Nanozyme-activating prodrug therapies: A review
-
*Corresponding authors.
E-mail addresses: wangchao20086925@126.com (C. Wang), xdm_tsinghua@163.com (D. Xing).
Citation:
Yudong Wu, Wujun Chen, Chao Wang, Dongming Xing. Nanozyme-activating prodrug therapies: A review[J]. Chinese Chemical Letters,
;2024, 35(2): 109096.
doi:
10.1016/j.cclet.2023.109096
G. Xu, H.L. McLeod, Clin. Cancer Res. 7 (2001) 3314–3324.
Q.X. Yao, F. Lin, X.Y. Fan, et al., Nat. Commun. 9 (2018) 5032.
doi: 10.1038/s41467-018-07490-6
T.J. Gardner, J.P. Lee, C.M. Bourne, et al., Nat. Chem. Biol. 18 (2022) 216–225.
doi: 10.1038/s41589-021-00932-1
B. Stadler, A.N. Zelikin, Adv. Drug Deliv. Rev. 118 (2017) 1.
doi: 10.1016/j.addr.2017.10.006
R. Walther, J. Rautio, A.N. Zelikin, Adv. Drug. Deliv. Rev. 118 (2017) 65–77.
doi: 10.1016/j.addr.2017.06.013
S.K. Sharma, K.D. Bagshawe, Adv. Drug. Deliv. Rev. 118 (2017) 2–7.
doi: 10.1016/j.addr.2017.09.009
X. Zhang, Y.Q. Yang, T.Y. Kang, et al., Small 17 (2021) 2100501.
doi: 10.1002/smll.202100501
G. Chung-Faye, D. Palmer, D. Anderson, et al., Clin. Cancer Res. 7 (2001) 2662–2668.
C. Li, M.F. Penet, P. Winnard, et al., Clin. Cancer Res. 14 (2008) 515–522.
doi: 10.1158/1078-0432.CCR-07-1837
H. Wang, K.W. Wan, X.H. Shi, Adv. Mater. 31 (2019) 1805368.
doi: 10.1002/adma.201805368
A. Robert, B. Meunier, ACS Nano 16 (2022) 6956–6959.
doi: 10.1021/acsnano.2c02966
X.F. Chen, Y. Wang, M. Feng, et al., Chin. Chem. Lett. 34 (2023) 107969.
doi: 10.1016/j.cclet.2022.107969
L.Z. Gao, J. Zhuang, L. Nie, et al., Nat. Nanotechnol. 2 (2007) 577–583.
doi: 10.1038/nnano.2007.260
M. Xu, C. Ren, Y. Zhou, et al., Chin. Chem. Lett. 34 (2023) 107585.
doi: 10.1016/j.cclet.2022.06.008
J. Hao, C. Zhang, C. Feng, et al., Chin. Chem. Lett. 34 (2023) 107650.
doi: 10.1016/j.cclet.2022.06.073
D.W. Jiang, D.L. Ni, Z.T. Rosenkrans, et al., Chem. Soc. Rev. 48 (2019) 3683–3704.
doi: 10.1039/C8CS00718G
B. Li, Q. Xu, X. Shen, et al., Chin. Chem. Lett. 34 (2023) 108015.
doi: 10.1016/j.cclet.2022.108015
L. Yang, H. Guo, T. Hou, et al., Chin. Chem. Lett. 34 (2023) 107607.
doi: 10.1016/j.cclet.2022.06.030
S.F. Ji, B. Jiang, H.G. Hao, et al., Nat. Catal. 4 (2021) 407–417.
