Citation: Conghui Wang, Lei Xu, Zhenhua Jia, Teck-Peng Loh. Recent applications of macrocycles in supramolecular catalysis[J]. Chinese Chemical Letters, ;2024, 35(4): 109075. doi: 10.1016/j.cclet.2023.109075 shu

Recent applications of macrocycles in supramolecular catalysis

    ☆ This paper is dedicated to the memory of Prof. Jiang Wei.
    * Corresponding authors.
    E-mail addresses: iaszhjia@njtech.edu.cn (Z. Jia), teckpeng@ntu.edu.sg (T.-P. Loh).
  • Received Date: 7 July 2023
    Revised Date: 6 September 2023
    Accepted Date: 8 September 2023
    Available Online: 9 September 2023

Figures(23)

  • Numerous supramolecular macrocycles have been utilized for developing catalysts by exploiting their specific molecular recognition and ability to form inclusion complexes through noncovalent interactions. The cyclic structure and modified functional groups of these macrocycles can influence substrate and transition state stability, as well as reaction selectivity. The inner cavities of these macrocycles are particularly beneficial, as they enable substrates to adopt preorganized arrangements and serve as versatile platforms for highly efficient supramolecular catalytic systems. This minireview provides an overview of recent advancements in supramolecular catalysis using various macrocycles, such as crown ethers, cyclodextrins, calixarenes, pillararenes, cucurbiturils, and other novel macrocycles.
  • Lanthanide complexes are crystalline hybrid materials assembled by trivalent lanthanide (Ln3+) ions and organic ligands [1-3]. Benefiting from the antenna effect, characteristic luminescence of Ln3+ ions, especially Eu3+ and Tb3+ ions, are well sensitized by the light-harvesting ligands via a series of energy transfer processes [4-6]. These complicated photoluminescence pathways determine the sensitive nature to circumstance details, thereby providing an effective platform for chemically responding to metal cations, oxoanions, organic solvents, and biomolecules [7-10]. However, it is commonly believed that luminescent lanthanide complexes are unsuitable for water-bearing systems, because the stretching vibration of hydroxyl groups in water molecules confines the energy transfer process from the triplet state of ligand to the receiving energy level of Ln3+ ions, leading to dramatic luminescence quenching [11-13]. This greatly limits the practicality of lanthanide-based luminescence complexes. Therefore, it is meaningful, though challengeable, to develop a water-stable even water-improving luminescence lanthanide complex.

    Enhancing hydrophobicity of luminophores and thereafter inhibiting the immediate contact with solvent water molecules is a potential mean to settle the above-mentioned water-induced luminescence quenching issue [14]. Based on this consideration, (HNEt3)+[Eu(DBM)4] (briefly as Eu-DBM, DBM = dibenzoylmethane) is selected as a luminophore (Figs. S1 and S2 in Supporting information) [15]. Firstly, its phenyl-surrounding outside surface provides strong hydrophobicity. Secondly, it has coordination-saturated lanthanide centre, which could decrease the impact of coordination solvent molecular replacement and further weaken the water-induced effect to lanthanide luminescence. Thirdly, its anionic framework is helpful to the dispersibility in polar solvents such as water. Therefore, in this work, the Eu-DBM material is selected as a luminophore to study its potential on water-induced luminescence improvement. For further enhancing the dispersibility and stability, the nanosheet-like Eu-DBM material is also prepared. Then, its application on sensitive detection toward extended organic solvents in water has been investigated.

    A top-down strategy was utilized to prepare the Eu-DBM nanosheet by two facile steps. The bulky crystal of Eu-DBM was firstly prepared in terms of a previous method [15]. It was then exfoliated into nanosheets under 720 W ultrasonication for 24 h at room temperature. Atomic force microscopy (AFM) image revealed its two-dimensional (2D) sheet-like morphology with a height of uniform 12 nm (Fig. 1a). Scanning electron microscopy (SEM) image further confirmed a sheet-like appearance with the size of 100–200 nm (Fig. 1b). Fourier transition infrared (FT-IR), ultraviolet-visible absorption (UV-vis) thermogravimetric differential thermal analysis (TG-DTA) spectra, and the powder X-ray diffraction pattern of the Eu-DBM nanosheet held similar patterns with those of bulky ones reported previously (Figs. S3–S6 in Supporting information) [15]. Furthermore, elemental mapping analysis further proved the composition consisted of C, O and Eu elements (Fig. 1c). Elementary analysis, X-ray photoelectron spectroscopy (XPS), and energy disperse spectroscopy (EDS) presented an agreeable proportion of elements with crystallographic data (Table S1 in Supporting information) [15]. These results indicated that the obtained Eu-DBM nanosheets had the same structure and composition as their bulky crystals.

    Figure 1

    Figure 1.  AFM (a), SEM (b), and elemental mapping (c) images of Eu-DBM nanosheets. 3D photoluminescent spectra of Eu-DBM nanosheet in solid state (d) and in aqueous solution (e). (f) Comparison of lifetime and quantum yield in this work with previous reports. (g) Comparison of Eu-DBM bulky crystal and nanosheet in solid state and in aqueous suspension.

    The three-dimensional (3D) photoluminescence (PL) spectra of Eu-DBM nanosheet exhibited strong emission at 614 nm throughout the excitation from 250 nm to 390 nm, rendering stable and intense red-light emission with the Commission Internationale de L'Eclairage (CIE) coordination of (0.648, 0.330) (Fig. 1d and Fig. S7 in Supporting information). This excitation-wavelength independence in such a broad range was rarely reported in the luminescence lanthanide complexes [12, 13]. The unsplit band at 614 nm implied a highly symmetric structure of the Eu-DBM complex [16]. The electric dipole transition (5D07F2) at 614 nm was approximately 22-fold stronger than the magnetic one (5D07F1) at 592 nm, indicating the highly symmetric coordination environment of central Eu3+ ion in the complex [17]. Noteworthily, after dispersing the Eu-DBM nanosheet in water, the 1 g/L suspension presented the nearly same 3D PL contour as the solid-state one, exhibiting the strong red-light emission (Fig. 1e). The time-dependent curve showed that the luminescent intensity at 614 nm could remain at least 24 h with a < 5% declination (Fig. S8 in Supporting information). This excellent stability originated from the good dispersibility of the complex nanosheets in water.

