Citation: Jingping Hu, Jing Xu. Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H[J]. Chinese Chemical Letters, ;2024, 35(4): 108733. doi: 10.1016/j.cclet.2023.108733 shu

Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H

    * Corresponding author.
    E-mail address: xuj@sustech.edu.cn (J. Xu).
  • Received Date: 12 May 2023
    Revised Date: 15 June 2023
    Accepted Date: 25 June 2023
    Available Online: 28 June 2023

Figures(3)

  • One of the largest subfamilies within the famous Daphniphyllum alkaloid family is made up of the yuzurimine-type (or macrodaphniphyllamine-type) alkaloids. Their complex aza-polycyclic caged structures, several contiguous stereogenic centers, and vicinal all-carbon quaternary centers make these alkaloids formidable challenge for synthetic chemists. Recently, synthesis of these alkaloids has received extensive attention from our community. Herein, we wish to report the total synthesis of C14epi-deoxycalyciphylline H, a putative member of yuzurimine-type alkaloid subfamily. Key transformations employed in our approach include an intramolecular Prins reaction and a Pd-catalyzed enyne cycloisomerization. In addition, synthesis of a daphnezomine L-type alkaloid, paxdaphnidine A, was also studied.
  • In recent decades, the Daphniphyllum alkaloids have drawn a lot of interest from our community due to their intriguing biological activity and fascinating cage-like structures [1-9]. The groups of Heathcock [10-13], Carreira [14], Li [15-19], Smith [20,21], Hanessian [22], Fukuyama/Yokoshima [23], Dixon [24,25], Zhai [26,27], Qiu [28,29], Gao [30], Sarpong [31,32], Li [33], Lu [34] and Li [35] successively reported their impressive synthesis of more than thirty Daphniphyllum alkaloids. Also, our group accomplished the total synthesis of ten Daphniphyllum alkaloids from six different subfamilies, including himalensine A, 10-deoxydaphnipaxianine A, daphlongamine E and calyciphylline R (calyciphylline A-type), dapholdhamine B (daphnezomine A-type), caldaphnidine O (bukittinggine-type), caldaphnidine J (yuzurimine-type), daphnezomine L methyl ester and calyciphylline K (daphnezomine L-type) and caldaphnidine D (secodaphniphylline-type) [36-41].

    Since Hirata's seminal discovery in 1966, nearly fifty yuzurimine-type (or macrodaphniphyllamine-type) alkaloids—or about one-sixth of all Daphniphyllum alkaloids now known—have been identified (Fig. 1). It is acknowledged that the individuals within this subfamily possess intricate and caged hexacyclic skeleton, thus presents significant synthetic challenge. In 2020, our group achieved the first total synthesis of a member within this subfamily, caldaphnidine J [39]. Later, Li reported their impressive total synthesis of five macrodaphniphyllamine-type alkaloids [19].

    Figure 1

    Figure 1.  Representative yuzurimine-type alkaloids.

    Based on the biosynthetic pathway of yuzurimine-type alkaloids [6,8], it is reasonable to assume that C14epi-deoxycalyciphylline H could be an actual member of the yuzurimine-type alkaloid subfamily, yet to be isolated. As our interests in natural product synthesis continues [42-44], we wish to describe here our endeavor towards the total synthesis of calyciphylline H [45] that led us to finally access one of its close derivatives, C14epi-deoxycalyciphylline H.

    As depicted in Scheme 1, the retrosynthetic analysis of calyciphylline H indicated that it could be derived from C14epi-deoxycalyciphylline H via C-14 epimerization and a Polonovski reaction [19]. Next, we envisioned that an enyne cycloisomerization of compound 1 would allow facile access to the key tetrahydropyrrole motif as well as the C3-C4 alkene motif in our target molecules. Next, it was envisaged that compound 1 could be synthesized from compound 2 via homologation and propargylation. One of the critical five-membered rings in compound 2 could be fabricated via a Prins reaction from aldehyde 3. This aldehyde compound was envisioned to be derived from the tetracyclic compound 4, which can be produced from tricycle 5 through our previously reported procedures [37-39].

    Scheme 1

    Scheme 1.  Retrosynthetic analysis.

