Citation: Qingliang Liu, Hang Qie, Zhiqiang Sun, Yufei Zhen, Liying Wu, Ying Zhao, Jun Ma. Elevated degradation of di-n–butyl phthalate by activating peroxymonosulfate over GO–CoFe2O4 composites: Synergistic effects and mechanisms[J]. Chinese Chemical Letters, ;2023, 34(12): 108397. doi: 10.1016/j.cclet.2023.108397 shu

Elevated degradation of di-n–butyl phthalate by activating peroxymonosulfate over GO–CoFe2O4 composites: Synergistic effects and mechanisms

    * Corresponding author.
    E-mail address: yzhao16@hit.edu.cn (Y. Zhao).
  • Received Date: 10 November 2022
    Revised Date: 3 March 2023
    Accepted Date: 28 March 2023
    Available Online: 31 March 2023

Figures(10)

  • Rational design of heterogeneous catalysts with high activity and stability is crucial in peroxymonosulfate (PMS)-based oxidation treatment of wastewater. Herein, the graphite oxide-cobalt ferrite (GO-CoFe2O4) composite was constructed, and its morphological, component and structural characteristics were thoroughly examined, respectively. GO-CoFe2O4 obviously boosted PMS catalytic performance on di-n–butyl phthalate removal (DBP, RDBP = 90%, RTOC = 37%), which indicated by the first-order kinetic constant (kDBP = 0.060 min−1) being roughly 4 times than pure CoFe2O4 (kDBP = 0.015 min−1). The fabrication of GO-CoFe2O4 brought the favorable stability and repeatability up to six cycles. Moreover, the method of batch dosing catalyst was creatively proposed to improve the PMS utilization efficiency. The coupling of GO enhanced the dispersion of CoFe2O4 particles to obtain sufficient active sites, additionally, the plentiful C=O groups and free-flowing electrons on GO promoted GO-CoFe2O4 to coordinate a redox process during PMS activation. With the aid of theoretical calculations, GO-CoFe2O4 was revealed to exhibit a strong affinity toward PMS adsorption, where PMS spontaneously dissociated into sulfate radical (SO4•−), hydroxyl radical (OH) and singlet oxygen (1O2), acting as the reactive oxygen species (ROSs). Electrons cycling between Co, Fe and O species ensured continuous ROSs generation and excellent catalytic performance.
  • Porphyrin arrays are organic functional molecules with large π-conjugated systems and have potential applications in optoelectronic devices [1-11], sensors [12-15] and photodynamic therapy (PDT) [16-18]. In the last decade, porphyrin arrays with alkynes [19, 20], benzene [21] or heterocycles (such as thiophene [22], pyridine [23], pyrrole [24, 25]) as bridging units have been intensively studied. Porphyrin dimers with a single carbon or heteroatom bridging unit have received much attention due to their unique photophysical properties, chemical properties, and characteristic electronic delocalization [26-37]. In 2006, Arnold et al. reported the first isolation of meso-meso nitrogen-bridged diporphyrinylamine 1, which showed a broadened Soret band and red shift Q bands, indicating substantial electronic interaction between the porphyrins [27]. Ruppert et al. reported meso-meso, β-meso, β-β-nitrogen-bridged diporphyrinylamines [29], which were all synthesized by Buchwald-Hartwig amination. Later, Osuka et al. reported that meso-meso nitrogen-bridged Ni(Ⅱ) porphyrin dimer was cleanly converted into aminyl radical 2 and nitrenium cation 3 by oxidation with PbO2 and tris(4-bromophenyl)aminiumyl hexachloroantimonate (Magic Blue), respectively (Fig. 1) [34]. As an extension, we report here the synthesis of nitrogen-atom bridged Ni(Ⅱ) porphyrin trimers.

    Figure 1

    Figure 1.  N-Bridged porphyrin oligomers. Ar = 3, 5-di-tert-butylphenyl.

