Citation: Yan Cheng, Hua-Peng Ruan, Yan Peng, Longhe Li, Zhenqiang Xie, Lang Liu, Shiyong Zhang, Hengyun Ye, Zhao-Bo Hu. Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4][J]. Chinese Chemical Letters, ;2024, 35(4): 108554. doi: 10.1016/j.cclet.2023.108554 shu

Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]

    * Corresponding authors.
    ** Corresponding author at: Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
    E-mail addresses: amn716@163.com (L. Liu), zhsy1207@126.com (S. Zhang), huzhaobo@smail.nju.edu.cn (Z.-B. Hu).
    1 These authors contributed equally to this work.
  • Received Date: 29 March 2023
    Revised Date: 19 April 2023
    Accepted Date: 8 May 2023
    Available Online: 17 May 2023

Figures(4)

  • The application of multifunctional materials in various fields such as electronics and signal processors has attracted massive attention. Herein, a new organic-inorganic hybrid material [Et3NCH2Cl]2[MnBr4] (1) is reported, which contains two organic amines cations and one [MnBr4] tetrahedral ion. Compound 1 has a dielectric anomaly signal at 338 K, which proves its thermodynamic phase transition. The single crystal measurements at 200 K and 380 K show that the phase transition of compound 1 is caused by the thermal vibration of organic amine cations in the lattice. Moreover, compound 1 shows yellow-green luminescence under UV light irradiation. The magnetism measurements indicate that compound 1 shows switchable magnetic properties. This organic–inorganic material is a multifunctional material with dielectric, optical, and magnetic synergetic switchable effects, which expands a new direction for designing multifunctional materials.
  • In recent decades, the Daphniphyllum alkaloids have drawn a lot of interest from our community due to their intriguing biological activity and fascinating cage-like structures [1-9]. The groups of Heathcock [10-13], Carreira [14], Li [15-19], Smith [20,21], Hanessian [22], Fukuyama/Yokoshima [23], Dixon [24,25], Zhai [26,27], Qiu [28,29], Gao [30], Sarpong [31,32], Li [33], Lu [34] and Li [35] successively reported their impressive synthesis of more than thirty Daphniphyllum alkaloids. Also, our group accomplished the total synthesis of ten Daphniphyllum alkaloids from six different subfamilies, including himalensine A, 10-deoxydaphnipaxianine A, daphlongamine E and calyciphylline R (calyciphylline A-type), dapholdhamine B (daphnezomine A-type), caldaphnidine O (bukittinggine-type), caldaphnidine J (yuzurimine-type), daphnezomine L methyl ester and calyciphylline K (daphnezomine L-type) and caldaphnidine D (secodaphniphylline-type) [36-41].

    Since Hirata's seminal discovery in 1966, nearly fifty yuzurimine-type (or macrodaphniphyllamine-type) alkaloids—or about one-sixth of all Daphniphyllum alkaloids now known—have been identified (Fig. 1). It is acknowledged that the individuals within this subfamily possess intricate and caged hexacyclic skeleton, thus presents significant synthetic challenge. In 2020, our group achieved the first total synthesis of a member within this subfamily, caldaphnidine J [39]. Later, Li reported their impressive total synthesis of five macrodaphniphyllamine-type alkaloids [19].

    Figure 1

    Figure 1.  Representative yuzurimine-type alkaloids.

    Based on the biosynthetic pathway of yuzurimine-type alkaloids [6,8], it is reasonable to assume that C14epi-deoxycalyciphylline H could be an actual member of the yuzurimine-type alkaloid subfamily, yet to be isolated. As our interests in natural product synthesis continues [42-44], we wish to describe here our endeavor towards the total synthesis of calyciphylline H [45] that led us to finally access one of its close derivatives, C14epi-deoxycalyciphylline H.

    As depicted in Scheme 1, the retrosynthetic analysis of calyciphylline H indicated that it could be derived from C14epi-deoxycalyciphylline H via C-14 epimerization and a Polonovski reaction [19]. Next, we envisioned that an enyne cycloisomerization of compound 1 would allow facile access to the key tetrahydropyrrole motif as well as the C3-C4 alkene motif in our target molecules. Next, it was envisaged that compound 1 could be synthesized from compound 2 via homologation and propargylation. One of the critical five-membered rings in compound 2 could be fabricated via a Prins reaction from aldehyde 3. This aldehyde compound was envisioned to be derived from the tetracyclic compound 4, which can be produced from tricycle 5 through our previously reported procedures [37-39].