    Our study commenced from known tricyclic compound 5, which was converted to vicinal diol 4 via a 7-step procedure involving ring-expansion and cyclopentane formation (Scheme 2) [37-39]. Then, under Ando's olefination conditions (p-TSA, CH(OMe)3; then Ac2O, 150 ℃) [46], alkene 6 was effectively derivatized from diol 4 in excellent yield (93%). Removal of the benzyl group in compound 6 suffered partial N-detosylation under sodium naphthalene conditions, hence, re-tosylation was necessary to provide a satisfactory yield of compound 7. A facile Dess-Martin oxidation of the primary hydroxyl group in compound 7 furnished aldehyde 3 in nearly quantitative yield. Next, under the acidic conditions (TfOH, 0 ℃), a Prins reaction was triggered between the aldehyde motif and the alkene motif in compound 3, fabricating alcohols 2a (56%) and 2b (38%). The absolute stereochemical configuration of 2a was unambiguously assigned via a single-crystal X-Ray diffraction (CCDC: 2258010), while that of 2b was assigned by its conversion to 2a via oxidation and reduction. At this point, a homologation was required for introducing the C-14 carboxylic acid ester moiety. To this end, a Dess-Martin oxidation of the mixture of 2a and 2b yielded the corresponding ketone compound, which unfortunately failed to react under various homologation conditions (Wittig, Peterson, MeLi, MeMgBr, Nysted, Van Leusen). Gratifyingly, treating it with Horner-Wadsworth-Emmons conditions (8, n-BuLi) [37-39,41] successfully gave homologated product 9. Following hydrolysis of the ketene dithioacetal moiety in compound 9 yielded compound 10 with an α-faced carboxylic acid ester at C-14. This outcome was attributed to its thermodynamically favored stereochemistry, which was assigned by a single-crystal XRD (CCDC: 2258012). Replacement of the N-tosyl group with the propargyl group afforded enyne compound 1 in 92% yield. Finally, a Pd-catalyzed enyne cycloisomerization [47] produced key tetrahydropyrrole motif as well as the C3-C4 alkene motif in the corresponding diene, which was further selectively hydrogenated (H2, Crabtree's catalyst) to yield C14epi-deoxycalyciphylline H. In addition, transformation of this compound to natural calyciphylline H is currently under investigation.

    Scheme 2

    Scheme 2.  Total synthesis of C14epi-deoxycalyciphylline H, a putative yuzurimine-type alkaloid and synthetic study towards the daphnezomine L-type alkaloid paxdaphnidine A.

    Next, our attention turned to a complex member of daphnezomine L-type alkaloids, paxdaphnidine A. It was envisioned that a SN2-substitution reaction using a cyanide anion may set the desired stereogenic configuration at C-14. Bearing this in mind, alcohol 2a was converted to its epimer, 2b, which was then sulfonylated to give compound 11. Heating this compound with NBu4CN in DMF produced nitrile 12 with the desired stereogenic outcome, which was also unambiguously confirmed by a single-crystal XRD (CCDC: 2258013). It should be noted that other attempts of this type of transformation gave lower yields (-OMs, NaCN, DMSO, 120 ℃, 41%; -OEs, NaCN, DMF or DMSO, 130 ℃, < 10%; -OTs, NaCN, DMF, 130 ℃, 43%; -OTs, NaCN, DMSO, 130 ℃, 26%). More experimental evidence further indicated the thermodynamical bias at C-14. When subjecting nitrile 12 to DIBAL-H (−78 ℃ to 0 ℃) followed by a Pinnick oxidation (0 ℃ to room temperature) and methylation, compound 10 with the undesired C-14 stereogenic center was produced as the main product. However, when the DIBAL-H reduction as well as the Pinnick oxidation was carefully performed at −78 ℃, compound 13 was successfully produced with the desired C-14 stereochemistry. Afterwards, detosylation and propargylation of compound 13 produced tertiary amine 14. Next, a Pd-catalyzed enyne cycloisomerization forged the tetrahydropyrrole ring. The so-afforded hexacyclic diene was then subjected to the von Braun reaction conditions (BrCN, K2CO3) [41,48,49] to cleave the C—N bond in a regioselective manner to give compound 15. This regioselectivity was likely dominated by the drastically different steric hindrances between three C—N bonds. The final-stage transformation of compound 15 to paxdaphnidine A, is still under investigation in our laboratory.