    The presence of strong Eu3+ characteristic luminescence and the absence of DBM ligand fluorescence suggested an effective antenna effect in the Eu-DBM complex: the adsorbed UV light by DBM ligand could effectively transfer to the Eu3+ ion, and then sensitize its characteristic luminescence. To confirm this hypothesis, the sensitization efficiency (ηET) was subsequently calculated in terms of the following equations Eqs. 1–3 [18-20].

    (1)

    (2)

    (3)

    According to Eq. 1, Φoverall was the overall luminescence quantum yield measured by the integrated sphere method (Table S2 in Supporting information). ΦLn was the intrinsic quantum yield of the lanthanide luminescence, obtained in terms of Eq. 2, where the observed lifetime (τobs) was determined by monitoring the emission decaying curve within the 5D07F2 transition at 614 nm (Figs. S9–S11 in Supporting information). The calculated radiative lifetime (τrad) could be calculated through Eq. 3, where AMD, 0 was the spontaneous emission probability of the magnetic dipole transition and equated to 14.65 s−1 for Eu3+ ion (5D07F1); n represented the refractive index of the tested sample (n equated to 1.55 for solid-state Eu-DBM and 1.33 for Eu-DBM nanosheets aqueous suspension); Itot and IMD were the integrated emission of the total 5D07FJ transition and the 5D07F1 transition, respectively. As a result, the Eu-DBM bulky crystal and nanosheet in solid state and in aqueous suspension exhibited high τobs and Φoverall values, surpassing most of the reported luminescent lanthanide complexes and nearly all the Eu-DBM-based complexes (Fig. 1f). Compared with the solid-state Eu-DBM, the 1 g/L aqueous suspension of Eu-DBM nanosheets showed only slight declination on τobs and Φoverall (Table S2 and Figs. S9–S11). Noteworthily, the ηET in Eu-DBM aqueous suspension was calculated as 46.7%, a 13.0% and 13.3% improvement compared with that of the bulky crystal and solid-state nanosheets (Fig. 1g). This improvement on sensitization efficiency states the increasing energy transfer from the DBM ligand to the central Eu3+ ions. In other words, the water solvent improved the luminescence of Eu3+ ion, realizing the water-induced luminescence improvement which is rarely reported previously (Table S2).

    The mechanism of this water-induced luminescence improvement in the Eu-DBM complex was then explored. Firstly, the Eu-DBM was dispersed in various common solvents to prepare 1 g/L solution or suspension. As seen in Fig. 2a, the complex exhibited poor solubility in water but good in nearly all other common organic solvents. This derived from the strong hydrophobic property due to the phenyl-surrounding outside surface of Eu-DBM. Comparatively, the aqueous suspension of the Eu-DBM nanosheets presented strong and uniform red-light-emission of characteristic Eu3+ ion (Figs. 2b and c). However, the Eu-DBM solution in various common organic solvents was obviously quenched. These excellent and unorthodox photophysical properties of Eu-DBM in water system could attribute to the insolubility and aggregation state which avoided the immediate contact between water molecules and the central Eu3+ ions. Secondly, given that water possesses the highest surface tension and polarity among all solvents, it could suppress surficial phenyl groups and yield structural modification. According to Fig. S5, the PXRD pattern of the Eu-DBM nanosheet had strong peak at 7.0o, which indicated that the (200) plane was exposed to water solvent, as shown in Fig. 2d. The strong surface tension of solvent water molecules could compress the hydrophobic phenyl groups inward, resulting in the more planarity between the neighboring phenyl and carbonyl groups. This enhanced the π-π conjugation and suppressed the stretching vibration of the C–C bond of benzene rings. After the benzene rings are fixed, the energy loss caused by the vibration of the chemical bonds were reduced, making the more effective sensitization of Eu3+ ions (Fig. 2d). Moreover, the dihedral angle and distances between neighboring phenyl/carboxyl planes was decreasing after putting Eu-DBM nanosheets into water environment, which promoted the through-space charge transfer (TSCT) process [21-23]. To prove this hypothesis, the Eu-DBM molecule in the water environment was geometrically optimized by theoretical calculation by using Material Studio 8.0 software with GGA/BLYP basis set [24]. As shown in Fig. 3, under the effect of the water molecule, a more planarity between phenyl and carbonyl groups could be observed. The dihedral angle between the neighboring phenyl/carbonyl planes were also reduced by 11.6° and 7.3°, respectively, compared with the original structure. This confirmed that the water-induced luminescence improvement primarily resulted from the TSCT process as discussed above.

    Figure 2

    Figure 2.  Photo images of Eu-DBM samples in various solvents under daylight (a) and UV lamp (b). Photoluminescent spectra of Eu-DBM samples in various solvents upon the excitation of 304 nm (c). Mechanism of water-induced luminescence improvement (d).

    Figure 3

    Figure 3.  Geometrically optimized structure of Eu-DBM without water (left) and with water (right). H and (HNEt3)+ have been transparentized.

    Considering that the as-prepared Eu-DBM nanosheet presented excellent luminescence improvement in water and obvious quenching in other organic solvents, it could act as a luminescence sensor toward extensive organic solvents in water, being an indicator to monitor water purity. Based on this, various organic solvents were gradually titrated into 1 g/L Eu-DBM aqueous suspension. By monitoring their luminescence intensity at 614 nm upon the 304 nm excitation, the relationship between volume proportion (v/v) and quenching efficiency was depicted in Figs. 4a and b. The luminescence intensity dramatically decreased upon the addition of various organic solvents. When the volume proportion of added organic solvent was approximate 2.5%, the luminescence intensity dropped by about 50%. In other words, the nanosheets exhibited similar and sensitive changes in luminescence intensity toward nearly all organic solvents. To the best of our knowledge, this colligative property toward such extensive sensibility was rarely reported and applicable for water purity monitor. As shown in Figs. 4cl, the Eu-DBM aqueous suspension turned to be more pellucid as the gradual addition of various organic solvents. The luminescent intensity observed by naked eyes also presented an obvious decrease under the 365 nm UV lamp.

