Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral
-
* Corresponding authors.
E-mail addresses: luosha@uestc.edu.cn (S. Luo), weisun@uestc.edu.cn (W. Sun).
Citation:
An Duan, Sha Luo, Wei Sun. Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral[J]. Chinese Chemical Letters,
;2024, 35(2): 108337.
doi:
10.1016/j.cclet.2023.108337
In physiological or pathological conditions, extracellular matrix (ECM) undergoes complex and diverse changes in structural and mechanical properties to support critical interactions with cells. Including stiffness, shear stress, stretching, ligand density, composition, and topography, have been confirmed to regulate cell behaviors. Particularly, tissue stiffening, an unique phenomenon of cancer progression, has attracted plentiful researches on specific cell behaviors in 2D planar systems [1-4]. However, as cells are surrounded by 3D ECM niches in vivo, the dimensionality shift may directly cause differences in ligand distribution, cell adhesion mode and cell stiffness-sensing, which would definitely affect cell behaviors [5,6]. For instance, in context of pathological diseases, cell metastasis is always accelerated by the increasing stiffness of traditional 2D substrates, while observations on 3D ECM mimics may be contradictory [7]. Thus, 3D ECM has been shown to be necessary to further explore the ability of artificial platforms, specifically in cell mechanical sensing.
To date, the fabrication of diverse 3D models has been achieved by many methods, such as cell spheroid culture, 3D bioprinting, tissue-engineering scaffolds with customizable properties, hydrogels, cell sheets, bioreactors with dynamic loading, and microfluidics [8]. Among them, microfluidics show the advantages of high throughput, stability and automation, making it possible to obtain a great quantity of samples with consistent spatial distribution and structures using low amounts of reagents [9-12]. In terms of materials, hydrogels combine the unique properties of softness, low immunogenicity and tunable mechanical characteristics [13-15]. Thus, monodisperse microgels produced with these elements not only offer exquisite control on homogeneous internal structures, but also shows the advantage in ECM physical features simulation [16]. Additionally, the limited size of microgels can avoid cells inactivation at internal positions caused by deficient oxygen and nutrients [17].
However, the microgels still present some limitations in the simulation of tumor stiffness due to their nature of high water content and flexibility [18]. To achieve high stiffness, simply increasing the weight concentration is not feasible, as it leads to a simultaneous change in porosity and viscosity, which brings out challenges including microflow shearing and microchip clogging [19]. Moreover, while the mechanical properties can be altered by the amount, type of crosslinking ions or methods, stiffness changes on orders-of-magnitude is hardly achieved [20]. To solve this problem, nanofibers have shown the prospect in simulation of increased collagenous fibrils in hardened tissue [21]. For example, Joshi et al. have successfully combined β-TCP incorporated PLA nanofibers with gelatin for biomimetic bone tissue engineering, the compressive stress was amplified about 8-fold [22]. It showed the nanofiber-hydrogel hybrids contained widely adjustable mechanical properties, which could fit the stiffness of some specific or diseased tissue.
Herein, we present an innovative strategy to reinforce 3D microgel constructs by formulating composite hydrogel composed of modified alginate and different amount of micron-scale polylactide (PLA) nanofibers for solid carcinoma engineering (Scheme 1). The modified alginate with PVGLIG (proline-valine-glycine-leucine-isoleucine-glycine) and RGD (arginine-glycine-aspartate) peptides provided corresponding sites for cell migration and adhesion. By adding microscale PLA nanofibers uniformly by ultrasound, the composite microgels with increased stiffness showed the similar pore size, proving that we have created a 3D mechanical matrix platform with univariate variables. Following this strategy, solid breast tumors within the pathological breast stiffness range (2–20 kPa) were successfully simulated by using different composite gel ratios and two breast cancer cells with different invasive abilities, epithelial phenotype breast cancer cells MCF-7 and more aggressive mesenchymal SUM-159 [23]. Obviously, high proliferation and invasion ability of both cell types in soft matrix were observed. Furthermore, RT-qPCR analysis revealed the underlying changes at the genetic level. In this study, the proposed 3D microgel with homogeneous microstructure and adjustable stiffness effectively simulates the mechanical microenvironment of solid breast tumors, and demonstrates the advantages in-vitro simulation and tissue engineering.
Firstly, PLA nanofibers with well-controlled diameters were fabricated by electrospinning process (Fig. 1a). Prior to use, morphology of nanofibers should be thoroughly characterized. As shown in Fig. 1b, the SEM micrograph of PLA fibers had random orientation and uniform width after electrospinning, and the average width was about 0.52 ± 0.12 µm, which fitted the Gaussian distribution (Fig. S1 in Supporting information). However, the fibers produced by electrospinning directly are always with irregular length in the tens or hundreds of microns, which might clog the outlets of microchips and hinder the uniform generation of micro-scale microgels. The homogeneous PLA nanofibers that shorter than the diameter of microgels are urgently needed to avoid the large agglomeration. Thus, the electrospun PLA nanofibers were aminolyzed in 5% ethylenediamine to obtain the micro-short scale, in order to disperse it uniformly in hydrogels [24]. And relevant experiments were optimized to discovery the influence of aminolysis time on the degree of fiber breakage. In Fig. S2 (Supporting information), PLA nanofibers became shorter and thicker as the increasing time of ammonolysis. For the 3 h ammonolysis (Fig. 1c), the PLA nanofibers were decomposed into micrometer-scale lengths, which had been suitable for making uniformly sized microgel spheres (Fig. 1d). Therefore, the 3 h ammonolysis PLA fibers with an average width and length of 0.8062 ± 0.1966 µm (Fig. 1e) and 5.9048 ± 2.1419 µm (Fig. 1f) could be employed in the composite hydrogels. And to guarantee the composite hydrogels biocompatible and stability, RGD and PVGLIG (MMP sensitive sequence) were introduced efficiently on alginate in response to cell adhesion and migration (Fig. S3 in Supporting information).
Next, we fabricated the microfluidic device to produce cell-loaded alginate/PLA hydrogel spheroids by flow-focusing (Fig. S4 in Supporting information) [25]. And the height and length of all microchannels were around 100 µm and 200 µm. Subsequently, the conditions of the continuous phases were optimized by fixing the velocity of dispersed phase. As shown in Videos S1–S4 (Supporting information), when the flow rate of the continuous phase was speeder than 600 µL/h, the dispersed phase at a rate of 40 µL/h could be cut into microgel spheres. To conform to the size requirement (~200 µm), we ultimately chose two continuous phases at the flow rate of 600 µL/h. The obtained microgels were collected in 20% 1H, 1H, 2H, 2H-perfluoro-1-octanol for demulsification.