    First we attempted to synthesize linear NH-bridged porphyrin trimer 4Ni-2H by the similar Buchwald-Hartwig amination of 5, 15-dibromo Ni(Ⅱ)porphyrin 7Ni with 5-amino Ni(Ⅱ)porphyrin 6Ni [34]. A 4:1 solution of 6Ni and 7Ni in toluene was heated at 100 ℃ for 12 h in the presence of 0.4 equiv. Pd(OAc)2, 0.4 equiv. BINAP, and 7 equiv. t-BuOK (Scheme 1). To our surprise, only a linear trimer 4Ni bearing a central quinodiimine-type porphyrinoid unit was obtained in 38% yield. The matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum showed the parent ion of 4Ni at m/z 2627.3453 [M]+ (calcd. for (C172H192N14Ni3)+ = 2627.3509) (Fig. S13 in Supporting information), which is smaller by two than the expected parent ion peak of 4Ni-2H. The structure of 4Ni has been revealed by X-ray diffraction structural analysis (Fig. 2 and Fig. S17 in Supporting information). The bond lengths of C2meso-N (1.300(6) Å and 1.304(6) Å) are distinctly shorter than those of C1meso-N (1.412(6) Å and 1.395(7) Å). The 1H NMR spectrum of 4Ni showed broadened signals at room temperature in CDCl3 (Fig. S3 in Supporting information), which gradually changed to sharp peaks upon cooling down to −60 ℃ (Fig. S4 in Supporting information) [38], suggesting conformational motions at room temperature, which are comparable or faster than 1H NMR timescale. It is noteworthy that four doublets due to the b-protons of the central quinodiimine unit were observed in the up-field shifted region at 7.77, 6.76, 5.70 and 3.99 ppm.

    Scheme 1

    Scheme 1.  Syntheses of meso-meso N-bridged porphyrinoid trimers. Conditions: a) Pd(OAc)2, BINAP, t-BuOK, toluene, 100 ℃, 12 h. Ar = 3, 5-di-tert-butylphenyl.

    Figure 2

    Figure 2.  X-ray single crystal structure of 4Ni and 5Ni. (a) Top view and (b) side view of 4Ni, (c) top view and d) side view of 5Ni. The thermal ellipsoids are on 30% probability level. Solvent molecules, 3, 5-di-tert-butylphenyl groups, and hydrogens are omitted for clarity.

    Similarly, Buchwald-Hartwig amination of 5, 10-dibromo Ni(Ⅱ)porphyrin 8Ni with 6Ni afforded l-shaped bent trimer 5Ni in 25% yield. The quinodiimine structure of 5Ni has been also confirmed by X-ray analysis. 5Ni shows that the bond lengths of C2meso-N (1.299(5) Å and 1.302(6) Å) are shorter than those of C1meso-N bonds (1.399(5) Å and 1.413(6) Å) (Fig. 2 and Fig. S18 in Supporting information). The 1H NMR spectrum of 5Ni showed broadened signals at room temperature that became sharp and complicated signals at −60 ℃ in CDCl3 (Figs. S5 and S6 in Supporting information). In line with the quinodiimine structure, the corresponding β-protons were observed in the high field at 7.07, 6.73, 6.42, 6.33, 5.66, 4.33, and 3.74 ppm.

    The structural data of 4Ni shows that lengths of C1meso-N bonds (1.412(6) Å and 1.395(7) Å) bond to the terminal porphyrin units are longer than C2meso-N (1.300(6) Å and 1.304(6) Å) attached to the central quinodiimine units. Similarly, 5Ni shows that lengths of C1meso-N bonds (1.399(5) Å and 1.413(6) Å) bond to the terminal porphyrin units are longer than C2meso-N (1.299(5) Å and 1.302(6) Å) attached to the central quinodiimine units. The observed short C2meso-N bond lengths in 4Ni and 5Ni indicated its double bond characters significantly [34], which further proved the structure of 4Ni and 5Ni to be N-bridged (rather than NH-bridged) porphyrin trimer. The dihedral angles between the terminal porphyrins and terminal porphyrin, terminal porphyrin and central quinodiimine are 66.81(3)°, 56.34(3)° and 58.06(3)° in 4Ni, and 6.83(3)°, 42.67(3)° and 39.34(3)° in 5Ni (Fig. 2 and Figs. S17 and S18 in Supporting information).