doi: 10.1038/s41929-021-00609-x
C. Zhang, P. Ni, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 757–761.
doi: 10.1016/j.cclet.2021.08.017
X. Hai, Y. Li, K. Yu, et al., Chin. Chem. Lett. 32 (2021) 1215–1219.
doi: 10.1016/j.cclet.2020.09.0136|2021|||
J. Ju, Y. Chen, Z. Liu, et al., Chin. Chem. Lett. 34 (2023) 107820.
doi: 10.1016/j.cclet.2022.107820
Y. Xia, K. Sun, Y. Zuo, et al., Chin. Chem. Lett. 33 (2022) 2081–2085.
doi: 10.1016/j.cclet.2021.08.083
Y. Wu, Q. Chen, S. Liu, et al., Chin. Chem. Lett. 30 (2019) 2186–2190.
doi: 10.1016/j.cclet.2019.08.014
Y.W. Peng, M.C. Huang, L.J. Chen, et al., Nano Res. 15 (2022) 8783–8790.
doi: 10.1007/s12274-022-4541-x
G.Y. Tonga, Y.D. Jeong, B. Duncan, et al., Nat. Chem. 7 (2015) 597–603.
doi: 10.1038/nchem.2284
R. Walther, W. van den Akker, A.S. Fruergaard, A.N. Zelikin, Small 16 (2020) e2004280.
doi: 10.1002/smll.202004280
R. Walther, A.K. Winther, A.S. Fruergaard, et al., Angew. Chem. Int. Ed. 58 (2019) 278–282.
doi: 10.1002/anie.201812668
C. Cao, N. Yang, Y. Su, et al., Adv. Mater. 34 (2022) e2203236.
doi: 10.1002/adma.202203236
Q. Liang, J.Q. Xi, X.J.J. Gao, et al., Nano Today 35 (2020) 100935.
doi: 10.1016/j.nantod.2020.100935
J.J. Han, Q.L. Zou, W.W. Su, X.H. Yan, Chem. Eng. J. 394 (2020) 124987.
doi: 10.1016/j.cej.2020.124987
R. Liu, D.J. Cheng, Q. Zhou, et al., ACS Appl. Nano Mater. 4 (2021) 990–994.
doi: 10.1021/acsanm.1c00014
R. Walther, T.H. Huynh, P. Monge, et al., ACS Appl. Mater. Interfaces 13 (2021) 25685–25693.
doi: 10.1021/acsami.1c03890
A.C. Mendes, A.N. Zelikin, Adv. Funct. Mater. 24 (2014) 5202–5210.
doi: 10.1002/adfm.201304312
M.J. Cao, R. Cai, L.N. Zhao, et al., Nat. Nanotechnol. 16 (2021) 708–716.
doi: 10.1038/s41565-021-00856-w
X. Chang, L. Chen, B. Liu, et al., Chin. Chem. Lett. 33 (2022) 3303–3314.
doi: 10.1016/j.cclet.2022.03.057
X.P. Liu, Z.Q. Yan, Y. Zhang, et al., ACS Nano 13 (2019) 5222–5230.
doi: 10.1021/acsnano.8b09501
Y. Dai, Y. Ding, L. Li, Chin. Chem. Lett. 32 (2021) 2715–2728.
doi: 10.1016/j.cclet.2021.03.036
D. He, M. Yan, P. Sun, et al., Chin. Chem. Lett. 32 (2021) 2994–3006.
doi: 10.1016/j.cclet.2021.03.078
Z.H. Chen, M.F. Penet, B. Krishnamachary, et al., Biomaterials 80 (2016) 57–67.
doi: 10.1016/j.biomaterials.2015.11.048
W.H. Fan, M.Y. Shao, J.W. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1807104.
doi: 10.1002/adfm.201807104
P.C. Despres, A.F. Cisneros, E.M. Alexander, et al., Nat. Ecol. Evol. 6 (2022) 1501–1515.
doi: 10.1038/s41559-022-01846-4
W.P. Accomando, A.R. Rao, D.J. Hogan, et al., Clin. Cancer Res. 26 (2020) 6176–6186.