Subsequently, to simulate varying degrees of stiffening in breast cancer, different amounts of PLA nanofibers added in the compound gels should be explored. And the three groups in Table S1 (Supporting information) were finally selected. As shown in Fig. 2a and Fig. S5 (Supporting information), the viscosity modulus of 2.0% alginate with different concentrations of Ca2+ were far below the elastic modulus, indicating the Young's modulus was mainly affected by the modulus of elasticity. After the corresponding experimental groups that added different amounts of PLA, the viscous modulus of the composite hydrogel still kept the same trend, while the elastic modulus was greatly increased, thereby raising the overall stiffness about 1.54, 1.88, 3.17 times, up to 2.02 ± 0.25 kPa, 7.45 ± 0.49 kPa and 16.76 ± 1.18 kPa, respectively. Meanwhile, the swelling phenomenon during long-term culture also is a crucial feature, and the swelling ratio which reflected microgels cross-linking density was determined by the hydrodynamic diameter calculation of the microgel formulation in oil or water. As shown in Fig. 2b and Fig. S6 (Supporting information), the sizes of pure alginate groups are swelled from 204.73 ± 4.19 µm, 209.39 ± 4.10 µm, 207.80 ± 3.84 µm to 233.57 ± 5.10 µm, 224.14 ± 4.51 µm, 214.25 ± 5.49 µm. Microgels cross-linking with only 10 mmol/L Ca2+ swelled the most remarkable with 14.09% increasing. After adding PLA, the stability of the gel was further improved. The particle sizes are swelled from 222.64 ± 7.34 µm, 216.89 ± 6.82 µm, 209.89 ± 12.65 µm to 238.88 ± 11.73 µm, 221.25 ± 11.87 µm, 211.72 ± 6.41 µm, showing the swelling rates of three gel formulations were reduced to 7.29%, 2.01%, and 0.87%, respectively. Simultaneously, SEM images in Fig. 2c and Fig. S7 (Supporting information) demonstrated the homogeneity of pore size of three formulas, which were about 23.21 ± 7.71 µm, 24.47 ± 4.50 µm and 20.18 ± 8.50 µm, respectively. Statistical results showed that changing the cross-linking state within a certain range Ca2+ concentration would not affect the pore size of gels obviously, thus avoiding the influence in nutrients or the metabolic waste transport. Besides, the distribution of PLA micron nanofibers and the morphology of the cells encapsulated in different gel could be clearly observed from SEM images in Fig. S8 (Supporting information).
We proceeded to explore the role of stiffness on cell viability and proliferation in tumor microenvironments simulated by microgels. As shown in Fig. S9 (Supporting information), activity of MCF-7 and SUM-159 cells maintained no significant difference for all three conditions, similar results were obtained for other cell lines as well (Fig. S10 in Supporting information). And through counting and quantitative analysis of encapsulated cells of 1–3 days cultivation in Fig. 3a, the viability was at the range of 88.63% to 96.37%, which proved the high cytocompatible of nanofibers-composited hydrogels. Due to the modification of RGD and PVGLIG motifs, the hydrogel provided suitable sites for cell-matrix intergration and further improved cell growth and proliferation. In Fig. 3b, we estimated cell numbers on day 0, 1, and 3 by CCK8 assay and defined the fold change in proliferation by normalizing to the day 0 data. Two kinds of cells in the soft (2.02 kPa) and medium-stiffness (7.45 kPa) microenvironments showed significantly higher growth than the stiff (16.76 kPa) condition in 72 h. Subsequently, cell cycles were detected by flow cytometry. In Fig. 3c, the cells grown in the soft environments showed more distribution in the G2/M period, indicating the higher proliferation ability, which were consistent with the CCK8 results. In conclusion, both MCF-7 and SUM-159 cells tends to proliferate in a softer 3D microenvironment.
It is well known that breast cancer cells MCF-7 and SUM-159, exhibiting epithelial phenotype and mesenchymal phenotype, displayed with low and high metastatic potential in 2D plane, respectively (Fig. S11 in Supporting information). To study whether cell migration viability is highly correlated with 3D ECM stiffness, we encapsulated cells in 200 µm microgels and observed cell migrated from the inside of the gel to the outer space in 5 days.
In Figs. 4a and b, cells exhibited similar tendency of metastatic potential, that were more frequently forming bulges on the surface of spheroids in soft condition. While cells located at the bottom of spheroids could migrate out and attach on the 2D bottom surface. For each culture condition, we measured more than 50 microgels in each independent replicate, and repeated 3 times in Fig. 4c. For MCF-7, the spheroids with surface cell bulges or bottom cell attachment were significantly decreased from 29.44% ± 2.53% to 19.48% ± 0.82% and 11.77% ± 0.23% with the increased stiffness. And SUM-159 presented the migration percentage of 41.30% ± 2.50%, 27.25% ± 1.57% and 22.23% ± 1.21%, respectively, after encapsulated for 72 h under the same condition as MCF-7. It proved that cells with a mesenchymal phenotype still maintained the high migratory capacity in 3D microenvironment. Certainly, with a limited number of encapsulated cells, cell protrusions on the microgel surface could also be observed, but for a longer time (Fig. S12 in Supporting information).
Furthermore, we sought to further testify motility of encapsulated cells by immunofluorescence staining of N-cadherin and E-cadherin. As shown in Fig. S13 (Supporting information), cultured for 72 h, both N-cadherin and E-cadherin were observed in two type of cells. And the expression of E-cadherin was slightly lower in cells within the soft microgels, indicating the weakened intercellular cohesion. Thus, cells easily dispersed and infiltrated to the periphery. Obviously, with the increasing ECM stiffness, the decrease of N-cadherin expression level suggested the weakening of cell migration and invasion ability as well (Fig. 4d). Instead, the expression of epithelial markers E-cadherin in MCF-7 and mesenchymal markers N-cadherin in SUM-159 were more deeply affected by ECM stiffness, respectively, which was determined by cell characteristics. In summary, cell migration became tough in stiff 3D microenvironment. Therefore, we speculated that cells need time to find or pave a way to pass through the ECM with more physical constraints.
After demonstrating the association between migration and ECM stiffness in encapsulated cells, the changes induced by environmental confinement should be more visualized by gene expression. Matrix metalloproteinases (MMPs) are known to play an important role in developmental and homeostatic remodeling of ECM by mediating the degradation of ECM proteins, while tissue inhibitor of metalloproteinases (TIMPs) can adjust the MMPs expression [26]. From the point of view of migration ability, those genes were selected for further mRNA expression level analysis, and the detail of sequences were shown in Table S2. As shown in Fig. 4e, the expression of MMP2, MMP13, MMP14 and TIMP2 in both cells were significantly upward modulation within stiffer microgels. Meanwhile, the expression of those genes in 2D plane were downward than 3D condition, except the MMP13 in MCF-7 cells. Subsequently, MMP9 and TIMP1 of two kinds of breast cells were significantly down-regulated in stiff 3D microenvironment, and only MMP9 of SUM-159 expressed more in 3D ECM than 2D cultured. These observations were consistent with the known study that MMP2 and MMP9 could be repressed by TIMP1 and TIMP2, respectively. In addition, MMP3 and MMP8 of MCF-7 were significantly up-regulated with ECM stiffness, while the expression of those two genes demonstrated opposite in SUM-159. As for TIMP3, the expression was rapid declined in MCF-7 but raised in SUM-159 as stiffness changed. Those gene expression analysis revealed a complex and sensitive feedback network of cell migration upon 3D mechanical stimulation, which may provide some insights into solid tumor research and therapy.