    Electrochemical properties of 4Ni and 5Ni were examined by cyclic voltammetry and differential-pulse voltammetry in CH2Cl2 against a ferrocene/ferrocenium ion couple (Table 1 and Table S4 in Supporting information). Reversible oxidation waves were recorded at 0.22 and 0.52 V for 4Ni, and at 0.12 and 0.23 V for 5Ni. Reversible reduction waves were observed at −1.02 and −1.11 V for 4Ni, and at −0.79 and −1.14 V for 5Ni (Figs. S20 and S21 in Supporting information). As a result, the electrochemical HOMO-LUMO gaps of 4Ni and 5Ni were determined to be 1.24 and 0.91 eV, respectively. The observed reversible reduction waves of 4Ni and 5Ni encouraged us to examine their chemical reduction. After many attempts, we found that reduction of 5Ni with aqueous hydrazine in CH2Cl2 afforded 5Ni-2H quantitatively (Scheme 2). Curiously, 4Ni was not reduced with aqueous hydrazine but was reduced quantitatively to give 4Ni-2H with NaBH4 and Pd/C in CH2Cl2/CH3OH. 1H NMR spectra of both 4Ni-2H and 5Ni-2H are very simple, reflecting their symmetric structures with signals of the β-protons appearing in the range of 8–9 ppm (Fig. 3 and Figs. S7 and S8 in Supporting information). The structure of 5Ni-2H has been confirmed by single crystal X-ray diffraction analysis (Fig. 4 and Fig. S19 in Supporting information). In 5Ni-2H, the bond lengths of the C2meso-N bond and the C1meso-N bond are similar, being 1.409(8) Å, 1.406(8) Å and 1.393(7) Å, 1.434(11) Å, respectively, in line with the assigned structures. In addition, the dihedral angles between the terminal porphyrins and the central porphyrin are 58.29(7)° and 58.15(7)°, which are larger than those on 5Ni (42.67(3)° and 39.34(3)°).

    Table 1

    Table 1.  Electrochemical measurement of 4Ni, 5Ni, 4Ni-2H and 5Ni-2H performed in CH2Cl2 at room temperature.a
    DownLoad: CSV

    Scheme 2

    Scheme 2.  Syntheses of meso-meso NH-bridged porphyrin trimers. Conditions: (a) NaBH4, Pd/C, CH2Cl2/CH3OH; (b) NH2—NH2·H2O, CH2Cl2. Ar = 3, 5-di-tert-butylphenyl.

    Figure 3

    Figure 3.  Partial 1H NMR spectra of (a) 4Ni-2H and (b) 5Ni-2H.

    Figure 4

    Figure 4.  X-ray single crystal structure of 5Ni-2H. (a) Top view and (b) side view. The thermal ellipsoids are on 30% probability level. Solvent molecules, 3, 5-di-tert-butylphenyl groups, and hydrogens except those connected to N atoms are omitted for clarity.

    The unexpected formation of 4Ni and 5Ni may be ascribed to the facile oxidation of 4Ni-2H and 5Ni-2H under the amination reaction conditions. These trimers have the central electron-rich Ni(Ⅱ) porphyrin bearing 5, 15 or 5, 10-aminoporphyrin units. Thus, we examined the electrochemical properties of 4Ni-2H and 5Ni-2H (Table 1 and Table S4 in Supporting information). Actually, the reversible oxidation waves were observed at −0.09 and 0.17 V for 4Ni-2H, and at 0.11, 0.25 and 0.41 V for 5Ni-2H (Figs. S22 and S23 in Supporting information). It is thus conceivable that 4Ni-2H and 5Ni-2H are oxidized under the amination conditions with air. So, when we try to oxidized them with PbO2 and Magic Blue, neither aminyl radical nor nitrenium cation was found. The possible reason may be that the quinodiimine unit is more stable than other species.

    The UV–vis-NIR absorption spectra of 4Ni, 5Ni, 4Ni-2H and 5Ni-2H in CH2Cl2 are shown in Fig. 5. 4Ni shows two split Soret bands at 426 and 472 nm, a Q-band at 537 nm, and a broadened Q-like band at 915 nm. 5Ni shows a Soret band at 429 nm, Q-bands at 540 and 581 nm, and a broadened Q-like band at 892 nm. Both 4Ni and 5Ni exhibit characteristic absorption spectra of quinonoidal porphyrinoid arrays [39-42]. 4Ni-2H shows a Soret band at 423 nm, and a Q-band at 627 nm. Similarly to 4Ni-2H, the absorption spectrum of 5Ni-2H shows a Soret band at 418 nm, and a Q-band at 664 nm. In particular, 4Ni and 5Ni display the lowest energy band reaching to 1200 nm and 1400 nm, respectively.

