1144.
doi: 10.1039/c2nj40021a
H. Yu, R. Lee, H. Kim, D. Lee, Org. Lett. 23 (2021) 1135–1140.
doi: 10.1021/acs.orglett.1c00154
S. Poplata, A. Bauer, G. Storch, T. Bach, Chem. Eur. J. 25 (2019) 8135–8148.
doi: 10.1002/chem.201901304
Tengfei Xuan , Xinyu Zhang , Wei Han , Yidong Huang , Weiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816
Qunlong Zhang , Jingyi Kang , Jingwen Wang , Tiancheng Tan , Zhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915
Jingping Hu , Jing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14–epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733
Peng Chen , Lijuan Liang , Yufei Zhu , Zhimin Xing , Zhenhua Jia , Teck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Chonglong He , Yulong Wang , Quan-Xin Li , Zichen Yan , Keyuan Zhang , Shao-Fei Ni , Xin-Hua Duan , Le Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253
Rongjian Chen , Jiahui Liu , Caixia Lin , Yuanming Li , Yanhou Geng , Yaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074
Yingtao Zhong , Ziwen Qiu , Yanmei Li , Jiaqi Huang , Zhenming Lu , Renjiang Kong , Ni Yan , Hong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Ruofan Qi , Jing Zhang , Wang Sun , Bai Yu , Zhenhua Wang , Kening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Xiao-Gang Wang , Ai-E Wang , Pei-Qiang Huang . Corrigendum to "A concise formal stereoselective total synthesis of (–)-swainsonine" [Chin Chem Lett 25 (2014) 193–196]. Chinese Chemical Letters, 2025, 36(3): 110597-. doi: 10.1016/j.cclet.2024.110597
Fengqing Wang , Changxing Qi , Chunmei Chen , Qin Li , Qingyi Tong , Weiguang Sun , Zhengxi Hu , Minyan Wang , Hucheng Zhu , Lianghu Gu , Yonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252
Jielin Wang , Han Ye , Bozhuang Zhou , Zhen Pan , Yucai Li , Zhenyuan Wei , Bin Chai , Yizhou Gao , Xiaojian Ye , Jiangming Yu . Biomimetic nanofibrillar/hyaluronic acid hydrogels remodel the neuromodulatory microenvironment for enhanced bone regeneration. Chinese Chemical Letters, 2025, 36(5): 110133-. doi: 10.1016/j.cclet.2024.110133
Huashan Huang , Jingze Chen , Luyun Zhang , Hong Yan , Siqi Li , Fen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056