    In summary, the total synthesis of C14epi-deoxycalyciphylline H, a possible yuzurimine-type alkaloid family member and a close derivative of its natural congener calyciphylline H, was accomplished. Key cyclization methods, such as Prins reaction and enyne cycloisomerization paved the road to the target molecule. Synthesis towards a daphnezomine L-type alkaloid, paxdaphnidine A, was also studied, featuring a late-stage von Braun reaction. Our findings may benefit the research in this active field—Daphniphyllum alkaloid synthesis.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Financial support from the National Natural Science Foundation of China (Nos. 21971104 and 22271136), Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis (No. ZDSYS20190902093215877), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Innovative Program (No. 2019BT02Y335), Education Department of Guangdong Province, Key research projects in colleges and universities in Guangdong Province (No. 2021ZDZX2035), Shenzhen Nobel Prize Scientists Laboratory Project (No. C17783101) and Innovative Team of Universities in Guangdong Province (No. 2020KCXTD016) is greatly appreciated. We also thank SUSTech CRF NMR facility and Dr. Yang Yu (SUSTech) for HRMS analysis. We also thank Dr. X. Chang (SUSTech) for single crystal X-ray diffraction analysis.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108733.


    1. [1]

      L.D. Guo, Y.Y. Chen, J. Xu, Acc. Chem. Res. 53 (2020) 2726–2737.  doi: 10.1021/acs.accounts.0c00532

    2. [2]

      Z.Y. Li, Y.W. Guo, Chin. J. Org. Chem. 27 (2007) 565–575.

    3. [3]

      X. Liang, X.Z. Yang, L. Chen, et al., Med. Chem. Res. 30 (2021) 1–14.  doi: 10.1007/s00044-020-02646-w

    4. [4]

      H.F. Wu, X.P. Zhang, L.S. Ding, et al., Plant. Med. 79 (2013) 1589–1598.  doi: 10.1055/s-0033-1351024

    5. [5]

      J.B. Xu, H. Zhang, L.S. Gan, et al., J. Am. Chem. Soc. 136 (2014) 7631–7633.  doi: 10.1021/ja503995b

    6. [6]

      J. Kobayashi, T. Kubota, Nat. Prod. Rep. 26 (2009) 936–962.  doi: 10.1039/b813006j

    7. [7]

      A.K. Chattopadhyay, S. Hanessian, Chem. Rev. 117 (2017) 4104–4146.  doi: 10.1021/acs.chemrev.6b00412

    8. [8]

      J. Zhong, H. Wang, Q. Zhang, S.H. Gao, Alkal. Chem. Biol., 85 (2021) 113–176.

    9. [9]

      J.X. Zhao, J.M. Yue, Sci. China Chem. 66 (2023) 928–942.  doi: 10.1007/s11426-022-1512-0

    10. [10]

      C.H. Heathcock, S.K. Davidsen, S. Mills, M.A. Sanner, J. Am. Chem. Soc. 108 (1986) 5650–5651.  doi: 10.1021/ja00278a061

    11. [11]

      R.B. Ruggeri, M.M. Hansen, C.H. Heathcock, J. Am. Chem. Soc. 110 (1988) 8734–8736.  doi: 10.1021/ja00234a046

    12. [12]

      S. Piettre, C.H. Heathcock, Science 248 (1990) 1532–1534.  doi: 10.1126/science.248.4962.1532

    13. [13]

      R.B. Ruggeri, K.F. McClure, C.H. Heathcock, J. Am. Chem. Soc. 111 (1989) 1530–1531.  doi: 10.1021/ja00186a075

    14. [14]

      M.E. Weiss, E.M. Carreira, Angew. Chem. Int. Ed. 50 (2011) 11501–11505.  doi: 10.1002/anie.201104681

    15. [15]

      Z.Y. Lu, Y. Li, J. Deng, A. Li, Nat. Chem. 5 (2013) 679–684.  doi: 10.1038/nchem.1694

    16. [16]

      J. Li, W.H. Zhang, F. Zhang, Y. Chen, A. Li, J. Am. Chem. Soc. 139 (2017) 14893–14896.  doi: 10.1021/jacs.7b09186

    17. [17]