    Figure 4

    Figure 4.  (a, b) Relationship between the relative luminescent intensity of Eu-DBM sensor and the added quantity of organic solvents. Photo images under daylight and UV lamp of Eu-DBM sensor upon adding DMSO (c), EG(d), THF (e), DMA (f), acetone (g), n-propanol (h), DMF (i), EtOH (j), acetonitrile (k) and MeOH (l).

    Then, we quantitatively examined the luminescent quenching coefficient (KSV) of the Eu-DBM sensor toward various organic solvents in water via the distinguished Stern-Volmer (SV) equation: I0/I – 1 = KSV × [C]n, where I0 and I were the luminescent intensity before and after adding analytes, and [C] was the molar concentration of the analyte [25, 26]. The parameter n equalled to 1 when the SV curve displayed a linear relationship. According to Figs. S12–S31(Supporting information), the SV curve of the Eu-DBM sensor displayed a linear relationship in the concentration range of 0–0.6 mol/L toward DMA, DMF, DMSO, EtOH, MeOH, acetonitrile, and n-propanol, but a distinct curvature toward THF, acetone, and ethylene glycol (EG). The calculated KSV values were in order of acetone (8.85 L/mol) > THF (7.35 L/mol) > DMF (7.22 L/mol) > EtOH (6.54 L/mol) > n-propanol (4.79 L/mol) > acetonitrile (2.54 L/mol) > MeOH (2.52 L/mol) > DMA (2.78 L/mol) > DMSO (2.43 L/mol) > EG (2.11 L/mol). Subsequently, the limitations of detection (LODs) were calculated via the formula of 3σ/KSV, where σ is the standard deviation of the luminescent intensity for five-time blank measurement at 2 min intervals [27-30]. As a result, the LODs toward various organic solvents ranged from 4.07 × 10−4 mol/L to 1.43 × 10−3 mol/L. In order to improve the detection convenience, the relationship between the volume ratio of the 10 organic solvents and the relative luminescence intensity was averaged and the polynomial fitting was performed (Fig. S32 in Supporting information). The relationship between them is approximately fitted as y = 5.23x2 – 35.47x + 100.00 and R2 = 0.999. This extensive sensibility toward nearly all organic solvents in water demonstrated that the as-prepared Eu-DBM nanosheets could be utilized to ratiometrically determine the organic solvents in water. In addition, the sensor could be regenerated and reused for at least five cycles by centrifugation of the solution after use and washing several times with water (Figs. S33–S42 in Supporting information).

    In conclusion, the water-stable Eu-DBM nanosheets exhibited exceptional water-induced luminescence improvement phenomenon, with a 13% improvement for sensitization efficiency. This attributes to the combined effect of hydrophobic-caused aggregation and through-space charge transfer in the water environment. Moreover, the well-dispersed aqueous suspension of Eu-DBM nanosheets could act as a luminescence sensor which responses to trace organic solvents in water, with good universality and recyclability. In this work, the water-induced luminescence improvement and extensive sensibility toward organic solvents in water were rarely reported previously in lanthanide-based materials. The successful development of this material provided a new platform for luminescent sensors in the water system, being practical values on monitoring water quality.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We thank the National Natural Science Foundation of China (No. 22075071), and Reform and Development Fund Project of Local University supported by the Central Government.

    Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.cclet.2021.08.080.


    1. [1]

      H. Nie, Z. Wei, X.L. Ni, et al., Chem. Rev. 122 (2022) 9032–9077.  doi: 10.1021/acs.chemrev.1c01050

    2. [2]

      Y. Chen, S. Sun, D. Lu, et al., Chin. Chem. Lett. 30 (2019) 37–43.  doi: 10.1080/09593330.2017.1377769

    3. [3]

      Z. Liu, X. Dai, Y. Sun, et al., Aggregate 1 (2020) 31–44.  doi: 10.1002/agt2.3

    4. [4]

      T.L. Mako, J.M. Racicot, M. Levine, Chem. Rev. 119 (2019) 322–477.  doi: 10.1021/acs.chemrev.8b00260

    5. [5]

      D.H. Qu, Q.C. Wang, Q.W. Zhang, et al., Chem. Rev. 115 (2015) 7543–7588.  doi: 10.1021/cr5006342

    6. [6]

      M. Rao, W. Wu, C. Yang, et al., Green Synth. Catal. 2 (2021) 131–144.  doi: 10.1016/j.gresc.2021.03.005

    7. [7]

      G. Olivo, G. Capocasa, D. Del Giudice, et al., Chem. Soc. Rev. 50 (2021) 7681–7724.  doi: 10.1039/d1cs00175b

    8. [8]

      Y. Yu, J. Rebek, Jr., Acc. Chem. Res. 51 (2018) 3031–3040.  doi: 10.1021/acs.accounts.8b00269

    9. [9]

      X. Tang, Y. Yang, Y. Kang, et al., Langmuir 36 (2020) 5954–5959.  doi: 10.1021/acs.langmuir.0c00806

    10. [10]

      G. Cera, F. Cester. Bonati, M. Bazzoni, et al., Org. Biomol. Chem. 19 (2021) 1546–1554.  doi: 10.1039/d0ob02393k

    11. [11]

      D. Kauerhof, J. Niemeyer, ChemPlusChem 85 (2020) 889–899.  doi: 10.1002/cplu.202000152

    12. [12]

      K. Wang, Q. Liu, L. Zhou, et al., Chin. Chem. Lett. 34 (2023) 108559.  doi: 10.1016/j.cclet.2023.108559

    13. [13]