    Figure 5

    Figure 5.  UV–vis-NIR absorption spectra of 4Ni (black line), 5Ni (red line), 4Ni-2H (blue line) and 5Ni-2H (green line) in CH2Cl2.

    Density functional theory (DFT) calculations clearly indicated that both the HOMO of 4Ni and HOMO-1 5Ni were localized at terminal porphyrin units, whereas both LUMOs of 4Ni and 5Ni were localized at the central quinodiimine units (Figs. S28 and S29 in Supporting information). Time-dependent density functional theory (TD-DFT) calculations indicated that the absorption bands around 1000 nm of trimers 4Ni and 5Ni resulted from the transition from HOMO to LUMO of 4Ni and HOMO-1 to LUMO of 5Ni, respectively (Figs. S24 and S25 in Supporting information). These results show that both absorption bands around 1000 nm of 4Ni and 5Ni could be assigned to charge transfer (CT) band.

    In summary, we synthesized N-bridged porphyrinoid trimers 4Ni and 5Ni having the central quinodiimine through Buchwald-Hartwig amination, under which the oxidations of the NH-bridged porphyrin trimers 4Ni-2H and 5Ni-2H proceeded smoothly. The trimer 4Ni-2H was obtained by reduction with NaBH4 and Pd/C, while 5Ni-2H was obtained by reduction with aqueous hydrazine. The structures of 4Ni, 5Ni and 5Ni-2H were determined by X-ray diffraction analysis. The UV–vis-NIR absorption spectra showed that the trimers 4Ni and 5Ni have the lowest energy band reaching to 1200 nm and 1400 nm, respectively. These N-bridged porphyrinoid trimers exhibited interesting spectral properties. Further exploration of cyclic or larger N-bridged porphyrinoid arrays is ongoing in our laboratory.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    The work at Hunan Normal University was supported by the National Natural Science Foundation of China (Nos. 21772036, 22071052, 21602058, 21702057), the Science and Technology Planning Project of Hunan Province (No. 2018TP1017), and the Scientific Research Fund of Hunan Provincial Education Department (No. 19A331), and Hunan Provincial Innovation Foundation for Postgraduate (No. CX20210473).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.061.


    1. [1]

      K. Fent, A.A. Weston, Aquat. Toxicol. 76 (2006) 122–159.  doi: 10.1016/j.aquatox.2005.09.009

    2. [2]

      O. Bajt, G. Mailhot, M. Bolte, Appl. Catal. B: Environ. 33 (2001) 239–248.  doi: 10.1016/S0926-3373(01)00179-5

    3. [3]

      B. Wang, H.X. Wang, W. Zhou, et al., Environ. Sci. Technol. 49 (2015) 1120–1129.  doi: 10.1021/es504455a

    4. [4]

      J. Lee, U.V. Gunten, J.H. Kim, Environ. Sci. Technol. 54 (2020) 3064–3081.  doi: 10.1021/acs.est.9b07082

    5. [5]

      W.D. Oh, Z. Dong, T.T. Lim, Appl. Catal. B: Environ. 194 (2016) 169–201.  doi: 10.1016/j.apcatb.2016.04.003

    6. [6]

      J.L. Wang, S.Z. Wang, Chem. Eng. J. 334 (2018) 1502–1517.  doi: 10.1016/j.cej.2017.11.059

    7. [7]

      P.D. Hu, M.C. Long, Appl. Catal. B: Environ. 181 (2016) 103–117.  doi: 10.1016/j.apcatb.2015.07.024

    8. [8]

      J. Deng, Y. Shao, N. Gao, et al., J. Hazard. Mater. 262 (2013) 836–844.  doi: 10.1016/j.jhazmat.2013.09.049

    9. [9]

      K. Zhang, D. Sun, C. Ma, et al., Chemosphere 241 (2020) 125021.  doi: 10.1016/j.chemosphere.2019.125021

    10. [10]

      Y.M. Ren, L.Q. Lin, J. Ma, et al., Appl. Catal. B: Environ. 165 (2015) 572–578.  doi: 10.1016/j.apcatb.2014.10.051

    11. [11]

      L.J. Xu, W. Chu, L. Gan, Chem. Eng. J. 263 (2015) 435–443.  doi: 10.1016/j.cej.2014.11.065