doi: 10.1158/1078-0432.CCR-20-0536
K. Bush, P.A. Bradford, Nat. Rev. Microbiol. 17 (2019) 295–306.
doi: 10.1038/s41579-019-0159-8
N. Barraud, B.G. Kardak, N.R. Yepuri, et al., Angew. Chem. Int. Ed. 51 (2012) 9057–9060.
doi: 10.1002/anie.201202414
D.E. Kerr, Z. Li, N.O. Siemers, et al., Bioconjug. Chem. 9 (1998) 255–259.
doi: 10.1021/bc970163l
L.N. Jungheim, T.A. Shepherd, J.K. Kling, Heterocycles 35 (1993) 339–348.
doi: 10.3987/COM-92-S22
K.R. Reddy, J. Parkinson, M. Sabet, et al., J. Med. Chem. 64 (2021) 17523–17529.
doi: 10.1021/acs.jmedchem.1c01722
A.B. Shapiro, N. Gao, ACS Infect. Dis. 7 (2021) 114–122.
doi: 10.1021/acsinfecdis.0c00656
L.E. Evans, A. Krishna, Y. Ma, et al., J. Med. Chem. 62 (2019) 4411–4425.
doi: 10.1021/acs.jmedchem.8b01923
N. Wiebelhaus, J.M. Zaengle-Barone, K.K. Hwang, et al., ACS Chem. Biol. 16 (2021) 214–224.
doi: 10.1021/acschembio.0c00900
R.M. Phelan, M. Ostermeier, C.A. Townsend, Bioorg. Med. Chem. Lett. 19 (2009) 1261–1263.
doi: 10.1016/j.bmcl.2008.12.057
M.T. Jarlstad Olesen, R. Walther, P.P. Poier, et al., Angew. Chem. Int. Ed. 59 (2020) 7390–7396.
doi: 10.1002/anie.201916124
P. Awolade, N. Cele, N. Kerru, et al., Eur. J. Med. Chem. 187 (2020) 111921.
doi: 10.1016/j.ejmech.2019.111921
I. Tranoy-Opalinski, T. Legigan, R. Barat, et al., Eur. J. Med. Chem. 74 (2014) 302–313.
doi: 10.1016/j.ejmech.2013.12.045
R. Walther, S.M. Nielsen, R. Christiansen, et al., J. Control. Release 287 (2018) 94–102.
doi: 10.1016/j.jconrel.2018.08.025
P.W. Gong, L. Sun, F. Wang, et al., Chem. Eng. J. 356 (2019) 994–1002.
doi: 10.1016/j.cej.2018.09.100
J.M. Wang, L. Zhang, Y.L. Su, et al., Anal. Chem. 94 (2022) 7012–7020.
doi: 10.1021/acs.analchem.1c05635
X.F. Lou, T.B. Ren, H.M. Chen, et al., Biomaterials 287 (2022) 121657.
doi: 10.1016/j.biomaterials.2022.121657
G. Compain, N. Oumata, J. Clarhaut, et al., Eur. J. Med. Chem. 158 (2018) 1–6.
doi: 10.1016/j.ejmech.2018.08.100
K. Roemhild, H.C. Besse, B. Wang, et al., Theranostics 12 (2022) 4791–4801.
doi: 10.7150/thno.69168
H. Martin, L.R. Lazaro, T. Gunnlaugsson, E.M. Scanlan, Chem. Soc. Rev. 51 (2022) 9694–9716.
doi: 10.1039/D2CS00379A
Y.H. Song, X.M. Li, D.L. Shi, et al., Chem. Sci. 13 (2022) 11738–11745.
doi: 10.1039/D2SC03525A
N. Yu, T. Liu, X. Zhang, et al., Nano Lett. 20 (2020) 5465–5472.
doi: 10.1021/acs.nanolett.0c01973
L.F. Tietze, F. Major, I. Schuberth, Angew. Chem. Int. Ed. 45 (2006) 6574–6577.