      Y. Chen, W.H. Zhang, L. Ren, J. Li, A. Li, Angew. Chem. Int. Ed. 57 (2018) 952–956.  doi: 10.1002/anie.201711482

    18. [18]

      W.H. Zhang, M. Ding, J. Li, et al., J. Am. Chem. Soc. 140 (2018) 4227–4231.  doi: 10.1021/jacs.8b01681

    19. [19]

      W.H. Zhang, M. Lu, L. Ren, et al., Org. Chem. (2022). doi: 10.26434/chemrxiv-2022-j8fzb(accessed2022-08-16).

    20. [20]

      A. Shvartsbart, A.B. Smith III, J. Am. Chem. Soc. 136 (2014) 870–873.  doi: 10.1021/ja411539w

    21. [21]

      A. Shvartsbart, A.B. Smith III, J. Am. Chem. Soc. 137 (2015) 3510–3519.  doi: 10.1021/ja503899t

    22. [22]

      A.K. Chattopadhyay, V.L. Ly, S. Jakkepally, G. Berger, S. Hanessian, Angew. Chem., Int. Ed. 55 (2016) 2577–2581.  doi: 10.1002/anie.201510861

    23. [23]

      R. Yamada, Y. Adachi, S. Yokoshima, T. Fukuyama, Angew. Chem. Int. Ed. 55 (2016) 6067–6070.  doi: 10.1002/anie.201601958

    24. [24]

      H.Y. Shi, I.N. Michaelides, B. Darses, et al., J. Am. Chem. Soc. 139 (2017) 17755–17758.  doi: 10.1021/jacs.7b10956

    25. [25]

      R. Kučera, S.R. Ellis, K. Yamazaki, et al., J. Am. Chem. Soc. 145 (2023) 5422–5430.  doi: 10.1021/jacs.2c13710

    26. [26]

      X.M. Chen, H.J. Zhang, X.K. Yang, et al., Angew. Chem. Int. Ed. 57 (2018) 947–951.  doi: 10.1002/anie.201709762

    27. [27]

      S.B. Su, C.C. Lin, H.B. Zhai, Angew. Chem. Int. Ed. 62 (2023) e202303402.  doi: 10.1002/anie.202303402

    28. [28]

      B. Xu, B.Y. Wang, W. Xun, F.Y.G. Qiu, Angew. Chem. Int. Ed. 58 (2019) 5754–5757.  doi: 10.1002/anie.201902268

    29. [29]

      B.Y. Wang, B. Xu, W. Xun, et al., Angew. Chem. Int. Ed. 60 (2021) 9439–9443.  doi: 10.1002/anie.202016212

    30. [30]

      J.X. Zhong, K.W. Chen, Y.Y. Qiu, H.B. He, S.H. Gao, Org. Lett. 21 (2019) 3741–3745.  doi: 10.1021/acs.orglett.9b01184

    31. [31]

      C.L. Hugelshofer, V. Palani, R. Sarpong, J. Am. Chem. Soc. 141 (2019) 8431–8435.  doi: 10.1021/jacs.9b03576

    32. [32]

      C.L. Hugelshofer, V. Palani, R. Sarpong, J. Org. Chem. 84 (2019) 14069–14091.  doi: 10.1021/acs.joc.9b02223

    33. [33]

      G.P. Xu, J.B. Wu, L.Y. Li, Y.N. Lu, C. Li, J. Am. Chem. Soc. 142 (2020) 15240–15245.  doi: 10.1021/jacs.0c06717

    34. [34]

      M.Y. Cao, B.J. Ma, Q.X. Gu, B. Fu, H.H. Lu, J. Am. Chem. Soc. 144 (2022) 5750–5755.  doi: 10.1021/jacs.2c01674

    35. [35]

      L.X. Li, L. Min, T.B. Yao, et al., J. Am. Chem. Soc. 144 (2022) 18823–18828.  doi: 10.1021/jacs.2c09548

    36. [36]

      Y.Y. Chen, J.P. Hu, L.D. Guo, et al., Angew. Chem. Int. Ed. 58 (2019) 7390–7394.  doi: 10.1002/anie.201902908