In summary, we employed a composite hydrogel of PLA nanofibers and modified alginate with different concentrations of Ca2+, which can typically reinforce the mechanical properties of microgels with similar pore size. And we also investigated the effects of 3D microenvironment stiffness on the cell proliferation, viability, migration, and related gene expression of two types of breast cancer cells. Highly biocompatible and throughput microgels propose a new approach for the construction of solid tumors and observation of tumor migration. We envision that this study will provide an essential foundation for future investigations on ECM mechanisms in breast cancer and spark new approaches for therapy.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
This work was supported by the National Natural Science Foundation of China (Nos. 22034005, 81973569, and 21621003).
Supplementary material associated with this article can be found, in the online version, at doi:
M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 14 (2018) 1800561.
D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19–29.
doi: 10.1038/nchem.2085
B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4 (2011) 3287–3295.
doi: 10.1039/c1ee01388b
Q. Yu, K. Jiang, C. Yu, et al., Chin. Chem. Lett. 32 (2021) 2659–2678.
doi: 10.1016/j.cclet.2021.03.032
G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Energy Environ. Sci. 4 (2011) 1986–2002.
doi: 10.1039/c0ee00831a
Y.M. Chiang, Science 330 (2010) 1485–1486.
doi: 10.1126/science.1198591
J.M. Tarascon, M. Armand, Nature 414 (2001) 359–367.
doi: 10.1038/35104644
D. Chao, W. Zhou, F. Xie, et al., Sci. Adv. 6 (2020) eaba4098.
doi: 10.1126/sciadv.aba4098
A. Eftekhari, Adv. Energy Mater. 8 (2018) 1801156.
doi: 10.1002/aenm.201801156
X. Deng, Jiang Z, Y. Chen, et al., Chin. Chem. Lett. 34 (2023) 107389.
doi: 10.1016/j.cclet.2022.03.112
J. Yu, C.X. Zhao, J.N. Liu, et al., Green Chem. Eng. 1 (2020) 117–123.
doi: 10.1016/j.gce.2020.09.013
S. Gheytani, Y. Liang, F. Wu, et al., Adv. Sci. 4 (2017) 1700465.
doi: 10.1002/advs.201700465
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Chem. Rev. 120 (2020) 7795–7866.
doi: 10.1021/acs.chemrev.9b00628
M. Tang, H. Li, E. Wang, C. Wang, Chin. Chem. Lett. 29 (2018) 232–244.
doi: 10.1016/j.cclet.2017.09.005
B.E. Jia, A.Q. Thang, C. Yan, et al., Small 18 (2022) 2107773.
doi: 10.1002/smll.202107773
L. Su, L. Liu, Y. Wang, Y. Lu, X. Yan, Chin. Chem. Lett. 31 (2020) 2358–2364.
doi: 10.1016/j.cclet.2020.03.014
J. Shin, J. Lee, Y. Park, J.W. Choi, Chem. Sci. 11 (2020) 2028–2044.
doi: 10.1039/D0SC00022A
B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 12 (2019) 3288–3304.
doi: 10.1039/C9EE02526J
J. Song, K. Xu, N. Liu, D. Reed, X. Li, Mater. Today 45 (2021) 191–212.
doi: 10.1016/j.mattod.2020.12.003
N. Wang, H. Wan, J. Duan, et al., Mater. Today Adv. 11 (2021) 100149.
doi: 10.1016/j.mtadv.2021.100149
W. Shang, W. Yu, Y. Liu, et al., Energy Storage Mater. 31 (2020) 44–57.
doi: 10.1016/j.ensm.2020.05.028
L. Li, Y.C.A. Tsang, D. Xiao, et al., Nat. Commun. 13 (2022) 2870.
doi: 10.1038/s41467-022-30616-w
Z. Xu, N. Zhang, X. Wang, Nano Energy 102 (2022) 107724.
doi: 10.1016/j.nanoen.2022.107724
L. Yin, J. Scharf, J. Ma, et al., Joule 5 (2021) 228–248.
doi: 10.1016/j.joule.2020.11.008
Z. Zhao, X. Fan, J. Ding, et al., ACS Energy Lett. 4 (2019) 2259–2270.
doi: 10.1021/acsenergylett.9b01541
S. Jin, P.Y. Chen, Y. Qiu, et al., J. Am. Chem. Soc. 144 (2022) 19344–19352.
doi: 10.1021/jacs.2c06757
C. Li, S. Jin, L.A. Archer, L.F. Nazar, Joule 6 (2022) 1727–1742.
doi: 10.1016/j.joule.2022.06.019
M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funt. Mater. 28 (2018) 1802564.
doi: 10.1002/adfm.201802564
G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 3 (2018) 2480–2501.
doi: 10.1021/acsenergylett.8b01426
D. Zhao, S. Chen, Y. Lai, et al., Nano Energy 100 (2022) 107520.
doi: 10.1016/j.nanoen.2022.107520
Y. Tian, Y. An, C. Wei, et al., Adv. Energy Mater. 11 (2021) 2002529.
doi: 10.1002/aenm.202002529
S. Huang, J. Zhu, J. Tian, Z. Niu, Chem. Eur. J. 25 (2019) 14480–14494.
doi: 10.1002/chem.201902660
J. Yin, X. Feng, Z. Gan, et al., Energy Storage Mater. 54 (2023) 623–640.
doi: 10.1016/j.ensm.2022.11.006
T. Zhang, Y. Tang, S. Guo, et al., Energy Environ. Sci. 13 (2020) 4625–4665.
doi: 10.1039/D0EE02620D
S. Chen, M. Zhang, P. Zou, B. Sun, S. Tao, Energy Environ. Sci. 15 (2022) 1805–1839.
doi: 10.1039/D2EE00004K
H. Li, S. Guo, H. Zhou, Energy Storage Mater. 56 (2023) 227–257.
doi: 10.1016/j.ensm.2023.01.027
H. Yan, X. Zhang, Z. Yang, et al., Coord. Chem. Rev. 452 (2022) 214297.
doi: 10.1016/j.ccr.2021.214297
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 6 (2021) 1015–1033.
doi: 10.1021/acsenergylett.0c02684
D. Wang, Q. Li, Y. Zhao, et al., Adv. Energy Mater. 12 (2022) 2102707.
doi: 10.1002/aenm.202102707
D. Aurbach, Electrochim. Acta 47 (2002) 3561.
doi: 10.1016/S0013-4686(02)00284-0
C.A. Vincent, Modern Batteries, 2nd ed., Elsevier, Amsterdam, 1997.