    Scheme 1

    Scheme 1.  Retrosynthetic analysis.

    Our study commenced from known tricyclic compound 5, which was converted to vicinal diol 4 via a 7-step procedure involving ring-expansion and cyclopentane formation (Scheme 2) [37-39]. Then, under Ando's olefination conditions (p-TSA, CH(OMe)3; then Ac2O, 150 ℃) [46], alkene 6 was effectively derivatized from diol 4 in excellent yield (93%). Removal of the benzyl group in compound 6 suffered partial N-detosylation under sodium naphthalene conditions, hence, re-tosylation was necessary to provide a satisfactory yield of compound 7. A facile Dess-Martin oxidation of the primary hydroxyl group in compound 7 furnished aldehyde 3 in nearly quantitative yield. Next, under the acidic conditions (TfOH, 0 ℃), a Prins reaction was triggered between the aldehyde motif and the alkene motif in compound 3, fabricating alcohols 2a (56%) and 2b (38%). The absolute stereochemical configuration of 2a was unambiguously assigned via a single-crystal X-Ray diffraction (CCDC: 2258010), while that of 2b was assigned by its conversion to 2a via oxidation and reduction. At this point, a homologation was required for introducing the C-14 carboxylic acid ester moiety. To this end, a Dess-Martin oxidation of the mixture of 2a and 2b yielded the corresponding ketone compound, which unfortunately failed to react under various homologation conditions (Wittig, Peterson, MeLi, MeMgBr, Nysted, Van Leusen). Gratifyingly, treating it with Horner-Wadsworth-Emmons conditions (8, n-BuLi) [37-39,41] successfully gave homologated product 9. Following hydrolysis of the ketene dithioacetal moiety in compound 9 yielded compound 10 with an α-faced carboxylic acid ester at C-14. This outcome was attributed to its thermodynamically favored stereochemistry, which was assigned by a single-crystal XRD (CCDC: 2258012). Replacement of the N-tosyl group with the propargyl group afforded enyne compound 1 in 92% yield. Finally, a Pd-catalyzed enyne cycloisomerization [47] produced key tetrahydropyrrole motif as well as the C3-C4 alkene motif in the corresponding diene, which was further selectively hydrogenated (H2, Crabtree's catalyst) to yield C14epi-deoxycalyciphylline H. In addition, transformation of this compound to natural calyciphylline H is currently under investigation.

    Scheme 2

    Scheme 2.  Total synthesis of C14epi-deoxycalyciphylline H, a putative yuzurimine-type alkaloid and synthetic study towards the daphnezomine L-type alkaloid paxdaphnidine A.

    Next, our attention turned to a complex member of daphnezomine L-type alkaloids, paxdaphnidine A. It was envisioned that a SN2-substitution reaction using a cyanide anion may set the desired stereogenic configuration at C-14. Bearing this in mind, alcohol 2a was converted to its epimer, 2b, which was then sulfonylated to give compound 11. Heating this compound with NBu4CN in DMF produced nitrile 12 with the desired stereogenic outcome, which was also unambiguously confirmed by a single-crystal XRD (CCDC: 2258013). It should be noted that other attempts of this type of transformation gave lower yields (-OMs, NaCN, DMSO, 120 ℃, 41%; -OEs, NaCN, DMF or DMSO, 130 ℃, < 10%; -OTs, NaCN, DMF, 130 ℃, 43%; -OTs, NaCN, DMSO, 130 ℃, 26%). More experimental evidence further indicated the thermodynamical bias at C-14. When subjecting nitrile 12 to DIBAL-H (−78 ℃ to 0 ℃) followed by a Pinnick oxidation (0 ℃ to room temperature) and methylation, compound 10 with the undesired C-14 stereogenic center was produced as the main product. However, when the DIBAL-H reduction as well as the Pinnick oxidation was carefully performed at −78 ℃, compound 13 was successfully produced with the desired C-14 stereochemistry. Afterwards, detosylation and propargylation of compound 13 produced tertiary amine 14. Next, a Pd-catalyzed enyne cycloisomerization forged the tetrahydropyrrole ring. The so-afforded hexacyclic diene was then subjected to the von Braun reaction conditions (BrCN, K2CO3) [41,48,49] to cleave the C—N bond in a regioselective manner to give compound 15. This regioselectivity was likely dominated by the drastically different steric hindrances between three C—N bonds. The final-stage transformation of compound 15 to paxdaphnidine A, is still under investigation in our laboratory.