      S. Zhong, L. Zhu, S. Wu, et al., Chin. Chem. Lett. 34 (2023) 108124.  doi: 10.1016/j.cclet.2022.108124

    14. [14]

      R. Saha, B. Mondal, P.S. Mukherjee, Chem. Rev. 122 (2022) 12244–12307.  doi: 10.1021/acs.chemrev.1c00811

    15. [15]

      R. Schettini, M. Sicignano, F.D. Riccardis, et al., Synthesis 50 (2018) 4777–4795.  doi: 10.1055/s-0037-1610311

    16. [16]

      Z. Zhang, Y. Shao, J. Tang, et al., Green Synth. Catal. 2 (2021) 156–164.  doi: 10.1016/j.gresc.2021.03.007

    17. [17]

      Y.B. Liu, C.F. Chen, Y.H. Hu, et al., ChemistrySelect 7 (2022) e202200912.  doi: 10.1002/slct.202200912

    18. [18]

      B. Li, Q. Xu, X. Shen, et al., Chin. Chem. Lett. 34 (2023) 108015.  doi: 10.1016/j.cclet.2022.108015

    19. [19]

      A. Vicens, L. Vicens, G. Olivo, et al., Faraday Discuss. 244 (2023) 51–61.  doi: 10.1039/d2fd00177b

    20. [20]

      J. Yu, F. Shi, L.Z. Gong, Acc. Chem. Res. 44 (2011) 1156–1171.  doi: 10.1021/ar2000343

    21. [21]

      T. Akiyama, K. Mori, Chem. Rev. 115 (2015) 9277–9306.  doi: 10.1021/acs.chemrev.5b00041

    22. [22]

      A. Rahman, X. Lin, Org. Biomol. Chem. 16 (2018) 4753–4777.  doi: 10.1039/c8ob00900g

    23. [23]

      Y. Li, B. Ma, Y. He, et al., Chem. Asian. J. 5 (2010) 2454–2458.  doi: 10.1002/asia.201000593

    24. [24]

      G.H. Ouyang, Y.M. He, Y. Li, et al., Angew. Chem. Int. Ed. 54 (2015) 4334–4337.  doi: 10.1002/anie.201411593

    25. [25]

      F.T. Song, G.H. Ouyang, Y. Li, et al., Eur. J. Org. Chem. 2014 (2014) 6713–6719.  doi: 10.1002/ejoc.201402735

    26. [26]

      Y. Luo, G. Ouyang, Y. Tang, et al., J. Org. Chem. 85 (2020) 8176–8184.  doi: 10.1021/acs.joc.0c00223

    27. [27]

      J. Tang, C. Chen, T. Hong, et al., Org. Lett. 24 (2022) 7955–7960.  doi: 10.1021/acs.orglett.2c03091

    28. [28]

      J.J. Tao, J.D. Tang, T. Hong, et al., ACS Omega 6 (2021) 35093–35103.  doi: 10.1021/acsomega.1c05875

    29. [29]

      Y. Xia, Z. Song, Z. Tan, et al., Nat. Commun. 12 (2021) 732.  doi: 10.1038/s41467-020-20724-w

    30. [30]

      S. Noël, B. Léger, A. Ponchel, et al., Environ. Chem. Lett. 19 (2021) 4327–4348.  doi: 10.1007/s10311-021-01298-5

    31. [31]

      R. Breslow, S.D. Dong, Chem. Rev. 98 (1998) 1997–2011.  doi: 10.1021/cr970011j

    32. [32]

      K. Takahashi, Chem. Rev. 98 (1998) 2013–2033.  doi: 10.1021/cr9700235

    33. [33]

      C.K. Jadhav, A.S. Nipate, A.V. Chate, et al., Polycycl. Aromat. Compd. 42 (2022) 4224–4239.  doi: 10.1080/10406638.2021.1886125

    34. [34]

      M. Agnes, A. Mazza, E. Kalydi, et al., Chem. Eur. J. (2023) e202300511.

    35. [35]

      Y. Zhang, B. Hu, X.M. Cao, et al., Nano Res. 14 (2021) 1018–1025.  doi: 10.1007/s12274-020-3144-7

    36. [36]

      G. Xu, S. Leloux, P. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 7591–7597.  doi: 10.1002/anie.202001733

    37. [37]

      V.C. de Souza, G. dos S. Ramos, J.L. Leite, et al., Carbohydr. Polym. 301 (2023) 120271.  doi: 10.1016/j.carbpol.2022.120271

    38. [38]

      Z. Jin, C. Yan, H. Chu, et al., RSC Adv. 12 (2022) 10460–10466.  doi: 10.1039/d1ra09062c

    39. [39]

      X.F. Chen, D.K.P. Ng, Chem. Commun. 57 (2021) 3567–3570.  doi: 10.1039/d1cc00713k

    40. [40]

      K. Kanagaraj, W. Liang, M. Rao, et al., Org. Lett. 22 (2020) 5273–5278.  doi: 10.1021/acs.orglett.0c01194

    41. [41]

      K. Kanagaraj, J. Ji, M. Rao, et al., New J. Chem. 46 (2022) 23066–23076.  doi: 10.1039/d2nj03940k

    42. [42]

      Q. Wang, W. Liang, X. Wei, et al., Org. Lett. 22 (2020) 9757–9761.  doi: 10.1021/acs.orglett.0c03848

    43. [43]

      J. Ji, W. Wu, X. Wei, et al., Chem. Commun. 56 (2020) 6197–6200.  doi: 10.1039/d0cc02055a

    44. [44]

      X.Y. Chen, H. Chen, L. Dordevic, et al., J. Am. Chem. Soc. 143 (2021) 9129–9139.  doi: 10.1021/jacs.1c03277

    45. [45]

      X. Dai, L. Tian, Z. Liu, et al., ACS Nano 16 (2022) 18398–18407.  doi: 10.1021/acsnano.2c06441

    46. [46]