K.V. Kordesch, C. Fabjan, J.D. Ivad, J. Oliveira, J. Power Sources 65 (1997) 77–80.
doi: 10.1016/S0378-7753(97)02470-1
B. Sundén, Hydrogen, Batteries and Fuel Cells, Elsevier, Amsterdam, 2019.
D. Linden, T.B. Reddy, Linden's Handbook of Batteries, 4th ed., McGraw-Hill, New York, 2011.
F.R. McLarnon, E.J. Cairns, J. Electrochem. Soc. 138 (1991) 645–664.
doi: 10.1149/1.2085653
P. Pei, K. Wang, Z. Ma, Appl. Energy 128 (2014) 315–324.
doi: 10.1016/j.apenergy.2014.04.095
L. Binder, W. Odar, K. Kordesch, J. Power Sources 6 (1981) 271–289.
doi: 10.1016/0378-7753(81)80032-8
R. Shivkumar, G.P. Kalaignan, T. Vasudevan, J. Power Sources 55 (1995) 53–62.
doi: 10.1016/0378-7753(94)02170-8
T. Shoji, M. Hishinuma, T. Yamamoto, J. Appl. Electrochem. 18 (1987) 521–526.
C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 51 (2012) 933–935.
doi: 10.1002/anie.201106307
N. Zhang, F. Cheng, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 12894–12901.
doi: 10.1021/jacs.6b05958
L. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.
doi: 10.1126/science.aab1595
C. Zhang, J. Holoubek, X. Wu, et al., Chem. Commun. 54 (2018) 14097–14099.
doi: 10.1039/C8CC07730D
A.G. Bosca, D. Bélanger, J. Power Sources 326 (2016) 595–603.
doi: 10.1016/j.jpowsour.2016.04.088
J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141.
doi: 10.1038/nenergy.2016.141
Y. Liang, Y. Yao, Nat. Rev. Mater. 8 (2023) 109–122.
M. Zhang, W. Wang, X. Liang, et al., Chin. Chem. Lett. 32 (2021) 2217–2221.
doi: 10.1016/j.cclet.2020.12.017
L. Zhang, D. Wu, G. Wang, et al., Chin. Chem. Lett. 32 (2021) 926–931.
doi: 10.1016/j.cclet.2020.06.037
H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem. Int. Ed. 60 (2020) 598–616.
J. Huang, Z. Guo, Y. Ma, et al., Small Methods 3 (2018) 1800272.
F. Beck, P. Rüetschi, Electrochim. Acta 45 (2000) 15–16.
Y.H. Zhu, Y.F. Cui, Z.L. Xie, et al., Nat. Rev. Chem. 6 (2022) 505–517.
doi: 10.1038/s41570-022-00397-3
B. Lafitte, P. Jannasch, Advances in Fuel Cells, Elsevier, Amsterdam, 2007.
Y. Tian, J. Hong, D. Cao, et al., Science 377 (2022) 315–319.
doi: 10.1126/science.abo0823
N. Agmon, Chem. Phys. Lett. 244 (1995) 456–462.
doi: 10.1016/0009-2614(95)00905-J
F. Allebrod, C. Chatzichristodoulou, P.L. Mollerup, M.B. Mogensen, Int. J. Hydrog. Energy 37 (2015) 16505–16514.
A. Carton, F. Sobron, S. Bolado, J.I. Gerboles, J. Chem. Eng. Data 40 (1995) 987–991.
doi: 10.1021/je00020a057
M. Singh, J. Kaiser, H. Hahn, J. Electrochem. Soc. 162 (2015) A1196–A1201.
doi: 10.1149/2.0401507jes
W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, J. Electrochem. Soc. 162 (2015) A803–A808.
doi: 10.1149/2.0121506jes
I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1 (2017) 0003.
doi: 10.1038/s41570-016-0003
S. Trasatti, J. Electroanal. Chem. 39 (1972) 163–184.
doi: 10.1016/S0022-0728(72)80485-6
D. Chao, S.Z. Qiao, Joule 4 (2020) 1846–1851.
doi: 10.1016/j.joule.2020.07.023
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/C9CS00131J
D. Han, S. Wu, S. Zhang, et al., Small 16 (2020) 2001736.
doi: 10.1002/smll.202001736
Q. Li, Q. Luo, X. Liu, J. Yi, Batteries Supercaps 5 (2022) e202100417.
doi: 10.1002/batt.202100417
L. Hong, X. Wu, L.Y. Wang, et al., ACS Nano 16 (2022) 6906–6915.
doi: 10.1021/acsnano.2c02370
A.R. Mainar, O. Leonet, M. Bengoechea, et al., Int. J. Energy Res. 40 (2016) 1032–1049.
doi: 10.1002/er.3499
P.P. Wu, G.L. Song, Y.X. Zhu, D.J. Zheng, Corro. Sci. 194 (2022) 109943.
doi: 10.1016/j.corsci.2021.109943
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.Z. Qiao, Adv. Mater. 34 (2022) 2206963.
doi: 10.1002/adma.202206963
T. Sun, X. Yuan, K. Wang, et al., J. Mater. Chem. A 9 (2021) 7042–7047.
doi: 10.1039/D0TA12409E
X. Tang, D. Zhou, B. Zhang, et al., Nat. Commun. 12 (2021) 2857.
doi: 10.1038/s41467-021-23209-6
M. Cai, S.M. Park, J. Electrochem. Soc. 143 (1996) 2125–2131.
doi: 10.1149/1.1836970
X. Zhou, Y. Lu, Q. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 55476–55482.
doi: 10.1021/acsami.0c17023
Z. Zhao, J. Zhao, Z. Hu, et al., Energy Environ. Sci. 12 (2019) 1938–1949.
doi: 10.1039/C9EE00596J
W. Lu, C. Xie, H. Zhang, X. Li, ChemSusChem 11 (2018) 3996–4006.
doi: 10.1002/cssc.201801657
R. Nelson, JOM 53 (2001) 28–33.
Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. 16 (2017) 841–848.
doi: 10.1038/nmat4919
M. Minakshi, P. Singh, M. Carter, K. Prince, Electrochem. Solid-State Lett. 11 (2008) A145–A149.
doi: 10.1149/1.2932056
M. Manickam, P. Singh, T.B. Issa, S. Thurgate, R.D. Macro, J. Power Sources 130 (2004) 254–259.
doi: 10.1016/j.jpowsour.2003.12.018
B. Wu, Y. Mu, Z. Li, et al., Chin. Chem. Lett. 34 (2023) 107629.
doi: 10.1016/j.cclet.2022.06.052
H. Zhang, Q. Liu, Y. Fang, et al., Adv. Mater. 31 (2019) 1904948.
doi: 10.1002/adma.201904948
B. Lee, H.R. Seo, H.R. Lee, et al., ChemSusChem 9 (2016) 2948–2956.
doi: 10.1002/cssc.201600702
N. Zhang, F. Cheng, J. Liu, et al., Nat. Commun. 8 (2017) 405.
doi: 10.1038/s41467-017-00467-x
G. Kasiri, R. Trócoli, A.B. Hashemi, F.L. Mantia, Electrochim. Acta 222 (2016) 74–83.
doi: 10.1016/j.electacta.2016.10.155
N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, J. Colloid Interface Sci. 342 (2010) 505–512.