    In summary, the total synthesis of C14epi-deoxycalyciphylline H, a possible yuzurimine-type alkaloid family member and a close derivative of its natural congener calyciphylline H, was accomplished. Key cyclization methods, such as Prins reaction and enyne cycloisomerization paved the road to the target molecule. Synthesis towards a daphnezomine L-type alkaloid, paxdaphnidine A, was also studied, featuring a late-stage von Braun reaction. Our findings may benefit the research in this active field—Daphniphyllum alkaloid synthesis.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Financial support from the National Natural Science Foundation of China (Nos. 21971104 and 22271136), Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis (No. ZDSYS20190902093215877), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Innovative Program (No. 2019BT02Y335), Education Department of Guangdong Province, Key research projects in colleges and universities in Guangdong Province (No. 2021ZDZX2035), Shenzhen Nobel Prize Scientists Laboratory Project (No. C17783101) and Innovative Team of Universities in Guangdong Province (No. 2020KCXTD016) is greatly appreciated. We also thank SUSTech CRF NMR facility and Dr. Yang Yu (SUSTech) for HRMS analysis. We also thank Dr. X. Chang (SUSTech) for single crystal X-ray diffraction analysis.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108733.


    1. [1]

      G. Liu, J. Liu, Z. Sun, et al., Inorg. Chem. 55 (2016) 8025–8030.  doi: 10.1021/acs.inorgchem.6b01143

    2. [2]

      M.A. Asghar, Z. Sun, T. Khan, et al., Cryst. Growth Des. 16 (2016) 895–899.  doi: 10.1021/acs.cgd.5b01452

    3. [3]

      C. Chen, W.Y. Zhang, H.Y. Ye, Q. Ye, D.W. Fu, J. Mater. Chem. C 4 (2016) 9009–9020.  doi: 10.1039/C6TC02166B

    4. [4]

      F.F. Wang, C. Chen, Y. Zhang, et al., J. Mater. Chem. C 3 (2015) 6350–6358.  doi: 10.1039/C5TC01004G

    5. [5]

      M. Wuttig, N. Yamada, Nat. Mater. 6 (2007) 824–832.  doi: 10.1038/nmat2009

    6. [6]

      B. Champagne, A.L. Plaquet, J.L. Pozzo, V. Rodriguez, F.D.R. Castet, J. Am. Chem. Soc. 134 (2012) 8101–8103.  doi: 10.1021/ja302395f

    7. [7]

      W. Zhang, R.G. Xiong, Chem. Rev. 112 (2012) 1163–1195.  doi: 10.1021/cr200174w

    8. [8]

      C. Xu, W.Y. Zhang, C. Chen, Q. Ye, D.W. Fu, J. Mater. Chem. C 5 (2017) 6945–6953.  doi: 10.1039/C7TC02087B

    9. [9]

      D.W. Fu, W. Zhang, H.L. Cai, et al., Adv. Mater. 23 (2011) 5658–5662.  doi: 10.1002/adma.201102938

    10. [10]

      D.W. Fu, H.L. Cai, Y. Liu, et al., Science 2013, 339 (6118) 425–428.  doi: 10.1126/science.1229675

    11. [11]

      Q. Guo, W.Y. Zhang, C. Chen, Q. Ye, D.W. Fu, J. Mater. Chem. C 5 (2017) 5458–5464.  doi: 10.1039/C7TC01520H

    12. [12]

      Z. Sun, J. Luo, S. Zhang, et al., Adv. Mater. 25 (2013), 4159–4163.  doi: 10.1002/adma.201301685

    13. [13]

      Z.B. Hu, C.F. Wang, T.T. Sha, et al., Small Methods 6 (2022) 2200421.  doi: 10.1002/smtd.202200421

    14. [14]

      G. Heger, D. Mullen, K. Knorr, Phys. Status Solidi A 35 (1976) 627–637.  doi: 10.1002/pssa.2210350225

    15. [15]

      Z.Q. Liu, Y. Liu, Y. Chen, W.Q. Zhao, W.N. Fang, Chin. Chem. Lett. 28 (2017) 297–301.  doi: 10.1109/ICDCM.2017.8001060

    16. [16]