      X. Liu, J. Zhang, Y. Lan, et al., Inorg. Chem. Front. 9 (2022) 6534–6543.  doi: 10.1039/d2qi02085h

    47. [47]

      L. Chen, Y. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 7654–7658.  doi: 10.1002/anie.202017001

    48. [48]

      F.C. Bonati, A. Secchi, G. Cera, Tetrahedron Lett. 112 (2022) 154221.  doi: 10.1016/j.tetlet.2022.154221

    49. [49]

      M. Durmaz, E. Halay, S. Bozkurt, Beilstein J. Org. Chem. 14 (2018) 1389–1412.  doi: 10.3762/bjoc.14.117

    50. [50]

      K. Yang, Z. Ma, H.X. Tong, et al., Chin. Chem. Lett. 31 (2020) 3259–3262.  doi: 10.1016/j.cclet.2020.02.057

    51. [51]

      D. Lisi, C.A. Vezzoni, A. Casnati, et al., Chem. Eur. J. 29 (2023) e202203213.  doi: 10.1002/chem.202203213

    52. [52]

      N. Noll, F. Würthner, Chem. Eur. J. 27 (2021) 444–450.  doi: 10.1002/chem.202004486

    53. [53]

      T. Ogoshi, S. Kanai, S. Fujinami, et al., J. Am. Chem. Soc. 130 (2008) 5022–5023.  doi: 10.1021/ja711260m

    54. [54]

      K. Wang, J.H. Jordan, K. Velmurugan, V., Angew. Chem. Int. Ed. 60 (2021) 9205–9214.  doi: 10.1002/anie.202010150

    55. [55]

      K. Wang, X. Tian, J.H. Jordan, et al., Chin. Chem. Lett. 33 (2022) 89–96.  doi: 10.1016/j.cclet.2021.06.026

    56. [56]

      S. Kosiorek, N. Rad, V. Sashuk, ChemCatChem 12 (2020) 2776–2782.  doi: 10.1002/cctc.202000082

    57. [57]

      M. Zuo, W. Qian, M. Hao, et al., Chin. Chem. Lett. 32 (2021) 1381–1384.  doi: 10.1016/j.cclet.2020.09.033

    58. [58]

      G. Sun, M. Zuo, W. Qian, et al., Green. Synth. Catal. 2 (2021) 32–37.  doi: 10.1016/j.gresc.2021.01.003

    59. [59]

      P.P. Jia, L. Xu, Y.X. Hu, et al., J. Am. Chem. Soc. 143 (2021) 399–408.  doi: 10.1021/jacs.0c11370

    60. [60]

      H. Qiang, T. Chen, Z. Wang, et al., Chin. Chem. Lett. 31 (2020) 3225–3229.  doi: 10.1016/j.cclet.2020.04.020

    61. [61]

      X. Tan, W. Zeng, Y. Fan, et al., Nanotechnology 31 (2020) 135705.  doi: 10.1088/1361-6528/ab5ff5

    62. [62]

      Y. Cai, X. Yan, S. Wang, et al., Inorg. Chem. 60 (2021) 2883–2887.  doi: 10.1021/acs.inorgchem.0c03645

    63. [63]

      H. Wu, M. Wang, F. Jing, et al., Chin. Chem. Lett. 33 (2022) 1983–1987.  doi: 10.1016/j.cclet.2021.09.095

    64. [64]

      K. I. Assaf, W.M. Nau, Chem. Soc. Rev. 44 (2015) 394–418.  doi: 10.1039/C4CS00273C

    65. [65]

      B. Tang, J. Zhao, J.F. Xu, et al., Chem. Eur. J. 26 (2020) 15446–15460.  doi: 10.1002/chem.202003897

    66. [66]

      D. Berta, I. Szabό, O.A. Scherman, et al., Front. Chem. 8 (2020) 587084.  doi: 10.3389/fchem.2020.587084

    67. [67]

      F. N. Tehrani, K.I. Assaf, R. Hein, et al., ACS Catal. 12 (2022) 2261–2269.  doi: 10.1021/acscatal.1c05659

    68. [68]

      Y. Meng, Y. Jian, J. Li, et al., Chem. Eng. J. 452 (2023) 139477.  doi: 10.1016/j.cej.2022.139477

    69. [69]

      X. Dai, X.Y. Jin, Q. Ge, et al., New J. Chem. 45 (2021) 21638–21645.  doi: 10.1039/d1nj04920h

    70. [70]

      X. Feng, F. Zhao, R. Qian, et al., ChemistrySelect 6 (2021) 10739–10745.  doi: 10.1002/slct.202102684

    71. [71]

      H. Lambert, Y.W. Zhang, T.C. Lee, J. Phys. Chem. C 124 (2020) 11469–11479.  doi: 10.1021/acs.jpcc.0c02012

    72. [72]

      Y. Jin, M. Li, M. Liu, et al., Eur. J. Org. Chem. 2022 (2022) e202101446.  doi: 10.1002/ejoc.202101446

    73. [73]

      F. Lutz, N. Lorenzo-Parodi, T.C. Schmidt, et al., Chem. Commun. 57 (2021) 2887–2890.  doi: 10.1039/d0cc08025j

    74. [74]

      S. Das, P. Das, P. Dowari, et al., J. Colloid Interface Sci. 614 (2022) 172–180.  doi: 10.1016/j.jcis.2022.01.092

    75. [75]

      C.C. Zhang, X. Liu, Y.P. Liu, et al., Chem. Mater. 32 (2020) 8724–8732.  doi: 10.1021/acs.chemmater.0c03425

    76. [76]

      Z.Z. Gao, Y.Y. Xu, Z.K. Wang, et al., ACS Appl. Polym. Mater. 2 (2020) 4885–4892.  doi: 10.1021/acsapm.0c00800

    77. [77]

      W. Xu, J.Y. Chao, B. Tang, et al., Chem. Eur. J. 28 (2022) e202202200.  doi: 10.1002/chem.202202200

    78. [78]