    37. [37]

      L.D. Guo, J.P. Hou, W.T. Tu, et al., J. Am. Chem. Soc. 141 (2019) 11713–11720.  doi: 10.1021/jacs.9b05641

    38. [38]

      L.D. Guo, J.P. Hu, Y. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 13043–13048.  doi: 10.1021/jacs.9b07558

    39. [39]

      L.D. Guo, Y. Zhang, J.P. Hu, et al., Nat. Commun. 11 (2020) 3538.  doi: 10.1038/s41467-020-17350-x

    40. [40]

      Y. Zhang, Y.Y. Chen, M.R. Song, et al., J. Am. Chem. Soc. 144 (2022) 16042–16051.  doi: 10.1021/jacs.2c05957

    41. [41]

      J.P. Hu, L.D. Guo, W.Q. Chen, et al., Org. Lett. 24 (2022) 7416–7420.  doi: 10.1021/acs.orglett.2c02988

    42. [42]

      S.L. Xie, C.Q. Ning, Q.Z. Yu, J.P. Hou, J. Xu, Chin. J. Chem. 39 (2021) 137–142.  doi: 10.1002/cjoc.202000460

    43. [43]

      S.L. Xie, G. Chen, H. Yan, et al., J. Am. Chem. Soc. 141 (2019) 3435–3439.  doi: 10.1021/jacs.9b00391

    44. [44]

      N. Zhao, S.Q. Yin, S.L. Xie, et al., Angew. Chem. Int. Ed. 57 (2018) 3386–3390.  doi: 10.1002/anie.201800167

    45. [45]

      S. Saito, H. Yahata, T. Kubota, et al., Tetrahedron 64 (2008) 1901–1908.  doi: 10.1016/j.tet.2007.11.087

    46. [46]

      M. Ando, H. Ohhara, K. Takase, Chem. Lett. 15 (1986) 879–882.  doi: 10.1246/cl.1986.879

    47. [47]

      B.M. Trost, Acc. Chem. Res. 23 (1990) 34–42.  doi: 10.1021/ar00170a004

    48. [48]

      J. von Braun, Ber. deut. Chem. Ges. 37 (1904) 3210.  doi: 10.1002/cber.190403703118

    49. [49]

      A.R. Surrey, Name Reactions in Organic Chemistry, 2nd ed, Academic Press, 1961, pp. 31–32.

    1. [1]

      L.D. Guo, Y.Y. Chen, J. Xu, Acc. Chem. Res. 53 (2020) 2726–2737.  doi: 10.1021/acs.accounts.0c00532

    2. [2]

      Z.Y. Li, Y.W. Guo, Chin. J. Org. Chem. 27 (2007) 565–575.

    3. [3]

      X. Liang, X.Z. Yang, L. Chen, et al., Med. Chem. Res. 30 (2021) 1–14.  doi: 10.1007/s00044-020-02646-w

    4. [4]

      H.F. Wu, X.P. Zhang, L.S. Ding, et al., Plant. Med. 79 (2013) 1589–1598.  doi: 10.1055/s-0033-1351024

    5. [5]

      J.B. Xu, H. Zhang, L.S. Gan, et al., J. Am. Chem. Soc. 136 (2014) 7631–7633.  doi: 10.1021/ja503995b

    6. [6]

      J. Kobayashi, T. Kubota, Nat. Prod. Rep. 26 (2009) 936–962.  doi: 10.1039/b813006j

    7. [7]

      A.K. Chattopadhyay, S. Hanessian, Chem. Rev. 117 (2017) 4104–4146.  doi: 10.1021/acs.chemrev.6b00412

    8. [8]

      J. Zhong, H. Wang, Q. Zhang, S.H. Gao, Alkal. Chem. Biol., 85 (2021) 113–176.

    9. [9]

      J.X. Zhao, J.M. Yue, Sci. China Chem. 66 (2023) 928–942.  doi: 10.1007/s11426-022-1512-0

    10. [10]

      C.H. Heathcock, S.K. Davidsen, S. Mills, M.A. Sanner, J. Am. Chem. Soc. 108 (1986) 5650–5651.  doi: 10.1021/ja00278a061

    11. [11]