doi: 10.1002/anie.200600936
H. Elferink, W.H.C. Titulaer, M.G.N. Derks, et al., Chem. Eur. J. 28 (2022) e202103910.
doi: 10.1002/chem.202103910
A.K. Winther, B. Fejerskov, M. ter Meer, et al., ACS Appl. Mater. Interfaces 10 (2018) 10741–10751.
doi: 10.1021/acsami.8b01658
S. Gnaim, A. Scomparin, S. Das, et al., Angew. Chem. Int. Ed. 57 (2018) 9033–9037.
doi: 10.1002/anie.201804816
M. Maiti, K. Kikuchi, K.K. Athul, et al., Chem. Commun. 58 (2022) 6413–6416.
J. Zhang, Y. Fu, R.T. Zhou, et al., Adv. Healthc. Mater. (2023) 2202421.
T. Tantra, Y. Singh, R. Patekar, et al., Curr. Med. Chem. 31 (2024) 336–357.
doi: 10.2174/0929867330666230209094738
J.B. Eriksen, J.J. Christiansen, A. Bauer-Brandl, et al., Eur. J. Pharm. Sci. 181 (2023) 106366.
doi: 10.1016/j.ejps.2022.106366
C.G. Zhu, R.M. Wang, W.C. Zheng, et al., Biomed. Pharmacother. 96 (2017) 551–562.
doi: 10.1016/j.biopha.2017.10.006
M. Flores-Ramos, F. Ibarra-Velarde, H. Jung-Cook, et al., Bioorg. Med. Chem. Lett. 27 (2017) 616–619.
doi: 10.1016/j.bmcl.2016.12.004
N.X. Duan, J.J. Li, S. Song, et al., Adv. Funct. Mater. 31 (2021) 2100605.
doi: 10.1002/adfm.202100605
R. Dhankhar, A. Kawatra, A. Mohanty, P. Gulati, Curr. Protein Pept. Sci. 22 (2021) 514–525.
doi: 10.2174/1389203721666201207231932
S.O. Vass, D. Jarrom, W.R. Wilson, et al., Brit. J. Cancer 100 (2009) 1903–1911.
doi: 10.1038/sj.bjc.6605094
P. Ball, R. Hobbs, S. Anderson, et al., Pharmaceutics 13 (2021) 517.
doi: 10.3390/pharmaceutics13040517
E.M. Williams, R.F. Little, A.M. Mowday, et al., Biochem. J. 471 (2015) 131–153.
doi: 10.1042/BJ20150650
C. Jin, S.A. Wen, Q.M. Zhang, et al., ACS Med. Chem. Lett. 8 (2017) 762–765.
doi: 10.1021/acsmedchemlett.7b00189
S. Yamazoe, L.E. McQuade, J.K. Chen, ACS Chem. Biol. 9 (2014) 1985–1990.
doi: 10.1021/cb500429u
H.A.J. Hibbard, M.M. Reynolds, Bioorg. Chem. 93 (2019) 103318.
doi: 10.1016/j.bioorg.2019.103318
K. Sharma, K. Sengupta, H. Chakrapani, Bioorg. Med. Chem. Lett. 23 (2013) 5964–5967.
doi: 10.1016/j.bmcl.2013.08.066
X.F. Zhang, X.H. Li, W. Shi, H.M. Ma, Chem. Commun. 57 (2021) 8174–8177.
doi: 10.1039/D1CC03232A
O. Greco, L.K. Folkes, P. Wardman, et al., Cancer Gene Ther. 7 (2000) 1414–1420.
doi: 10.1038/sj.cgt.7700258
Y.H. Weng, H.H. Chen, X.Q. Chen, et al., Nat. Commun. 13 (2022) 4712.
doi: 10.1038/s41467-022-32453-3
F. Wang, J. Yang, Y.S. Li, et al., J. Mater. Chem. B 8 (2020) 6139–6147.
doi: 10.1039/D0TB01004A
X.Y. Wan, J.Q. Yin, Q.Q. Yan, et al., Chem. Commun. 58 (2022) 5877–5880.