      X. Hu, F. Liu, X. Zhang, et al., Chem. Sci. 11 (2020) 4779–4785.  doi: 10.1039/d0sc00409j

    79. [79]

      J. J. Alcázar, N. Geue, V. Valladares, et al., ACS Omega 6 (2021) 10333–10342.  doi: 10.1021/acsomega.1c00683

    80. [80]

      S. Moorthy, A.C. Bonillo, H. Lambert, et al., Chem. Commun. 58 (2022) 3617–3620.  doi: 10.1039/d1cc06982a

    81. [81]

      Q. Sun, L. Escobar, P. Ballester, Angew. Chem. Int. Ed. 60 (2021) 10359–10365.  doi: 10.1002/anie.202101499

    82. [82]

      I. Némethová, D. Schmid, K. Tiefenbacher, Angew. Chem. Int. Ed. 62 (2023) e202218625.  doi: 10.1002/anie.202218625

    83. [83]

      H. Guo, L.W. Zhang, H. Zhou, et al., Angew. Chem. Int. Ed. 59 (2020) 2623–2627.  doi: 10.1002/anie.201910399

    84. [84]

      R. Ning, H. Zhou, S.X. Nie, et al., Angew. Chem. Int. Ed. 59 (2020) 10894–10898.  doi: 10.1002/anie.202003673

    85. [85]

      M. Weh, A.A. Kroeger, K. Shoyama, et al., Angew. Chem. Int. Ed. 62 (2023) e202301301.  doi: 10.1002/anie.202301301

    1. [1]

      H. Nie, Z. Wei, X.L. Ni, et al., Chem. Rev. 122 (2022) 9032–9077.  doi: 10.1021/acs.chemrev.1c01050

    2. [2]

      Y. Chen, S. Sun, D. Lu, et al., Chin. Chem. Lett. 30 (2019) 37–43.  doi: 10.1080/09593330.2017.1377769

    3. [3]

      Z. Liu, X. Dai, Y. Sun, et al., Aggregate 1 (2020) 31–44.  doi: 10.1002/agt2.3

    4. [4]

      T.L. Mako, J.M. Racicot, M. Levine, Chem. Rev. 119 (2019) 322–477.  doi: 10.1021/acs.chemrev.8b00260

    5. [5]

      D.H. Qu, Q.C. Wang, Q.W. Zhang, et al., Chem. Rev. 115 (2015) 7543–7588.  doi: 10.1021/cr5006342

    6. [6]

      M. Rao, W. Wu, C. Yang, et al., Green Synth. Catal. 2 (2021) 131–144.  doi: 10.1016/j.gresc.2021.03.005

    7. [7]

      G. Olivo, G. Capocasa, D. Del Giudice, et al., Chem. Soc. Rev. 50 (2021) 7681–7724.  doi: 10.1039/d1cs00175b

    8. [8]

      Y. Yu, J. Rebek, Jr., Acc. Chem. Res. 51 (2018) 3031–3040.  doi: 10.1021/acs.accounts.8b00269

    9. [9]

      X. Tang, Y. Yang, Y. Kang, et al., Langmuir 36 (2020) 5954–5959.  doi: 10.1021/acs.langmuir.0c00806

    10. [10]

      G. Cera, F. Cester. Bonati, M. Bazzoni, et al., Org. Biomol. Chem. 19 (2021) 1546–1554.  doi: 10.1039/d0ob02393k

    11. [11]

      D. Kauerhof, J. Niemeyer, ChemPlusChem 85 (2020) 889–899.  doi: 10.1002/cplu.202000152

    12. [12]

      K. Wang, Q. Liu, L. Zhou, et al., Chin. Chem. Lett. 34 (2023) 108559.  doi: 10.1016/j.cclet.2023.108559

    13. [13]

      S. Zhong, L. Zhu, S. Wu, et al., Chin. Chem. Lett. 34 (2023) 108124.  doi: 10.1016/j.cclet.2022.108124

    14. [14]

      R. Saha, B. Mondal, P.S. Mukherjee, Chem. Rev. 122 (2022) 12244–12307.  doi: 10.1021/acs.chemrev.1c00811

    15. [15]

      R. Schettini, M. Sicignano, F.D. Riccardis, et al., Synthesis 50 (2018) 4777–4795.  doi: 10.1055/s-0037-1610311

    16. [16]

      Z. Zhang, Y. Shao, J. Tang, et al., Green Synth. Catal. 2 (2021) 156–164.  doi: 10.1016/j.gresc.2021.03.007

    17. [17]

      Y.B. Liu, C.F. Chen, Y.H. Hu, et al., ChemistrySelect 7 (2022) e202200912.  doi: 10.1002/slct.202200912

    18. [18]

      B. Li, Q. Xu, X. Shen, et al., Chin. Chem. Lett. 34 (2023) 108015.  doi: 10.1016/j.cclet.2022.108015

    19. [19]

      A. Vicens, L. Vicens, G. Olivo, et al., Faraday Discuss. 244 (2023) 51–61.  doi: 10.1039/d2fd00177b

    20. [20]

      J. Yu, F. Shi, L.Z. Gong, Acc. Chem. Res. 44 (2011) 1156–1171.  doi: 10.1021/ar2000343

    21. [21]

      T. Akiyama, K. Mori, Chem. Rev. 115 (2015) 9277–9306.  doi: 10.1021/acs.chemrev.5b00041

    22. [22]

      A. Rahman, X. Lin, Org. Biomol. Chem. 16 (2018) 4753–4777.  doi: 10.1039/c8ob00900g

    23. [23]

      Y. Li, B. Ma, Y. He, et al., Chem. Asian. J. 5 (2010) 2454–2458.  doi: 10.1002/asia.201000593

    24. [24]

      G.H. Ouyang, Y.M. He, Y. Li, et al., Angew. Chem. Int. Ed. 54 (2015) 4334–4337.  doi: 10.1002/anie.201411593

    25. [25]