    12. [12]

      A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1 (2019) 31–47.  doi: 10.1016/j.nanoms.2019.02.004

    13. [13]

      J.P. Zhou, H.L. Liu, J. Luo, et al., ACS Appl. Mater. Interfaces 8 (2016) 18140–18149.  doi: 10.1021/acsami.6b05895

    14. [14]

      Z.Q. Cai, A.D. Dwivedi, W.N. Lee, et al., Environ. Sci. -Nano 5 (2018) 27–47.  doi: 10.1039/C7EN00644F

    15. [15]

      L. Tang, X. Meng, D. Deng, X. Bao, Adv. Mater. 31 (2019) 1901996.  doi: 10.1002/adma.201901996

    16. [16]

      W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Crit. Rev. Solid State 35 (2010) 52–71.  doi: 10.1080/10408430903505036

    17. [17]

      X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano 5 (2011) 3333–3338.  doi: 10.1021/nn200493r

    18. [18]

      C. Chen, W. Cai, M. Long, et al., ACS Nano 4 (2010) 6425–6432.  doi: 10.1021/nn102130m

    19. [19]

      X.R. You, C.Y. Huang, W. Huang, et al., Environ. Sci. : Nano 7 (2020) 554–570.  doi: 10.1039/C9EN01163C

    20. [20]

      J. Deng, L.W. Xiao, S.J. Yuan, et al., Sep. Purif. Technol. 255 (2021) 117685.  doi: 10.1016/j.seppur.2020.117685

    21. [21]

      R. Tabit, O. Amadine, Y. Essamlali, et al., RSC Adv. 8 (2018) 1351–1360.  doi: 10.1039/C7RA09949E

    22. [22]

      W.S. Hung, S.M. Chang, R.L.G. Lecaros, et al., Carbon 117 (2017) 112–119.  doi: 10.1016/j.carbon.2017.02.088

    23. [23]

      N. Meng, R.C.E. Priestley, Y. Zhang, H.T. Wang, X.W. Zhang, J. Membrane Sci. 501 (2016) 169–178.  doi: 10.1016/j.memsci.2015.12.004

    24. [24]

      D.R. Yang, J. Feng, L.L. Jiang, et al., Adv. Funct. Mater. 25 (2015) 7080–7087.  doi: 10.1002/adfm.201502970

    25. [25]

      N. Li, Z.F. Geng, M.H. Cao, et al., Carbon 54 (2013) 124–132.  doi: 10.1016/j.carbon.2012.11.009

    26. [26]

      M. Seredych, T.J. Bandosz, J. Mater. Chem. 22 (2012) 23525–23533.  doi: 10.1039/c2jm34294d

    27. [27]

      M. Kim, C. Lee, J. Jang, Adv. Funct. Mater. 24 (2014) 2489–2499.  doi: 10.1002/adfm.201303282

    28. [28]

      K. Ashwini, A.D. Mashkoor, S. Poorva, V. Dinesh, AIP Conf. Proc. 1148 (2014) 1148–1150.

    29. [29]

      T. Lin, L. Yu, M. Sun, et al., Chem. Eng. J. 286 (2016) 114–121.  doi: 10.1016/j.cej.2015.09.024

    30. [30]

      Y. Zhao, H.Z. An, G.J. Dong, et al., App. Surf. Sci. 505 (2020) 144476.  doi: 10.1016/j.apsusc.2019.144476

    31. [31]

      Y. Zhao, S. Wang, T. Wei, Y.M. Ren, T.Z. Luan, J. Environ. Chem. Eng. 10 (2022) 107241.  doi: 10.1016/j.jece.2022.107241

    32. [32]

      J. Liu, Z.W. Zhao, P.H. Shao, F.Y. Cui, Chem. Eng. J. 262 (2015) 854–861.  doi: 10.1016/j.cej.2014.10.043

    33. [33]

      Z.L. Wu, Z.K. Xiong, R. Liu, et al., J. Hazard. Mater. 427 (2022) 128204.  doi: 10.1016/j.jhazmat.2021.128204

    34. [34]

      R.H. Zhang, M.L. Chen, Z.K. Xiong, Y. Guo, B. Lai, Chin. Chem. Lett. 33 (2022) 948–952.  doi: 10.1016/j.cclet.2021.07.029