doi: 10.1016/j.jcis.2009.10.034
L. Wang, Y. Zhang, H. Hu, et al., ACS Appl. Mater. Interfaces 11 (2019) 42000–42005.
doi: 10.1021/acsami.9b10905
G.L. Li, Z. Yang, Y. Jiang, et al., Nano Energy 25 (2016) 211–217.
doi: 10.1016/j.nanoen.2016.04.051
W. Sun, V. Küpers, F. Wang, P. Bieker, M. Winter, Angew. Chem. Int. Ed. 61 (2022) e202207353.
doi: 10.1002/anie.202207353
D. Han, C. Cui, K. Zhang, et al., Nat. Sustain. 5 (2022) 205–213.
X. Xu, M. Song, M. Li, et al., Chem. Eng. J. 454 (2023) 140364.
doi: 10.1016/j.cej.2022.140364
Q. Liu, Y. Wang, X. Hong, et al., Adv. Energy Mater. 12 (2022) 2200318.
doi: 10.1002/aenm.202200318
K. Kordesh, M. Weissenbacher, J. Power Sources 51 (1994) 61–78.
doi: 10.1016/0378-7753(94)01955-X
J. Zhou, L. Shan, Z. Wu, et al., Chem. Commun. 54 (2018) 4457–4460.
doi: 10.1039/C8CC02250J
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, Adv. Funct. Mater. 31 (2021) 2006749.
doi: 10.1002/adfm.202006749
P. Kulkarni, D. Ghosh, R.G. Balakrishna, Sustain. Energ. Fuels 5 (2021) 1619–1654.
doi: 10.1039/D0SE01313G
M.R.H. Almeida, E.P. Barbano, M.F. Carvalho, et al., Surf. Coat. Technol. 206 (2011) 95–102.
doi: 10.1016/j.surfcoat.2011.06.050
J. Cao, D. Zhang, R. Chanajaree, et al., Adv. Powder Mater. 1 (2022) 100007.
doi: 10.1016/j.apmate.2021.09.007
C.W. Lee, K. Sathiyanarayanan, S.W. Eom, H.S. Kim, M.S. Yun, J. Power Sources 159 (2007) 1474–1477.
J. Wan, R. Wang, Z. Liu, et al., ACS Nano 17 (2023) 1610–1621.
doi: 10.1021/acsnano.2c11357
L. Lyu, Y. Gao, Y. Wang, et al., Chem. Phys. Lett. 723 (2019) 102–110.
doi: 10.1016/j.cplett.2019.02.032
Y. Wu, Z. Zhu, D. Shen, et al., Energy Storage Mater. 45 (2021) 1084–1091.
G. Koscher, K. Kordesch, J. Power Sources 136 (2004) 215–219.
doi: 10.1016/j.jpowsour.2004.03.005
J. Hao, L. Yuan, C. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 7366–7375.
doi: 10.1002/anie.202016531
N. Chang, T. Li, R. Li, et al., Energy Environ. Sci. 13 (2020) 3527–3535.
doi: 10.1039/D0EE01538E
W. Yang, X. Du, J. Zhao, et al., Joule 4 (2020) 1557–1574.
doi: 10.1016/j.joule.2020.05.018
A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Angew. Chem. Int. Ed. 58 (2019) 2760–2764.
doi: 10.1002/anie.201813223
L. Cao, D. Li, T. Pollard, et al., Nat. Nanotechnol. 16 (2021) 902–910.
doi: 10.1038/s41565-021-00905-4
Z. Zhang, Y. Shen, Z. Zhao, et al., J. Power Sources 542 (2022) 231815.
doi: 10.1016/j.jpowsour.2022.231815
M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, ACS Energy Lett. 6 (2021) 3236–3243.
doi: 10.1021/acsenergylett.1c01418
Y. Zhang, H. Qin, M. Alfred, et al., Energy Storage Mater. 42 (2021) 88–96.
doi: 10.1016/j.ensm.2021.07.026
F. Wan, L. Zhang, X. Dai, et al., Nat. Commun. 9 (2018) 1–11.
doi: 10.1038/s41467-017-02088-w
S. Qian, J. Zhou, M. Peng, et al., Mater. Chem. Front. 7 (2022) 901–907.
Y. Geng, L. Pan, Z. Peng, et al., Energy Storage Mater. 51 (2022) 733–755.
doi: 10.1016/j.ensm.2022.07.017
K. Liu, P. He, H. Bai, et al., Mater. Chem. Phys. 199 (2017) 73–78.
doi: 10.1016/j.matchemphys.2017.06.050
J. Hao, J. Long, B. Li, et al., Adv. Funct. Mater. 29 (2019) 1903605.
doi: 10.1002/adfm.201903605
L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Angew. Chem. Int. Ed. 59 (2020) 19292–19296.
doi: 10.1002/anie.202008634
J. Cui, X. Liu, Y. Xie, et al., Mater. Today Energy 18 (2020) 100563.
doi: 10.1016/j.mtener.2020.100563
S. Chen, C. Peng, D. Xue, L. Ma, C. Zhi, Angew. Chem. Int. Ed. 61 (2022) e202212767.
doi: 10.1002/anie.202212767
L. Cao, D. Li, E. Hu, et al., J. Am. Chem. Soc. 142 (2020) 21404–21409.
doi: 10.1021/jacs.0c09794
Y. Liu, Z. Yu, J. Chen, et al., Chin. Chem. Lett. 33 (2022) 1817–1830.
doi: 10.1016/j.cclet.2021.09.023
A. Chen, C. Zhao, J. Gao, et al., Energy Environ. Sci. 16 (2023) 275–284.
doi: 10.1039/D2EE02931F
X. Xu, H. Su, J. Zhang, et al., ACS Energy Lett. 7 (2022) 4459–4468.
doi: 10.1021/acsenergylett.2c02236
W. Zhang, Y. Dai, R. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202212695.
doi: 10.1002/anie.202212695
M. Qiu, P. Sun, Y. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202210979.
doi: 10.1002/anie.202210979
J.N. Liu, C.X. Zhao, D. Ren, et al., Adv. Mater. 34 (2022) 2109407.
doi: 10.1002/adma.202109407
X.M. Liu, X. Cui, K. Dastafkan, et al., J. Energy Chem. 53 (2021) 290–302.
doi: 10.1016/j.jechem.2020.04.012
W. Cai, Y.X. Yao, G.L. Zhu, et al., Chem. Soc. Rev. 49 (2020) 3806–3833.
doi: 10.1039/C9CS00728H
J.F. Parker, J.S. Ko, D.R. Rolison, J.W. Long, Joule 2 (2018) 2519–2527.
doi: 10.1016/j.joule.2018.11.007
G. Zampardi, F.L. Mantia, Nat. Commun. 13 (2022) 687.
doi: 10.1038/s41467-022-28381-x
M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 14 (2018) 1800561.