doi: 10.1039/D2CC00373B
H. Li, L. Chen, Y. Shi, et al., Chem. Asian J. 12 (2017) 176–180.
doi: 10.1002/asia.201601198
L.K. Folkes, O. Greco, G.U. Dachs, et al., Biochem. Pharmacol. 63 (2002) 265–272.
doi: 10.1016/S0006-2952(01)00868-1
A.P. Rodrigues, L.M. da Fonseca, O.M.D. Oliveira, et al., Biochim. Biophys. Acta 1760 (2006) 1755–1761.
doi: 10.1016/j.bbagen.2006.09.008
W.B. Zhang, Y. Guo, J.L. Yang, et al., ACS Omega 8 (2023) 3484–3492.
doi: 10.1021/acsomega.2c07511
S. Pereira, G.L. Ma, L. Na, et al., Acta Biomater. 140 (2022) 530–546.
doi: 10.1016/j.actbio.2021.12.019
L.S. Zhang, J.R. Zhou, Y.C. Yan, et al., Cancer Lett. 465 (2019) 36–44.
doi: 10.1016/j.canlet.2019.08.019
M. Ni, W.J. Zeng, X. Xie, et al., Chin. Chem. Lett. 28 (2017) 1345–1351.
doi: 10.1016/j.cclet.2017.04.024
M. Markovic, S. Ben-Shabat, J.N. Manda, et al., Pharmaceutics 14 (2022) 675.
doi: 10.3390/pharmaceutics14030675
X.R. Guan, Y. Chen, X. Wu, et al., Chem. Commun. 55 (2019) 953–956.
doi: 10.1039/C8CC09047E
Q.F. Liu, X.C. Zhong, Y. Zhang, et al., Mol. Pharmaceutics 17 (2020) 1922–1932.
doi: 10.1021/acs.molpharmaceut.0c00008
M. Xiao, W. Sun, J.L. Fan, et al., Adv. Funct. Mater. 28 (2018) 1805128.
doi: 10.1002/adfm.201805128
F.Y. Wang, S.S. Hu, Q. Sun, et al., ACS Appl. Bio Mater. 2 (2019) 4904–4910.
doi: 10.1021/acsabm.9b00655
A. Diez-Torrubia, S. Cabrera, S. de Castro, et al., Eur. J. Med. Chem. 70 (2013) 456–468.
doi: 10.1016/j.ejmech.2013.10.001
M.Q. Sun, S.B. Yao, L.Y. Fan, et al., Small 18 (2022) 2106296.
doi: 10.1002/smll.202106296abm.9b00655
E. Rango, L. D'Antona, G. Iovenitti, et al., Eur. J. Med. Chem. 223 (2021) 113653.
doi: 10.1016/j.ejmech.2021.113653
J. Jiang, N. Shen, T.Y. Ci, et al., Adv. Mater. 31 (2019) 1904278.
doi: 10.1002/adma.201904278
J. Wang, H. Wang, H. Cui, et al., Chin. Chem. Lett. 31 (2020) 3143–3148.
doi: 10.1016/j.cclet.2020.07.027
N. Shim, S.I. Jeon, S.H. Yang, et al., Biomaterials 289 (2022) 121806.
doi: 10.1016/j.biomaterials.2022.121806
Y. Li, T. Mei, S. Han, et al., Chin. Chem. Lett. 31 (2020) 3027–3040.
doi: 10.1016/j.cclet.2020.05.027
P. Wang, H. Yang, C. Liu, et al., Chin. Chem. Lett. 32 (2021) 168–178.
doi: 10.1016/j.cclet.2020.11.056
H. Kim, Y.S. Cho, S.W. Chung, et al., J. Control. Release 346 (2022) 136–147.
doi: 10.1016/j.jconrel.2022.04.014
Y. Liu, W. Dong, Y.C. Ma, et al., Biomaterials 294 (2023) 122023.
doi: 10.1016/j.biomaterials.2023.122023
F. Liu, X. Ding, X.B. Xu, et al., Angew. Chem. Int. Ed. 61 (2022) e202203243.
doi: 10.1002/anie.202203243
M. Richter, M.M. Leuthold, D. Graf, et al., ACS Med. Chem. Lett. 10 (2019) 1115–1121.
doi: 10.1021/acsmedchemlett.9b00058
D.D. Liang, L.H. Li, C. Lynch, et al., Eur. J. Med. Chem. 179 (2019) 84–99.