      K. Wang, J.M. Liu, Z. Ren, Adv. Phys. 2009, 58 (4) 321–448.  doi: 10.1080/00018730902920554

    17. [17]

      W. Eerenstein, N. Mathur, J.F. Scott, Nature 442 (2006) 759–765.  doi: 10.1038/nature05023

    18. [18]

      V.V. Naik, S. Vasudevan, J. Phys. Chem. C 114 (2010) 4536–4543.  doi: 10.1021/jp910300v

    19. [19]

      R. Ramesh, Nature 461 (2009) 1218–1219.  doi: 10.1038/4611218a

    20. [20]

      Z. Sun, J. Luo, T. Chen, et al., Adv. Funct. Mater. 22 (2012) 4855–4861.  doi: 10.1002/adfm.201201770

    21. [21]

      Y. Yu, M. Nakano, T. Ikeda, Nature 425 (2003) 145.  doi: 10.1038/425145a

    22. [22]

      X.H. Lv, W.Q. Liao, P.F. Li, et al., J. Mater. Chem. C 4 (2016) 1881–1885.  doi: 10.1039/C5TC04114G

    23. [23]

      S. Zeng, Z. Sun, C. Ji, et al., CrystEngComm 18 (2016) 3606–3611.  doi: 10.1039/C6CE00194G

    24. [24]

      C. Ji, S. Li, F. Deng, et al., Phys. Chem. Chem. Phys. 18 (2016) 10868–10872.  doi: 10.1039/C6CP01073C

    25. [25]

      A. Jana, S. Zhumagali, Q. Ba, A.S. Nissimagoudar, K.S. Kim, J. Mater. Chem. C 7 (2019) 26504–26512.  doi: 10.1039/c9ta08268a

    26. [26]

      W. Li, C. Han, Y. Wang, H. Liu, J. Struct. Chem. 39 (2020) 31–35.

    27. [27]

      A. Sen, D. Swain, T.N. Guru Row, A. Sundaresan, J. Mater. Chem. C 7 (2019) 4838–4845.  doi: 10.1039/c9tc00663j

    28. [28]

      P. Theato, B.S. Sumerlin, R.K. O'Reilly, T.H. Epps III, Chem. Soc. Rev. 42 (2013) 7055–7056.  doi: 10.1039/c3cs90057f

    29. [29]

      P.P. Shi, Q. Ye, Q. Li, et al., Chem. Mater. 26 (2014) 6042–6049.  doi: 10.1021/cm503003f

    30. [30]

      M.A.C. Stuart, W.T. Huck, J. Genzer, et al., Nat. Mater. 9 (2010) 101–113.  doi: 10.1038/nmat2614

    31. [31]

      D.X. Liu, Z.H. Yu, X.X. Chen, W.X. Zhang, X.M. Chen, Chin. Chem. Lett. 34 (2023) 107310.  doi: 10.1016/j.cclet.2022.03.033

    32. [32]

      O. Sato, Nat. Chem. 8 (2016) 644–656.  doi: 10.1038/nchem.2547

    33. [33]

      E. Styczeń, Z. Warnke, D. Wyrzykowski, et al., Struct. Chem. 21 (2010) 269–276.  doi: 10.1007/s11224-009-9577-y

    34. [34]

      S. Liu, L. He, Y. Wang, P. Shi, Q. Ye, Chin. Chem. Lett. 33 (2022) 1032–1036.  doi: 10.1016/j.cclet.2021.07.039

    35. [35]

      K. Yosida, Phys. Rev. Lett. 106 (1957) 893–898.

    36. [36]

      J.A.M. Paddison, M.J. Gutmann, J.R. Stewart, et al., Phys. Rev. B 97 (2018) 014429.  doi: 10.1103/PhysRevB.97.014429

    37. [37]

      X. Feng, Y.P. Shang, L.Y. Wang, et al., Chin. J. Struct. Chem. 40 (2021) 217–224.  doi: 10.1007/978-981-13-7993-2_17

    38. [38]

      Y.Y. Luo, Z.X. Zhang, C.Y. Su, et al., J. Mater. Chem. C 8 (2020) 7089–7095.  doi: 10.1039/d0tc00266f

    39. [39]

      D.C. Han, Z.X. Gong, N. Song, et al., Chem. Commun. 57 (2021) 11225–11228.  doi: 10.1039/d1cc04751e

    40. [40]