D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19–29.
doi: 10.1038/nchem.2085
B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4 (2011) 3287–3295.
doi: 10.1039/c1ee01388b
Q. Yu, K. Jiang, C. Yu, et al., Chin. Chem. Lett. 32 (2021) 2659–2678.
doi: 10.1016/j.cclet.2021.03.032
G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Energy Environ. Sci. 4 (2011) 1986–2002.
doi: 10.1039/c0ee00831a
Y.M. Chiang, Science 330 (2010) 1485–1486.
doi: 10.1126/science.1198591
J.M. Tarascon, M. Armand, Nature 414 (2001) 359–367.
doi: 10.1038/35104644
D. Chao, W. Zhou, F. Xie, et al., Sci. Adv. 6 (2020) eaba4098.
doi: 10.1126/sciadv.aba4098
A. Eftekhari, Adv. Energy Mater. 8 (2018) 1801156.
doi: 10.1002/aenm.201801156
X. Deng, Jiang Z, Y. Chen, et al., Chin. Chem. Lett. 34 (2023) 107389.
doi: 10.1016/j.cclet.2022.03.112
J. Yu, C.X. Zhao, J.N. Liu, et al., Green Chem. Eng. 1 (2020) 117–123.
doi: 10.1016/j.gce.2020.09.013
S. Gheytani, Y. Liang, F. Wu, et al., Adv. Sci. 4 (2017) 1700465.
doi: 10.1002/advs.201700465
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Chem. Rev. 120 (2020) 7795–7866.
doi: 10.1021/acs.chemrev.9b00628
M. Tang, H. Li, E. Wang, C. Wang, Chin. Chem. Lett. 29 (2018) 232–244.
doi: 10.1016/j.cclet.2017.09.005
B.E. Jia, A.Q. Thang, C. Yan, et al., Small 18 (2022) 2107773.
doi: 10.1002/smll.202107773
L. Su, L. Liu, Y. Wang, Y. Lu, X. Yan, Chin. Chem. Lett. 31 (2020) 2358–2364.
doi: 10.1016/j.cclet.2020.03.014
J. Shin, J. Lee, Y. Park, J.W. Choi, Chem. Sci. 11 (2020) 2028–2044.
doi: 10.1039/D0SC00022A
B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 12 (2019) 3288–3304.
doi: 10.1039/C9EE02526J
J. Song, K. Xu, N. Liu, D. Reed, X. Li, Mater. Today 45 (2021) 191–212.
doi: 10.1016/j.mattod.2020.12.003
N. Wang, H. Wan, J. Duan, et al., Mater. Today Adv. 11 (2021) 100149.
doi: 10.1016/j.mtadv.2021.100149
W. Shang, W. Yu, Y. Liu, et al., Energy Storage Mater. 31 (2020) 44–57.
doi: 10.1016/j.ensm.2020.05.028
L. Li, Y.C.A. Tsang, D. Xiao, et al., Nat. Commun. 13 (2022) 2870.
doi: 10.1038/s41467-022-30616-w
Z. Xu, N. Zhang, X. Wang, Nano Energy 102 (2022) 107724.
doi: 10.1016/j.nanoen.2022.107724
L. Yin, J. Scharf, J. Ma, et al., Joule 5 (2021) 228–248.
doi: 10.1016/j.joule.2020.11.008
Z. Zhao, X. Fan, J. Ding, et al., ACS Energy Lett. 4 (2019) 2259–2270.
doi: 10.1021/acsenergylett.9b01541
S. Jin, P.Y. Chen, Y. Qiu, et al., J. Am. Chem. Soc. 144 (2022) 19344–19352.
doi: 10.1021/jacs.2c06757
C. Li, S. Jin, L.A. Archer, L.F. Nazar, Joule 6 (2022) 1727–1742.
doi: 10.1016/j.joule.2022.06.019
M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funt. Mater. 28 (2018) 1802564.
doi: 10.1002/adfm.201802564
G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 3 (2018) 2480–2501.
doi: 10.1021/acsenergylett.8b01426
D. Zhao, S. Chen, Y. Lai, et al., Nano Energy 100 (2022) 107520.
doi: 10.1016/j.nanoen.2022.107520
Y. Tian, Y. An, C. Wei, et al., Adv. Energy Mater. 11 (2021) 2002529.
doi: 10.1002/aenm.202002529
S. Huang, J. Zhu, J. Tian, Z. Niu, Chem. Eur. J. 25 (2019) 14480–14494.
doi: 10.1002/chem.201902660
J. Yin, X. Feng, Z. Gan, et al., Energy Storage Mater. 54 (2023) 623–640.
doi: 10.1016/j.ensm.2022.11.006
T. Zhang, Y. Tang, S. Guo, et al., Energy Environ. Sci. 13 (2020) 4625–4665.
doi: 10.1039/D0EE02620D
S. Chen, M. Zhang, P. Zou, B. Sun, S. Tao, Energy Environ. Sci. 15 (2022) 1805–1839.
doi: 10.1039/D2EE00004K
H. Li, S. Guo, H. Zhou, Energy Storage Mater. 56 (2023) 227–257.
doi: 10.1016/j.ensm.2023.01.027
H. Yan, X. Zhang, Z. Yang, et al., Coord. Chem. Rev. 452 (2022) 214297.
doi: 10.1016/j.ccr.2021.214297
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 6 (2021) 1015–1033.
doi: 10.1021/acsenergylett.0c02684
D. Wang, Q. Li, Y. Zhao, et al., Adv. Energy Mater. 12 (2022) 2102707.
doi: 10.1002/aenm.202102707
D. Aurbach, Electrochim. Acta 47 (2002) 3561.
doi: 10.1016/S0013-4686(02)00284-0
C.A. Vincent, Modern Batteries, 2nd ed., Elsevier, Amsterdam, 1997.