doi: 10.1016/j.ejmech.2019.06.031
Q. Gong, X. Li, T. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202210001.
doi: 10.1002/anie.202210001
Y.Y. Pu, B.G. Zhou, H.J. Xiang, et al., Biomaterials 259 (2020) 120329.
doi: 10.1016/j.biomaterials.2020.120329
C.W. Li, D.C. Quenelle, M.N. Prichard, et al., Bioorg. Med. Chem. 20 (2012) 2669–2674.
doi: 10.1016/j.bmc.2012.02.031
D.C. Yang, X.Z. Yang, C.M. Luo, et al., Eur. J. Med. Chem. 243 (2022) 114749.
doi: 10.1016/j.ejmech.2022.114749
X.B. Zhao, W. Ha, K. Gao, Y.P. Shi, Anal. Chem. 92 (2020) 9039–9047.
doi: 10.1021/acs.analchem.0c01220
X.M. Li, Y.A. Hou, X.K. Meng, et al., Angew. Chem. Int. Ed. 57 (2018) 6141–6145.
doi: 10.1002/anie.201801058
Y. Zhou, C.Y. Zhang, Y.F. Wang, et al., Colloid Surf. B 220 (2022) 112853.
doi: 10.1016/j.colsurfb.2022.112853
A.J. Sawdon, J. Zhang, S. Peng, et al., Molecules 26 (2021) 1759.
doi: 10.3390/molecules26061759
S. Murty, L. Labanieh, T. Murty, et al., Cancer Res. 80 (2020) 4731–4740.
doi: 10.1158/0008-5472.CAN-19-3579
Q. Li, P. Zou, J. Sun, L. Chen, Eur. J. Med. Chem. 143 (2018) 732–744.
doi: 10.1016/j.ejmech.2017.11.081energy.2017.05.159
C. Trudeau, S. Yuan, J. Galipeau, et al., Hum. Gene Ther. 12 (2001) 1673–1680.
doi: 10.1089/10430340152528165
G. Chen, B. Tang, B.Y. Yang, et al., Appl. Microbiol. Biot. 97 (2013) 4393–4401.
doi: 10.1007/s00253-012-4321-8
Y.B. Sun, Y. Ke, C.S. Li, et al., J. Med. Chem. 63 (2020) 10816–10828.
doi: 10.1021/acs.jmedchem.0c00149
M. Cong, G.L. Xu, S.Y. Yang, et al., Chin. Chem. Lett. 33 (2022) 2481–2485.
doi: 10.1016/j.cclet.2021.11.083
T. Yang, A.S. Fruergaard, A.K. Winther, et al., Small 16 (2020) 1906744.
doi: 10.1002/smll.201906744
H. Yu, F.Y. Jin, D. Liu, et al., Theranostics 10 (2020) 2342–2357.
doi: 10.7150/thno.40395
L. Yu, W.L. Liu, Z.F. Zhang, Z.T. Song, Chin. Chem. Lett. 26 (2015) 700–704.
doi: 10.1016/j.cclet.2015.01.039
L. Jiang, M. Tinoco, S. Fernandez-Garcia, et al., ACS Appl. Mater. Interfaces 13 (2021) 38061–38073.
doi: 10.1021/acsami.1c09992
Z.J. Luo, Y.Z. Zhou, T. Yang, et al., Small 18 (2022) 2105762.
doi: 10.1002/smll.202105762
L.M. Wang, J.L. Xue, J. Chang, et al., J. Mater. Sci. 56 (2021) 13579–13589.
doi: 10.1007/s10853-021-06190-9
Y.W. Zhang, J. Mei, C. Yan, et al., Adv. Mater. 32 (2020) 1902806.
doi: 10.1002/adma.201902806
Z.A. Zhang, K.L. Fan, Nanoscale 15 (2022) 41–62.