    35. [35]

      Z. Wang, R.T. Bush, L.A. Sullivan, C.C. Chen, J.S. Liu, Environ. Sci. Technol. 48 (2014) 3978–3985.  doi: 10.1021/es405143u

    36. [36]

      S. Wang, M.Y. Zhang, J. Feng, et al., Chem. Eng. J. 430 (2022) 133175.  doi: 10.1016/j.cej.2021.133175

    37. [37]

      Z. Liu, H. Ding, C. Zhao, et al., Water Res. 159 (2019) 111–121.  doi: 10.1016/j.watres.2019.04.052

    38. [38]

      Y. Zhao, H.Z. An, J. Feng, Y.M. Ren, J. Ma, Environ. Sci. Technol. 53 (2019) 4500–4510.  doi: 10.1021/acs.est.9b00658

    39. [39]

      Z.C. Yang, J.S. Qian, A.Q. Yu, B.C. Pan, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 6659–6664.  doi: 10.1073/pnas.1819382116

    40. [40]

      E.T. Yun, J.H. Lee, J. Kim, H.D. Park, J. Lee, Environ. Sci. Technol. 52 (2018) 7032–7042.  doi: 10.1021/acs.est.8b00959

    41. [41]

      J.J. You, C.Y. Zhang, Z.L. Wu, et al., Chem. Eng. J. 415 (2021) 128890.  doi: 10.1016/j.cej.2021.128890

    42. [42]

      J.E. Yang, Y. Lin, H.H. Peng, et al., Appl. Catal. B: Environ. 268 (2020) 118549.  doi: 10.1016/j.apcatb.2019.118549

    43. [43]

      L.P. Wu, B. Li, Y. Li, et al., ACS Catal. 11 (2021) 5532–5543.  doi: 10.1021/acscatal.1c00701

    44. [44]

      A.H. Mady, M.L. Baynosa, D. Tuma, J.J. Shim, Appl. Catal. B: Environ. 244 (2019) 946–956.  doi: 10.1016/j.apcatb.2018.11.086

    45. [45]

      X.B. Hu, B.Z. Liu, Y.H. Deng, et al., Appl. Catal. B: Environ. 107 (2011) 274–283.  doi: 10.1016/j.apcatb.2011.07.025

    46. [46]

      X.T. Li, J. Wang, X.G. Duan, et al., ACS Catal. 11 (2021) 4848–4861.  doi: 10.1021/acscatal.0c05089

    47. [47]

      C. Liu, S. Liu, L. Liu, et al., Chem. Eng. J. 379 (2020) 122274.  doi: 10.1016/j.cej.2019.122274

    48. [48]

      L.Y. Wu, Z.Y. Li, P.T. Cheng, et al., Water Res. 223 (2022) 119013.  doi: 10.1016/j.watres.2022.119013

    49. [49]

      J. Ye, J.D. Dai, D.Y. Yang, C.X. Li, Y.S. Yan, J. Environ. Chem. Eng. 9 (2021) 106076.  doi: 10.1016/j.jece.2021.106076

    1. [1]

      K. Fent, A.A. Weston, Aquat. Toxicol. 76 (2006) 122–159.  doi: 10.1016/j.aquatox.2005.09.009

    2. [2]

      O. Bajt, G. Mailhot, M. Bolte, Appl. Catal. B: Environ. 33 (2001) 239–248.  doi: 10.1016/S0926-3373(01)00179-5

    3. [3]

      B. Wang, H.X. Wang, W. Zhou, et al., Environ. Sci. Technol. 49 (2015) 1120–1129.  doi: 10.1021/es504455a

    4. [4]

      J. Lee, U.V. Gunten, J.H. Kim, Environ. Sci. Technol. 54 (2020) 3064–3081.  doi: 10.1021/acs.est.9b07082

    5. [5]

      W.D. Oh, Z. Dong, T.T. Lim, Appl. Catal. B: Environ. 194 (2016) 169–201.  doi: 10.1016/j.apcatb.2016.04.003

    6. [6]

      J.L. Wang, S.Z. Wang, Chem. Eng. J. 334 (2018) 1502–1517.  doi: 10.1016/j.cej.2017.11.059

    7. [7]

      P.D. Hu, M.C. Long, Appl. Catal. B: Environ. 181 (2016) 103–117.  doi: 10.1016/j.apcatb.2015.07.024