      F.T. Song, G.H. Ouyang, Y. Li, et al., Eur. J. Org. Chem. 2014 (2014) 6713–6719.  doi: 10.1002/ejoc.201402735

    26. [26]

      Y. Luo, G. Ouyang, Y. Tang, et al., J. Org. Chem. 85 (2020) 8176–8184.  doi: 10.1021/acs.joc.0c00223

    27. [27]

      J. Tang, C. Chen, T. Hong, et al., Org. Lett. 24 (2022) 7955–7960.  doi: 10.1021/acs.orglett.2c03091

    28. [28]

      J.J. Tao, J.D. Tang, T. Hong, et al., ACS Omega 6 (2021) 35093–35103.  doi: 10.1021/acsomega.1c05875

    29. [29]

      Y. Xia, Z. Song, Z. Tan, et al., Nat. Commun. 12 (2021) 732.  doi: 10.1038/s41467-020-20724-w

    30. [30]

      S. Noël, B. Léger, A. Ponchel, et al., Environ. Chem. Lett. 19 (2021) 4327–4348.  doi: 10.1007/s10311-021-01298-5

    31. [31]

      R. Breslow, S.D. Dong, Chem. Rev. 98 (1998) 1997–2011.  doi: 10.1021/cr970011j

    32. [32]

      K. Takahashi, Chem. Rev. 98 (1998) 2013–2033.  doi: 10.1021/cr9700235

    33. [33]

      C.K. Jadhav, A.S. Nipate, A.V. Chate, et al., Polycycl. Aromat. Compd. 42 (2022) 4224–4239.  doi: 10.1080/10406638.2021.1886125

    34. [34]

      M. Agnes, A. Mazza, E. Kalydi, et al., Chem. Eur. J. (2023) e202300511.

    35. [35]

      Y. Zhang, B. Hu, X.M. Cao, et al., Nano Res. 14 (2021) 1018–1025.  doi: 10.1007/s12274-020-3144-7

    36. [36]

      G. Xu, S. Leloux, P. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 7591–7597.  doi: 10.1002/anie.202001733

    37. [37]

      V.C. de Souza, G. dos S. Ramos, J.L. Leite, et al., Carbohydr. Polym. 301 (2023) 120271.  doi: 10.1016/j.carbpol.2022.120271

    38. [38]

      Z. Jin, C. Yan, H. Chu, et al., RSC Adv. 12 (2022) 10460–10466.  doi: 10.1039/d1ra09062c

    39. [39]

      X.F. Chen, D.K.P. Ng, Chem. Commun. 57 (2021) 3567–3570.  doi: 10.1039/d1cc00713k

    40. [40]

      K. Kanagaraj, W. Liang, M. Rao, et al., Org. Lett. 22 (2020) 5273–5278.  doi: 10.1021/acs.orglett.0c01194

    41. [41]

      K. Kanagaraj, J. Ji, M. Rao, et al., New J. Chem. 46 (2022) 23066–23076.  doi: 10.1039/d2nj03940k

    42. [42]

      Q. Wang, W. Liang, X. Wei, et al., Org. Lett. 22 (2020) 9757–9761.  doi: 10.1021/acs.orglett.0c03848

    43. [43]

      J. Ji, W. Wu, X. Wei, et al., Chem. Commun. 56 (2020) 6197–6200.  doi: 10.1039/d0cc02055a

    44. [44]

      X.Y. Chen, H. Chen, L. Dordevic, et al., J. Am. Chem. Soc. 143 (2021) 9129–9139.  doi: 10.1021/jacs.1c03277

    45. [45]

      X. Dai, L. Tian, Z. Liu, et al., ACS Nano 16 (2022) 18398–18407.  doi: 10.1021/acsnano.2c06441

    46. [46]

      X. Liu, J. Zhang, Y. Lan, et al., Inorg. Chem. Front. 9 (2022) 6534–6543.  doi: 10.1039/d2qi02085h

    47. [47]

      L. Chen, Y. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 7654–7658.  doi: 10.1002/anie.202017001

    48. [48]

      F.C. Bonati, A. Secchi, G. Cera, Tetrahedron Lett. 112 (2022) 154221.  doi: 10.1016/j.tetlet.2022.154221

    49. [49]

      M. Durmaz, E. Halay, S. Bozkurt, Beilstein J. Org. Chem. 14 (2018) 1389–1412.  doi: 10.3762/bjoc.14.117

    50. [50]

      K. Yang, Z. Ma, H.X. Tong, et al., Chin. Chem. Lett. 31 (2020) 3259–3262.  doi: 10.1016/j.cclet.2020.02.057

    51. [51]

      D. Lisi, C.A. Vezzoni, A. Casnati, et al., Chem. Eur. J. 29 (2023) e202203213.  doi: 10.1002/chem.202203213

    52. [52]

      N. Noll, F. Würthner, Chem. Eur. J. 27 (2021) 444–450.  doi: 10.1002/chem.202004486

    53. [53]

      T. Ogoshi, S. Kanai, S. Fujinami, et al., J. Am. Chem. Soc. 130 (2008) 5022–5023.  doi: 10.1021/ja711260m

    54. [54]

      K. Wang, J.H. Jordan, K. Velmurugan, V., Angew. Chem. Int. Ed. 60 (2021) 9205–9214.  doi: 10.1002/anie.202010150

    55. [55]

      K. Wang, X. Tian, J.H. Jordan, et al., Chin. Chem. Lett. 33 (2022) 89–96.  doi: 10.1016/j.cclet.2021.06.026

    56. [56]

      S. Kosiorek, N. Rad, V. Sashuk, ChemCatChem 12 (2020) 2776–2782.  doi: 10.1002/cctc.202000082

    57. [57]

      M. Zuo, W. Qian, M. Hao, et al., Chin. Chem. Lett. 32 (2021) 1381–1384.  doi: 10.1016/j.cclet.2020.09.033

    58. [58]