K.V. Kordesch, C. Fabjan, J.D. Ivad, J. Oliveira, J. Power Sources 65 (1997) 77–80.
doi: 10.1016/S0378-7753(97)02470-1
B. Sundén, Hydrogen, Batteries and Fuel Cells, Elsevier, Amsterdam, 2019.
D. Linden, T.B. Reddy, Linden's Handbook of Batteries, 4th ed., McGraw-Hill, New York, 2011.
F.R. McLarnon, E.J. Cairns, J. Electrochem. Soc. 138 (1991) 645–664.
doi: 10.1149/1.2085653
P. Pei, K. Wang, Z. Ma, Appl. Energy 128 (2014) 315–324.
doi: 10.1016/j.apenergy.2014.04.095
L. Binder, W. Odar, K. Kordesch, J. Power Sources 6 (1981) 271–289.
doi: 10.1016/0378-7753(81)80032-8
R. Shivkumar, G.P. Kalaignan, T. Vasudevan, J. Power Sources 55 (1995) 53–62.
doi: 10.1016/0378-7753(94)02170-8
T. Shoji, M. Hishinuma, T. Yamamoto, J. Appl. Electrochem. 18 (1987) 521–526.
C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 51 (2012) 933–935.
doi: 10.1002/anie.201106307
N. Zhang, F. Cheng, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 12894–12901.
doi: 10.1021/jacs.6b05958
L. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.
doi: 10.1126/science.aab1595
C. Zhang, J. Holoubek, X. Wu, et al., Chem. Commun. 54 (2018) 14097–14099.
doi: 10.1039/C8CC07730D
A.G. Bosca, D. Bélanger, J. Power Sources 326 (2016) 595–603.
doi: 10.1016/j.jpowsour.2016.04.088
J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141.
doi: 10.1038/nenergy.2016.141
Y. Liang, Y. Yao, Nat. Rev. Mater. 8 (2023) 109–122.
M. Zhang, W. Wang, X. Liang, et al., Chin. Chem. Lett. 32 (2021) 2217–2221.
doi: 10.1016/j.cclet.2020.12.017
L. Zhang, D. Wu, G. Wang, et al., Chin. Chem. Lett. 32 (2021) 926–931.
doi: 10.1016/j.cclet.2020.06.037
H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem. Int. Ed. 60 (2020) 598–616.
J. Huang, Z. Guo, Y. Ma, et al., Small Methods 3 (2018) 1800272.
F. Beck, P. Rüetschi, Electrochim. Acta 45 (2000) 15–16.
Y.H. Zhu, Y.F. Cui, Z.L. Xie, et al., Nat. Rev. Chem. 6 (2022) 505–517.
doi: 10.1038/s41570-022-00397-3
B. Lafitte, P. Jannasch, Advances in Fuel Cells, Elsevier, Amsterdam, 2007.
Y. Tian, J. Hong, D. Cao, et al., Science 377 (2022) 315–319.
doi: 10.1126/science.abo0823
N. Agmon, Chem. Phys. Lett. 244 (1995) 456–462.
doi: 10.1016/0009-2614(95)00905-J
F. Allebrod, C. Chatzichristodoulou, P.L. Mollerup, M.B. Mogensen, Int. J. Hydrog. Energy 37 (2015) 16505–16514.
A. Carton, F. Sobron, S. Bolado, J.I. Gerboles, J. Chem. Eng. Data 40 (1995) 987–991.
doi: 10.1021/je00020a057
M. Singh, J. Kaiser, H. Hahn, J. Electrochem. Soc. 162 (2015) A1196–A1201.
doi: 10.1149/2.0401507jes
W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, J. Electrochem. Soc. 162 (2015) A803–A808.
doi: 10.1149/2.0121506jes
I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1 (2017) 0003.
doi: 10.1038/s41570-016-0003
S. Trasatti, J. Electroanal. Chem. 39 (1972) 163–184.
doi: 10.1016/S0022-0728(72)80485-6
D. Chao, S.Z. Qiao, Joule 4 (2020) 1846–1851.
doi: 10.1016/j.joule.2020.07.023
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/C9CS00131J
D. Han, S. Wu, S. Zhang, et al., Small 16 (2020) 2001736.
doi: 10.1002/smll.202001736
Q. Li, Q. Luo, X. Liu, J. Yi, Batteries Supercaps 5 (2022) e202100417.
doi: 10.1002/batt.202100417
L. Hong, X. Wu, L.Y. Wang, et al., ACS Nano 16 (2022) 6906–6915.
doi: 10.1021/acsnano.2c02370
A.R. Mainar, O. Leonet, M. Bengoechea, et al., Int. J. Energy Res. 40 (2016) 1032–1049.
doi: 10.1002/er.3499
P.P. Wu, G.L. Song, Y.X. Zhu, D.J. Zheng, Corro. Sci. 194 (2022) 109943.
doi: 10.1016/j.corsci.2021.109943
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.Z. Qiao, Adv. Mater. 34 (2022) 2206963.
doi: 10.1002/adma.202206963
T. Sun, X. Yuan, K. Wang, et al., J. Mater. Chem. A 9 (2021) 7042–7047.
doi: 10.1039/D0TA12409E
X. Tang, D. Zhou, B. Zhang, et al., Nat. Commun. 12 (2021) 2857.
doi: 10.1038/s41467-021-23209-6
M. Cai, S.M. Park, J. Electrochem. Soc. 143 (1996) 2125–2131.
doi: 10.1149/1.1836970
X. Zhou, Y. Lu, Q. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 55476–55482.
doi: 10.1021/acsami.0c17023
Z. Zhao, J. Zhao, Z. Hu, et al., Energy Environ. Sci. 12 (2019) 1938–1949.
doi: 10.1039/C9EE00596J
W. Lu, C. Xie, H. Zhang, X. Li, ChemSusChem 11 (2018) 3996–4006.
doi: 10.1002/cssc.201801657
R. Nelson, JOM 53 (2001) 28–33.
Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. 16 (2017) 841–848.
doi: 10.1038/nmat4919
M. Minakshi, P. Singh, M. Carter, K. Prince, Electrochem. Solid-State Lett. 11 (2008) A145–A149.
doi: 10.1149/1.2932056
M. Manickam, P. Singh, T.B. Issa, S. Thurgate, R.D. Macro, J. Power Sources 130 (2004) 254–259.
doi: 10.1016/j.jpowsour.2003.12.018
B. Wu, Y. Mu, Z. Li, et al., Chin. Chem. Lett. 34 (2023) 107629.
doi: 10.1016/j.cclet.2022.06.052
H. Zhang, Q. Liu, Y. Fang, et al., Adv. Mater. 31 (2019) 1904948.
doi: 10.1002/adma.201904948
B. Lee, H.R. Seo, H.R. Lee, et al., ChemSusChem 9 (2016) 2948–2956.
doi: 10.1002/cssc.201600702
N. Zhang, F. Cheng, J. Liu, et al., Nat. Commun. 8 (2017) 405.
doi: 10.1038/s41467-017-00467-x
G. Kasiri, R. Trócoli, A.B. Hashemi, F.L. Mantia, Electrochim. Acta 222 (2016) 74–83.
doi: 10.1016/j.electacta.2016.10.155
N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, J. Colloid Interface Sci. 342 (2010) 505–512.
doi: 10.1016/j.jcis.2009.10.034
L. Wang, Y. Zhang, H. Hu, et al., ACS Appl. Mater. Interfaces 11 (2019) 42000–42005.
doi: 10.1021/acsami.9b10905
G.L. Li, Z. Yang, Y. Jiang, et al., Nano Energy 25 (2016) 211–217.