    8. [8]

      J. Deng, Y. Shao, N. Gao, et al., J. Hazard. Mater. 262 (2013) 836–844.  doi: 10.1016/j.jhazmat.2013.09.049

    9. [9]

      K. Zhang, D. Sun, C. Ma, et al., Chemosphere 241 (2020) 125021.  doi: 10.1016/j.chemosphere.2019.125021

    10. [10]

      Y.M. Ren, L.Q. Lin, J. Ma, et al., Appl. Catal. B: Environ. 165 (2015) 572–578.  doi: 10.1016/j.apcatb.2014.10.051

    11. [11]

      L.J. Xu, W. Chu, L. Gan, Chem. Eng. J. 263 (2015) 435–443.  doi: 10.1016/j.cej.2014.11.065

    12. [12]

      A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1 (2019) 31–47.  doi: 10.1016/j.nanoms.2019.02.004

    13. [13]

      J.P. Zhou, H.L. Liu, J. Luo, et al., ACS Appl. Mater. Interfaces 8 (2016) 18140–18149.  doi: 10.1021/acsami.6b05895

    14. [14]

      Z.Q. Cai, A.D. Dwivedi, W.N. Lee, et al., Environ. Sci. -Nano 5 (2018) 27–47.  doi: 10.1039/C7EN00644F

    15. [15]

      L. Tang, X. Meng, D. Deng, X. Bao, Adv. Mater. 31 (2019) 1901996.  doi: 10.1002/adma.201901996

    16. [16]

      W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Crit. Rev. Solid State 35 (2010) 52–71.  doi: 10.1080/10408430903505036

    17. [17]

      X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano 5 (2011) 3333–3338.  doi: 10.1021/nn200493r

    18. [18]

      C. Chen, W. Cai, M. Long, et al., ACS Nano 4 (2010) 6425–6432.  doi: 10.1021/nn102130m

    19. [19]

      X.R. You, C.Y. Huang, W. Huang, et al., Environ. Sci. : Nano 7 (2020) 554–570.  doi: 10.1039/C9EN01163C

    20. [20]

      J. Deng, L.W. Xiao, S.J. Yuan, et al., Sep. Purif. Technol. 255 (2021) 117685.  doi: 10.1016/j.seppur.2020.117685

    21. [21]

      R. Tabit, O. Amadine, Y. Essamlali, et al., RSC Adv. 8 (2018) 1351–1360.  doi: 10.1039/C7RA09949E

    22. [22]

      W.S. Hung, S.M. Chang, R.L.G. Lecaros, et al., Carbon 117 (2017) 112–119.  doi: 10.1016/j.carbon.2017.02.088

    23. [23]

      N. Meng, R.C.E. Priestley, Y. Zhang, H.T. Wang, X.W. Zhang, J. Membrane Sci. 501 (2016) 169–178.  doi: 10.1016/j.memsci.2015.12.004

    24. [24]

      D.R. Yang, J. Feng, L.L. Jiang, et al., Adv. Funct. Mater. 25 (2015) 7080–7087.  doi: 10.1002/adfm.201502970

    25. [25]

      N. Li, Z.F. Geng, M.H. Cao, et al., Carbon 54 (2013) 124–132.  doi: 10.1016/j.carbon.2012.11.009

    26. [26]

      M. Seredych, T.J. Bandosz, J. Mater. Chem. 22 (2012) 23525–23533.  doi: 10.1039/c2jm34294d

    27. [27]

      M. Kim, C. Lee, J. Jang, Adv. Funct. Mater. 24 (2014) 2489–2499.  doi: 10.1002/adfm.201303282

    28. [28]

      K. Ashwini, A.D. Mashkoor, S. Poorva, V. Dinesh, AIP Conf. Proc. 1148 (2014) 1148–1150.

    29. [29]

      T. Lin, L. Yu, M. Sun, et al., Chem. Eng. J. 286 (2016) 114–121.  doi: 10.1016/j.cej.2015.09.024

    30. [30]

      Y. Zhao, H.Z. An, G.J. Dong, et al., App. Surf. Sci. 505 (2020) 144476.  doi: 10.1016/j.apsusc.2019.144476

    31. [31]