      G. Sun, M. Zuo, W. Qian, et al., Green. Synth. Catal. 2 (2021) 32–37.  doi: 10.1016/j.gresc.2021.01.003

    59. [59]

      P.P. Jia, L. Xu, Y.X. Hu, et al., J. Am. Chem. Soc. 143 (2021) 399–408.  doi: 10.1021/jacs.0c11370

    60. [60]

      H. Qiang, T. Chen, Z. Wang, et al., Chin. Chem. Lett. 31 (2020) 3225–3229.  doi: 10.1016/j.cclet.2020.04.020

    61. [61]

      X. Tan, W. Zeng, Y. Fan, et al., Nanotechnology 31 (2020) 135705.  doi: 10.1088/1361-6528/ab5ff5

    62. [62]

      Y. Cai, X. Yan, S. Wang, et al., Inorg. Chem. 60 (2021) 2883–2887.  doi: 10.1021/acs.inorgchem.0c03645

    63. [63]

      H. Wu, M. Wang, F. Jing, et al., Chin. Chem. Lett. 33 (2022) 1983–1987.  doi: 10.1016/j.cclet.2021.09.095

    64. [64]

      K. I. Assaf, W.M. Nau, Chem. Soc. Rev. 44 (2015) 394–418.  doi: 10.1039/C4CS00273C

    65. [65]

      B. Tang, J. Zhao, J.F. Xu, et al., Chem. Eur. J. 26 (2020) 15446–15460.  doi: 10.1002/chem.202003897

    66. [66]

      D. Berta, I. Szabό, O.A. Scherman, et al., Front. Chem. 8 (2020) 587084.  doi: 10.3389/fchem.2020.587084

    67. [67]

      F. N. Tehrani, K.I. Assaf, R. Hein, et al., ACS Catal. 12 (2022) 2261–2269.  doi: 10.1021/acscatal.1c05659

    68. [68]

      Y. Meng, Y. Jian, J. Li, et al., Chem. Eng. J. 452 (2023) 139477.  doi: 10.1016/j.cej.2022.139477

    69. [69]

      X. Dai, X.Y. Jin, Q. Ge, et al., New J. Chem. 45 (2021) 21638–21645.  doi: 10.1039/d1nj04920h

    70. [70]

      X. Feng, F. Zhao, R. Qian, et al., ChemistrySelect 6 (2021) 10739–10745.  doi: 10.1002/slct.202102684

    71. [71]

      H. Lambert, Y.W. Zhang, T.C. Lee, J. Phys. Chem. C 124 (2020) 11469–11479.  doi: 10.1021/acs.jpcc.0c02012

    72. [72]

      Y. Jin, M. Li, M. Liu, et al., Eur. J. Org. Chem. 2022 (2022) e202101446.  doi: 10.1002/ejoc.202101446

    73. [73]

      F. Lutz, N. Lorenzo-Parodi, T.C. Schmidt, et al., Chem. Commun. 57 (2021) 2887–2890.  doi: 10.1039/d0cc08025j

    74. [74]

      S. Das, P. Das, P. Dowari, et al., J. Colloid Interface Sci. 614 (2022) 172–180.  doi: 10.1016/j.jcis.2022.01.092

    75. [75]

      C.C. Zhang, X. Liu, Y.P. Liu, et al., Chem. Mater. 32 (2020) 8724–8732.  doi: 10.1021/acs.chemmater.0c03425

    76. [76]

      Z.Z. Gao, Y.Y. Xu, Z.K. Wang, et al., ACS Appl. Polym. Mater. 2 (2020) 4885–4892.  doi: 10.1021/acsapm.0c00800

    77. [77]

      W. Xu, J.Y. Chao, B. Tang, et al., Chem. Eur. J. 28 (2022) e202202200.  doi: 10.1002/chem.202202200

    78. [78]

      X. Hu, F. Liu, X. Zhang, et al., Chem. Sci. 11 (2020) 4779–4785.  doi: 10.1039/d0sc00409j

    79. [79]

      J. J. Alcázar, N. Geue, V. Valladares, et al., ACS Omega 6 (2021) 10333–10342.  doi: 10.1021/acsomega.1c00683

    80. [80]

      S. Moorthy, A.C. Bonillo, H. Lambert, et al., Chem. Commun. 58 (2022) 3617–3620.  doi: 10.1039/d1cc06982a

    81. [81]

      Q. Sun, L. Escobar, P. Ballester, Angew. Chem. Int. Ed. 60 (2021) 10359–10365.  doi: 10.1002/anie.202101499

    82. [82]

      I. Némethová, D. Schmid, K. Tiefenbacher, Angew. Chem. Int. Ed. 62 (2023) e202218625.  doi: 10.1002/anie.202218625

    83. [83]

      H. Guo, L.W. Zhang, H. Zhou, et al., Angew. Chem. Int. Ed. 59 (2020) 2623–2627.  doi: 10.1002/anie.201910399

    84. [84]

      R. Ning, H. Zhou, S.X. Nie, et al., Angew. Chem. Int. Ed. 59 (2020) 10894–10898.  doi: 10.1002/anie.202003673

    85. [85]

      M. Weh, A.A. Kroeger, K. Shoyama, et al., Angew. Chem. Int. Ed. 62 (2023) e202301301.  doi: 10.1002/anie.202301301

  • 加载中
    1. [1]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    4. [4]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    5. [5]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    6. [6]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    7. [7]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    8. [8]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    9. [9]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    10. [10]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    11. [11]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    12. [12]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    13. [13]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    14. [14]

      Pan-Pan HuaHui-Jun FengShu-Ning LanFrancisco AznarezLi-Fang Zhang . Post-modification-induced supramolecular transformation of Hopf link to macrocycle. Chinese Chemical Letters, 2025, 36(6): 110684-. doi: 10.1016/j.cclet.2024.110684

    15. [15]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    16. [16]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    17. [17]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    18. [18]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Ran ZhuPan ZhangYitong XuJiutong MaQiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259

Metrics
  • PDF Downloads(6)
  • Abstract views(660)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return