      A.S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S.I. Stupp, Nat. Chem. 7 (2015) 281–294.  doi: 10.1038/nchem.2206

    41. [41]

      A. Jana, S. Zhumagali, Q. Ba, A.S. Nissimagoudar, K.S. Kim, J. Mater. Chem. A 7 (2019) 26504–26512.  doi: 10.1039/c9ta08268a

    1. [1]

      G. Liu, J. Liu, Z. Sun, et al., Inorg. Chem. 55 (2016) 8025–8030.  doi: 10.1021/acs.inorgchem.6b01143

    2. [2]

      M.A. Asghar, Z. Sun, T. Khan, et al., Cryst. Growth Des. 16 (2016) 895–899.  doi: 10.1021/acs.cgd.5b01452

    3. [3]

      C. Chen, W.Y. Zhang, H.Y. Ye, Q. Ye, D.W. Fu, J. Mater. Chem. C 4 (2016) 9009–9020.  doi: 10.1039/C6TC02166B

    4. [4]

      F.F. Wang, C. Chen, Y. Zhang, et al., J. Mater. Chem. C 3 (2015) 6350–6358.  doi: 10.1039/C5TC01004G

    5. [5]

      M. Wuttig, N. Yamada, Nat. Mater. 6 (2007) 824–832.  doi: 10.1038/nmat2009

    6. [6]

      B. Champagne, A.L. Plaquet, J.L. Pozzo, V. Rodriguez, F.D.R. Castet, J. Am. Chem. Soc. 134 (2012) 8101–8103.  doi: 10.1021/ja302395f

    7. [7]

      W. Zhang, R.G. Xiong, Chem. Rev. 112 (2012) 1163–1195.  doi: 10.1021/cr200174w

    8. [8]

      C. Xu, W.Y. Zhang, C. Chen, Q. Ye, D.W. Fu, J. Mater. Chem. C 5 (2017) 6945–6953.  doi: 10.1039/C7TC02087B

    9. [9]

      D.W. Fu, W. Zhang, H.L. Cai, et al., Adv. Mater. 23 (2011) 5658–5662.  doi: 10.1002/adma.201102938

    10. [10]

      D.W. Fu, H.L. Cai, Y. Liu, et al., Science 2013, 339 (6118) 425–428.  doi: 10.1126/science.1229675

    11. [11]

      Q. Guo, W.Y. Zhang, C. Chen, Q. Ye, D.W. Fu, J. Mater. Chem. C 5 (2017) 5458–5464.  doi: 10.1039/C7TC01520H

    12. [12]

      Z. Sun, J. Luo, S. Zhang, et al., Adv. Mater. 25 (2013), 4159–4163.  doi: 10.1002/adma.201301685

    13. [13]

      Z.B. Hu, C.F. Wang, T.T. Sha, et al., Small Methods 6 (2022) 2200421.  doi: 10.1002/smtd.202200421

    14. [14]

      G. Heger, D. Mullen, K. Knorr, Phys. Status Solidi A 35 (1976) 627–637.  doi: 10.1002/pssa.2210350225

    15. [15]

      Z.Q. Liu, Y. Liu, Y. Chen, W.Q. Zhao, W.N. Fang, Chin. Chem. Lett. 28 (2017) 297–301.  doi: 10.1109/ICDCM.2017.8001060

    16. [16]

      K. Wang, J.M. Liu, Z. Ren, Adv. Phys. 2009, 58 (4) 321–448.  doi: 10.1080/00018730902920554

    17. [17]

      W. Eerenstein, N. Mathur, J.F. Scott, Nature 442 (2006) 759–765.  doi: 10.1038/nature05023

    18. [18]

      V.V. Naik, S. Vasudevan, J. Phys. Chem. C 114 (2010) 4536–4543.  doi: 10.1021/jp910300v

    19. [19]

      R. Ramesh, Nature 461 (2009) 1218–1219.  doi: 10.1038/4611218a

    20. [20]

      Z. Sun, J. Luo, T. Chen, et al., Adv. Funct. Mater. 22 (2012) 4855–4861.  doi: 10.1002/adfm.201201770

    21. [21]

      Y. Yu, M. Nakano, T. Ikeda, Nature 425 (2003) 145.  doi: 10.1038/425145a

    22. [22]

      X.H. Lv, W.Q. Liao, P.F. Li, et al., J. Mater. Chem. C 4 (2016) 1881–1885.  doi: 10.1039/C5TC04114G