      R.B. Ruggeri, M.M. Hansen, C.H. Heathcock, J. Am. Chem. Soc. 110 (1988) 8734–8736.  doi: 10.1021/ja00234a046

    12. [12]

      S. Piettre, C.H. Heathcock, Science 248 (1990) 1532–1534.  doi: 10.1126/science.248.4962.1532

    13. [13]

      R.B. Ruggeri, K.F. McClure, C.H. Heathcock, J. Am. Chem. Soc. 111 (1989) 1530–1531.  doi: 10.1021/ja00186a075

    14. [14]

      M.E. Weiss, E.M. Carreira, Angew. Chem. Int. Ed. 50 (2011) 11501–11505.  doi: 10.1002/anie.201104681

    15. [15]

      Z.Y. Lu, Y. Li, J. Deng, A. Li, Nat. Chem. 5 (2013) 679–684.  doi: 10.1038/nchem.1694

    16. [16]

      J. Li, W.H. Zhang, F. Zhang, Y. Chen, A. Li, J. Am. Chem. Soc. 139 (2017) 14893–14896.  doi: 10.1021/jacs.7b09186

    17. [17]

      Y. Chen, W.H. Zhang, L. Ren, J. Li, A. Li, Angew. Chem. Int. Ed. 57 (2018) 952–956.  doi: 10.1002/anie.201711482

    18. [18]

      W.H. Zhang, M. Ding, J. Li, et al., J. Am. Chem. Soc. 140 (2018) 4227–4231.  doi: 10.1021/jacs.8b01681

    19. [19]

      W.H. Zhang, M. Lu, L. Ren, et al., Org. Chem. (2022). doi: 10.26434/chemrxiv-2022-j8fzb(accessed2022-08-16).

    20. [20]

      A. Shvartsbart, A.B. Smith III, J. Am. Chem. Soc. 136 (2014) 870–873.  doi: 10.1021/ja411539w

    21. [21]

      A. Shvartsbart, A.B. Smith III, J. Am. Chem. Soc. 137 (2015) 3510–3519.  doi: 10.1021/ja503899t

    22. [22]

      A.K. Chattopadhyay, V.L. Ly, S. Jakkepally, G. Berger, S. Hanessian, Angew. Chem., Int. Ed. 55 (2016) 2577–2581.  doi: 10.1002/anie.201510861

    23. [23]

      R. Yamada, Y. Adachi, S. Yokoshima, T. Fukuyama, Angew. Chem. Int. Ed. 55 (2016) 6067–6070.  doi: 10.1002/anie.201601958

    24. [24]

      H.Y. Shi, I.N. Michaelides, B. Darses, et al., J. Am. Chem. Soc. 139 (2017) 17755–17758.  doi: 10.1021/jacs.7b10956

    25. [25]

      R. Kučera, S.R. Ellis, K. Yamazaki, et al., J. Am. Chem. Soc. 145 (2023) 5422–5430.  doi: 10.1021/jacs.2c13710

    26. [26]

      X.M. Chen, H.J. Zhang, X.K. Yang, et al., Angew. Chem. Int. Ed. 57 (2018) 947–951.  doi: 10.1002/anie.201709762

    27. [27]

      S.B. Su, C.C. Lin, H.B. Zhai, Angew. Chem. Int. Ed. 62 (2023) e202303402.  doi: 10.1002/anie.202303402

    28. [28]

      B. Xu, B.Y. Wang, W. Xun, F.Y.G. Qiu, Angew. Chem. Int. Ed. 58 (2019) 5754–5757.  doi: 10.1002/anie.201902268

    29. [29]

      B.Y. Wang, B. Xu, W. Xun, et al., Angew. Chem. Int. Ed. 60 (2021) 9439–9443.  doi: 10.1002/anie.202016212

    30. [30]

      J.X. Zhong, K.W. Chen, Y.Y. Qiu, H.B. He, S.H. Gao, Org. Lett. 21 (2019) 3741–3745.  doi: 10.1021/acs.orglett.9b01184

    31. [31]

      C.L. Hugelshofer, V. Palani, R. Sarpong, J. Am. Chem. Soc. 141 (2019) 8431–8435.  doi: 10.1021/jacs.9b03576

    32. [32]