Z.Y. Sun, Q.Q. Liu, X.Y. Wang, et al., Theranostics 12 (2022) 1132–1147.
doi: 10.7150/thno.66325
Y. Okamoto, R. Kojima, F. Schwizer, et al., Nat. Commun. 9 (2018) 1943.
doi: 10.1038/s41467-018-04440-0
J. Clavadetscher, E. Indrigo, S.V. Chankeshwara, et al., Angew Chem. Int. Ed. 56 (2017) 6864–6868.
doi: 10.1002/anie.201702404
W. Zhu, Z. Chen, Y. Pan, et al., Adv. Mater. 31 (2019) 1800426.
doi: 10.1002/adma.201800426
R. Das, R.F. Landis, G.Y. Tonga, et al., ACS Nano 13 (2019) 229–235.
doi: 10.1021/acsnano.8b05370
X.Z. Zhang, S.C. Lin, R. Huang, et al., J. Am. Chem. Soc. 144 (2022) 12893–12900.
doi: 10.1021/jacs.2c04571
X.Z. Zhang, Y.C. Liu, J. Doungchawee, et al., J. Control. Release 357 (2023) 31–39.
doi: 10.1016/j.jconrel.2023.03.032
R. Huang, C.M. Hirschbiegel, X.Z. Zhang, et al., ACS Appl. Mater. Interfaces 14 (2022) 31594–31600.
doi: 10.1021/acsami.2c04496
X.Z. Zhang, R.F. Landis, P. Keshri, et al., Adv. Healthc. Mater. 10 (2021) 2001627.
doi: 10.1002/adhm.202001627
S. Fedeli, R. Huang, Y. Oz, et al., ACS Appl. Mater. Interfaces 15 (2023) 15260–15268.
doi: 10.1021/acsami.3c02640
M. Sancho-Albero, B. Rubio-Ruiz, A.M. Perez-Lopez, et al., Nat. Catal. 2 (2019) 864–872.
doi: 10.1038/s41929-019-0333-4
G. Lu, R. Franzen, X.J. Yu, Y.J. Xu, Chin. Chem. Lett. 17 (2006) 461–464.
J. Li, J.T. Yu, J.Y. Zhao, et al., Nat. Chem. 6 (2014) 352–361.
doi: 10.1038/nchem.1887
K. Zhan, P. Lu, J. Dong, X. Hou, Chin. Chem. Lett. 31 (2020) 1630–1634.
doi: 10.1016/j.cclet.2019.09.006
R.M. Yusop, A. Unciti-Broceta, E.M.V. Johansson, et al., Nat. Chem. 3 (2011) 239–243.
doi: 10.1038/nchem.981
A. Unciti-Broceta, E.M. Johansson, R.M. Yusop, et al., Nat. Protoc. 7 (2012) 1207–1218.
doi: 10.1038/nprot.2012.052
J.T. Weiss, J.C. Dawson, C. Fraser, et al., J. Med. Chem. 57 (2014) 5395–5404.
doi: 10.1021/jm500531z
J.T. Weiss, J.C. Dawson, K.G. Macleod, et al., Nat. Commun. 5 (2014) 3277.
doi: 10.1038/ncomms4277
J.T. Weiss, N.O. Carragher, A. Unciti-Broceta, Sci. Rep. 5 (2015) 9329.
doi: 10.1038/srep09329
H.J. Zhou, C.C. Mayorga-Martinez, S. Pane, et al., Chem. Rev. 121 (2021) 4999–5041.