    23. [23]

      S. Zeng, Z. Sun, C. Ji, et al., CrystEngComm 18 (2016) 3606–3611.  doi: 10.1039/C6CE00194G

    24. [24]

      C. Ji, S. Li, F. Deng, et al., Phys. Chem. Chem. Phys. 18 (2016) 10868–10872.  doi: 10.1039/C6CP01073C

    25. [25]

      A. Jana, S. Zhumagali, Q. Ba, A.S. Nissimagoudar, K.S. Kim, J. Mater. Chem. C 7 (2019) 26504–26512.  doi: 10.1039/c9ta08268a

    26. [26]

      W. Li, C. Han, Y. Wang, H. Liu, J. Struct. Chem. 39 (2020) 31–35.

    27. [27]

      A. Sen, D. Swain, T.N. Guru Row, A. Sundaresan, J. Mater. Chem. C 7 (2019) 4838–4845.  doi: 10.1039/c9tc00663j

    28. [28]

      P. Theato, B.S. Sumerlin, R.K. O'Reilly, T.H. Epps III, Chem. Soc. Rev. 42 (2013) 7055–7056.  doi: 10.1039/c3cs90057f

    29. [29]

      P.P. Shi, Q. Ye, Q. Li, et al., Chem. Mater. 26 (2014) 6042–6049.  doi: 10.1021/cm503003f

    30. [30]

      M.A.C. Stuart, W.T. Huck, J. Genzer, et al., Nat. Mater. 9 (2010) 101–113.  doi: 10.1038/nmat2614

    31. [31]

      D.X. Liu, Z.H. Yu, X.X. Chen, W.X. Zhang, X.M. Chen, Chin. Chem. Lett. 34 (2023) 107310.  doi: 10.1016/j.cclet.2022.03.033

    32. [32]

      O. Sato, Nat. Chem. 8 (2016) 644–656.  doi: 10.1038/nchem.2547

    33. [33]

      E. Styczeń, Z. Warnke, D. Wyrzykowski, et al., Struct. Chem. 21 (2010) 269–276.  doi: 10.1007/s11224-009-9577-y

    34. [34]

      S. Liu, L. He, Y. Wang, P. Shi, Q. Ye, Chin. Chem. Lett. 33 (2022) 1032–1036.  doi: 10.1016/j.cclet.2021.07.039

    35. [35]

      K. Yosida, Phys. Rev. Lett. 106 (1957) 893–898.

    36. [36]

      J.A.M. Paddison, M.J. Gutmann, J.R. Stewart, et al., Phys. Rev. B 97 (2018) 014429.  doi: 10.1103/PhysRevB.97.014429

    37. [37]

      X. Feng, Y.P. Shang, L.Y. Wang, et al., Chin. J. Struct. Chem. 40 (2021) 217–224.  doi: 10.1007/978-981-13-7993-2_17

    38. [38]

      Y.Y. Luo, Z.X. Zhang, C.Y. Su, et al., J. Mater. Chem. C 8 (2020) 7089–7095.  doi: 10.1039/d0tc00266f

    39. [39]

      D.C. Han, Z.X. Gong, N. Song, et al., Chem. Commun. 57 (2021) 11225–11228.  doi: 10.1039/d1cc04751e

    40. [40]

      A.S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S.I. Stupp, Nat. Chem. 7 (2015) 281–294.  doi: 10.1038/nchem.2206

    41. [41]

      A. Jana, S. Zhumagali, Q. Ba, A.S. Nissimagoudar, K.S. Kim, J. Mater. Chem. A 7 (2019) 26504–26512.  doi: 10.1039/c9ta08268a

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    3. [3]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    4. [4]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    5. [5]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    6. [6]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    7. [7]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    8. [8]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    9. [9]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    10. [10]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    11. [11]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    12. [12]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    13. [13]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    14. [14]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    15. [15]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    16. [16]

      Yajie YangMengde ZhaiHaoxin WangCheng ChenZiyang XiaChengyang LiuYi TianMing Cheng . Molecular engineering of dibenzo-heterocyclic core based hole-transporting materials for perovskite solar cells. Chinese Chemical Letters, 2025, 36(5): 110700-. doi: 10.1016/j.cclet.2024.110700

    17. [17]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    18. [18]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    19. [19]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    20. [20]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

Metrics
  • PDF Downloads(1)
  • Abstract views(571)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return