      Y. Zhao, S. Wang, T. Wei, Y.M. Ren, T.Z. Luan, J. Environ. Chem. Eng. 10 (2022) 107241.  doi: 10.1016/j.jece.2022.107241

    32. [32]

      J. Liu, Z.W. Zhao, P.H. Shao, F.Y. Cui, Chem. Eng. J. 262 (2015) 854–861.  doi: 10.1016/j.cej.2014.10.043

    33. [33]

      Z.L. Wu, Z.K. Xiong, R. Liu, et al., J. Hazard. Mater. 427 (2022) 128204.  doi: 10.1016/j.jhazmat.2021.128204

    34. [34]

      R.H. Zhang, M.L. Chen, Z.K. Xiong, Y. Guo, B. Lai, Chin. Chem. Lett. 33 (2022) 948–952.  doi: 10.1016/j.cclet.2021.07.029

    35. [35]

      Z. Wang, R.T. Bush, L.A. Sullivan, C.C. Chen, J.S. Liu, Environ. Sci. Technol. 48 (2014) 3978–3985.  doi: 10.1021/es405143u

    36. [36]

      S. Wang, M.Y. Zhang, J. Feng, et al., Chem. Eng. J. 430 (2022) 133175.  doi: 10.1016/j.cej.2021.133175

    37. [37]

      Z. Liu, H. Ding, C. Zhao, et al., Water Res. 159 (2019) 111–121.  doi: 10.1016/j.watres.2019.04.052

    38. [38]

      Y. Zhao, H.Z. An, J. Feng, Y.M. Ren, J. Ma, Environ. Sci. Technol. 53 (2019) 4500–4510.  doi: 10.1021/acs.est.9b00658

    39. [39]

      Z.C. Yang, J.S. Qian, A.Q. Yu, B.C. Pan, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 6659–6664.  doi: 10.1073/pnas.1819382116

    40. [40]

      E.T. Yun, J.H. Lee, J. Kim, H.D. Park, J. Lee, Environ. Sci. Technol. 52 (2018) 7032–7042.  doi: 10.1021/acs.est.8b00959

    41. [41]

      J.J. You, C.Y. Zhang, Z.L. Wu, et al., Chem. Eng. J. 415 (2021) 128890.  doi: 10.1016/j.cej.2021.128890

    42. [42]

      J.E. Yang, Y. Lin, H.H. Peng, et al., Appl. Catal. B: Environ. 268 (2020) 118549.  doi: 10.1016/j.apcatb.2019.118549

    43. [43]

      L.P. Wu, B. Li, Y. Li, et al., ACS Catal. 11 (2021) 5532–5543.  doi: 10.1021/acscatal.1c00701

    44. [44]

      A.H. Mady, M.L. Baynosa, D. Tuma, J.J. Shim, Appl. Catal. B: Environ. 244 (2019) 946–956.  doi: 10.1016/j.apcatb.2018.11.086

    45. [45]

      X.B. Hu, B.Z. Liu, Y.H. Deng, et al., Appl. Catal. B: Environ. 107 (2011) 274–283.  doi: 10.1016/j.apcatb.2011.07.025

    46. [46]

      X.T. Li, J. Wang, X.G. Duan, et al., ACS Catal. 11 (2021) 4848–4861.  doi: 10.1021/acscatal.0c05089

    47. [47]

      C. Liu, S. Liu, L. Liu, et al., Chem. Eng. J. 379 (2020) 122274.  doi: 10.1016/j.cej.2019.122274

    48. [48]

      L.Y. Wu, Z.Y. Li, P.T. Cheng, et al., Water Res. 223 (2022) 119013.  doi: 10.1016/j.watres.2022.119013

    49. [49]

      J. Ye, J.D. Dai, D.Y. Yang, C.X. Li, Y.S. Yan, J. Environ. Chem. Eng. 9 (2021) 106076.  doi: 10.1016/j.jece.2021.106076

  • 加载中
    1. [1]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    2. [2]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    3. [3]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    4. [4]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    5. [5]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    6. [6]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    7. [7]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    8. [8]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    9. [9]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    10. [10]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    11. [11]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    12. [12]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    13. [13]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    14. [14]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    15. [15]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    16. [16]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    17. [17]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    18. [18]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    19. [19]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    20. [20]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

Metrics
  • PDF Downloads(5)
  • Abstract views(582)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return