doi: 10.1021/acs.chemrev.0c01234386
M. Hoop, A.S. Ribeiro, D. Rosch, et al., Adv. Funct. Mater. 28 (2018) 1705920.
doi: 10.1002/adfm.201705920
T. Chen, X. Luo, L.W. Zhu, et al., Chem. Eng. J. 467 (2023) 143386.
doi: 10.1016/j.cej.2023.143386
L.Z. Feng, L. Cheng, Z.L. Dong, et al., ACS Nano 11 (2017) 927–937.
doi: 10.1021/acsnano.6b07525
S.L. Lin, W.L. Tan, P.F. Han, et al., Nano Res. 15 (2022) 9073–9081.
K.G. Stamplecoskie, P.V. Kamat, J. Am. Chem. Soc. 136 (2014) 11093–11099.
doi: 10.1021/ja505361n
D.J. Cheng, R. Liu, L.M. Tian, et al., ACS Appl. Nano Mater. 4 (2021) 13413–13424.
doi: 10.1021/acsanm.1c02926
S. Alonso-de Castro, A.L. Cortajarena, F. Lopez-Gallego, L. Salassa, Angew. Chem. Int. Ed. 57 (2018) 3143–3147.
doi: 10.1002/anie.201800288
J. Gurruchaga-Pereda, V. Martinez-Martinez, E. Rezabal, et al., ACS Catal. 10 (2020) 187–196.
doi: 10.1021/acscatal.9b02863
L.F. Mazzei, L. Martinez, L. Trevisan, et al., Chem. Commun. 56 (2020) 10461–10464.
doi: 10.1039/D0CC03450A
C. Ren, H.F. Liu, F.F. Lv, et al., ACS Appl. Mater. Interfaces 12 (2020) 34667–34677.
doi: 10.1021/acsami.0c09489
M.Y. Sun, Z.W. Liu, L. Wu, et al., J. Am. Chem. Soc. 145 (2023) 5330–5341.
doi: 10.1021/jacs.2c13010
M.M. Liu, Z.Q. Liu, G. Qin, et al., Nano Lett. 23 (2023) 4965–4973.
doi: 10.1021/acs.nanolett.3c00798
J. Wu, R. Huang, T.L. Wang, et al., Org. Biomol. Chem. 11 (2013) 2365–2369.
doi: 10.1039/c2ob27324a
D.B. Duan, H. Dong, Z.Y. Tu, et al., J. Am. Chem. Soc. 143 (2021) 2250–2255.
doi: 10.1021/jacs.0c10399
W.T. Zhang, C. Liu, Z.W. Liu, et al., ACS Nano 16 (2022) 20975–20984.
doi: 10.1021/acsnano.2c08604
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
Wenbin Zhou , Yafei Gao , Xinyu Feng , Yanqing Zhang , Cong Yang , Lanxi He , Fenghe Zhang , Xiaoguang Li , Qing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763
Xiaoshuai Wu , Bailei Wang , Yichen Li , Xiaoxuan Guan , Mingjing Yin , Wenquan Lv , Yin Chen , Fei Lu , Tao Qin , Huyang Gao , Weiqian Jin , Yifu Huang , Cuiping Li , Ming Gao , Junyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211
Tengteng Wang , Yiming Ju , Yao Cheng , Haiyang Wang , Dejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
Chuyu Huang , Zhishan Liu , Linping Zhao , Zuxiao Chen , Rongrong Zheng , Xiaona Rao , Yuxuan Wei , Xin Chen , Shiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Huijie An , Chen Yang , Zhihui Jiang , Junjie Yuan , Zhongming Qiu , Longhao Chen , Xin Chen , Mutu Huang , Linlang Huang , Hongju Lin , Biao Cheng , Hongjiang Liu , Zhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134
Hao Sun , Shengke Li , Qian Liu , Minzan Zuo , Xueqi Tian , Kaiya Wang , Xiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
Li Fu , Ziye Su , Shuyang Wu , Yanfen Cheng , Chuan Hu , Jinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537