doi: 10.1016/j.nanoen.2016.04.051
W. Sun, V. Küpers, F. Wang, P. Bieker, M. Winter, Angew. Chem. Int. Ed. 61 (2022) e202207353.
doi: 10.1002/anie.202207353
D. Han, C. Cui, K. Zhang, et al., Nat. Sustain. 5 (2022) 205–213.
X. Xu, M. Song, M. Li, et al., Chem. Eng. J. 454 (2023) 140364.
doi: 10.1016/j.cej.2022.140364
Q. Liu, Y. Wang, X. Hong, et al., Adv. Energy Mater. 12 (2022) 2200318.
doi: 10.1002/aenm.202200318
K. Kordesh, M. Weissenbacher, J. Power Sources 51 (1994) 61–78.
doi: 10.1016/0378-7753(94)01955-X
J. Zhou, L. Shan, Z. Wu, et al., Chem. Commun. 54 (2018) 4457–4460.
doi: 10.1039/C8CC02250J
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, Adv. Funct. Mater. 31 (2021) 2006749.
doi: 10.1002/adfm.202006749
P. Kulkarni, D. Ghosh, R.G. Balakrishna, Sustain. Energ. Fuels 5 (2021) 1619–1654.
doi: 10.1039/D0SE01313G
M.R.H. Almeida, E.P. Barbano, M.F. Carvalho, et al., Surf. Coat. Technol. 206 (2011) 95–102.
doi: 10.1016/j.surfcoat.2011.06.050
J. Cao, D. Zhang, R. Chanajaree, et al., Adv. Powder Mater. 1 (2022) 100007.
doi: 10.1016/j.apmate.2021.09.007
C.W. Lee, K. Sathiyanarayanan, S.W. Eom, H.S. Kim, M.S. Yun, J. Power Sources 159 (2007) 1474–1477.
J. Wan, R. Wang, Z. Liu, et al., ACS Nano 17 (2023) 1610–1621.
doi: 10.1021/acsnano.2c11357
L. Lyu, Y. Gao, Y. Wang, et al., Chem. Phys. Lett. 723 (2019) 102–110.
doi: 10.1016/j.cplett.2019.02.032
Y. Wu, Z. Zhu, D. Shen, et al., Energy Storage Mater. 45 (2021) 1084–1091.
G. Koscher, K. Kordesch, J. Power Sources 136 (2004) 215–219.
doi: 10.1016/j.jpowsour.2004.03.005
J. Hao, L. Yuan, C. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 7366–7375.
doi: 10.1002/anie.202016531
N. Chang, T. Li, R. Li, et al., Energy Environ. Sci. 13 (2020) 3527–3535.
doi: 10.1039/D0EE01538E
W. Yang, X. Du, J. Zhao, et al., Joule 4 (2020) 1557–1574.
doi: 10.1016/j.joule.2020.05.018
A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Angew. Chem. Int. Ed. 58 (2019) 2760–2764.
doi: 10.1002/anie.201813223
L. Cao, D. Li, T. Pollard, et al., Nat. Nanotechnol. 16 (2021) 902–910.
doi: 10.1038/s41565-021-00905-4
Z. Zhang, Y. Shen, Z. Zhao, et al., J. Power Sources 542 (2022) 231815.
doi: 10.1016/j.jpowsour.2022.231815
M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, ACS Energy Lett. 6 (2021) 3236–3243.
doi: 10.1021/acsenergylett.1c01418
Y. Zhang, H. Qin, M. Alfred, et al., Energy Storage Mater. 42 (2021) 88–96.
doi: 10.1016/j.ensm.2021.07.026
F. Wan, L. Zhang, X. Dai, et al., Nat. Commun. 9 (2018) 1–11.
doi: 10.1038/s41467-017-02088-w
S. Qian, J. Zhou, M. Peng, et al., Mater. Chem. Front. 7 (2022) 901–907.
Y. Geng, L. Pan, Z. Peng, et al., Energy Storage Mater. 51 (2022) 733–755.
doi: 10.1016/j.ensm.2022.07.017
K. Liu, P. He, H. Bai, et al., Mater. Chem. Phys. 199 (2017) 73–78.
doi: 10.1016/j.matchemphys.2017.06.050
J. Hao, J. Long, B. Li, et al., Adv. Funct. Mater. 29 (2019) 1903605.
doi: 10.1002/adfm.201903605
L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Angew. Chem. Int. Ed. 59 (2020) 19292–19296.
doi: 10.1002/anie.202008634
J. Cui, X. Liu, Y. Xie, et al., Mater. Today Energy 18 (2020) 100563.
doi: 10.1016/j.mtener.2020.100563
S. Chen, C. Peng, D. Xue, L. Ma, C. Zhi, Angew. Chem. Int. Ed. 61 (2022) e202212767.
doi: 10.1002/anie.202212767
L. Cao, D. Li, E. Hu, et al., J. Am. Chem. Soc. 142 (2020) 21404–21409.
doi: 10.1021/jacs.0c09794
Y. Liu, Z. Yu, J. Chen, et al., Chin. Chem. Lett. 33 (2022) 1817–1830.
doi: 10.1016/j.cclet.2021.09.023
A. Chen, C. Zhao, J. Gao, et al., Energy Environ. Sci. 16 (2023) 275–284.
doi: 10.1039/D2EE02931F
X. Xu, H. Su, J. Zhang, et al., ACS Energy Lett. 7 (2022) 4459–4468.
doi: 10.1021/acsenergylett.2c02236
W. Zhang, Y. Dai, R. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202212695.
doi: 10.1002/anie.202212695
M. Qiu, P. Sun, Y. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202210979.
doi: 10.1002/anie.202210979
J.N. Liu, C.X. Zhao, D. Ren, et al., Adv. Mater. 34 (2022) 2109407.
doi: 10.1002/adma.202109407
X.M. Liu, X. Cui, K. Dastafkan, et al., J. Energy Chem. 53 (2021) 290–302.
doi: 10.1016/j.jechem.2020.04.012
W. Cai, Y.X. Yao, G.L. Zhu, et al., Chem. Soc. Rev. 49 (2020) 3806–3833.
doi: 10.1039/C9CS00728H
J.F. Parker, J.S. Ko, D.R. Rolison, J.W. Long, Joule 2 (2018) 2519–2527.
doi: 10.1016/j.joule.2018.11.007
G. Zampardi, F.L. Mantia, Nat. Commun. 13 (2022) 687.
doi: 10.1038/s41467-022-28381-x
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Qian Wang , Dong Yang , Wenxing Xin , Yongqi Wang , Wenchang Han , Wengxiang Yan , Chunman Yang , Fei Wang , Yiyong Zhang , Ziyi Zhu , Xue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Mengxiao Yang , Haicheng Huang , Shiyi Shen , Xinxin Liu , Mengyu Liu , Jiahua Guo , Fenghui Yang , Baoli Zha , Jiansheng Wu , Sheng Li , Fengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Tong Peng , Yupeng Xing , Lan Mu , Chenggang Wang , Ning Zhao , Wenbo Liao , Jianlei Li , Gang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570