      C.L. Hugelshofer, V. Palani, R. Sarpong, J. Org. Chem. 84 (2019) 14069–14091.  doi: 10.1021/acs.joc.9b02223

    33. [33]

      G.P. Xu, J.B. Wu, L.Y. Li, Y.N. Lu, C. Li, J. Am. Chem. Soc. 142 (2020) 15240–15245.  doi: 10.1021/jacs.0c06717

    34. [34]

      M.Y. Cao, B.J. Ma, Q.X. Gu, B. Fu, H.H. Lu, J. Am. Chem. Soc. 144 (2022) 5750–5755.  doi: 10.1021/jacs.2c01674

    35. [35]

      L.X. Li, L. Min, T.B. Yao, et al., J. Am. Chem. Soc. 144 (2022) 18823–18828.  doi: 10.1021/jacs.2c09548

    36. [36]

      Y.Y. Chen, J.P. Hu, L.D. Guo, et al., Angew. Chem. Int. Ed. 58 (2019) 7390–7394.  doi: 10.1002/anie.201902908

    37. [37]

      L.D. Guo, J.P. Hou, W.T. Tu, et al., J. Am. Chem. Soc. 141 (2019) 11713–11720.  doi: 10.1021/jacs.9b05641

    38. [38]

      L.D. Guo, J.P. Hu, Y. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 13043–13048.  doi: 10.1021/jacs.9b07558

    39. [39]

      L.D. Guo, Y. Zhang, J.P. Hu, et al., Nat. Commun. 11 (2020) 3538.  doi: 10.1038/s41467-020-17350-x

    40. [40]

      Y. Zhang, Y.Y. Chen, M.R. Song, et al., J. Am. Chem. Soc. 144 (2022) 16042–16051.  doi: 10.1021/jacs.2c05957

    41. [41]

      J.P. Hu, L.D. Guo, W.Q. Chen, et al., Org. Lett. 24 (2022) 7416–7420.  doi: 10.1021/acs.orglett.2c02988

    42. [42]

      S.L. Xie, C.Q. Ning, Q.Z. Yu, J.P. Hou, J. Xu, Chin. J. Chem. 39 (2021) 137–142.  doi: 10.1002/cjoc.202000460

    43. [43]

      S.L. Xie, G. Chen, H. Yan, et al., J. Am. Chem. Soc. 141 (2019) 3435–3439.  doi: 10.1021/jacs.9b00391

    44. [44]

      N. Zhao, S.Q. Yin, S.L. Xie, et al., Angew. Chem. Int. Ed. 57 (2018) 3386–3390.  doi: 10.1002/anie.201800167

    45. [45]

      S. Saito, H. Yahata, T. Kubota, et al., Tetrahedron 64 (2008) 1901–1908.  doi: 10.1016/j.tet.2007.11.087

    46. [46]

      M. Ando, H. Ohhara, K. Takase, Chem. Lett. 15 (1986) 879–882.  doi: 10.1246/cl.1986.879

    47. [47]

      B.M. Trost, Acc. Chem. Res. 23 (1990) 34–42.  doi: 10.1021/ar00170a004

    48. [48]

      J. von Braun, Ber. deut. Chem. Ges. 37 (1904) 3210.  doi: 10.1002/cber.190403703118

    49. [49]

      A.R. Surrey, Name Reactions in Organic Chemistry, 2nd ed, Academic Press, 1961, pp. 31–32.

  • 加载中
    1. [1]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    2. [2]

      Qunlong ZhangJingyi KangJingwen WangTiancheng TanZhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915

    3. [3]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    4. [4]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    5. [5]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    6. [6]

      Xiao-Gang WangAi-E WangPei-Qiang Huang . Corrigendum to "A concise formal stereoselective total synthesis of (–)-swainsonine" [Chin Chem Lett 25 (2014) 193–196]. Chinese Chemical Letters, 2025, 36(3): 110597-. doi: 10.1016/j.cclet.2024.110597

    7. [7]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    8. [8]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    9. [9]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    12. [12]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    13. [13]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    14. [14]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    15. [15]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    16. [16]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    17. [17]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    18. [18]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    19. [19]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    20. [20]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

Metrics
  • PDF Downloads(1)
  • Abstract views(458)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return