Citation: Jinrong Huo, Kai Zhang, Haocong Wei, Ling Fu, Chenxu Zhao, Chaozheng He, Xincheng Hu. A review on hydrogen production from ammonia borane: Experimental and theoretical studies[J]. Chinese Chemical Letters, ;2023, 34(12): 108280. doi: 10.1016/j.cclet.2023.108280 shu

A review on hydrogen production from ammonia borane: Experimental and theoretical studies

    * Corresponding authors.
    E-mail addresses: hecz2019@xatu.edu.cn (C. He), huxincheng2019@163.com (X. Hu).
  • Received Date: 20 December 2022
    Revised Date: 18 February 2023
    Accepted Date: 28 February 2023
    Available Online: 3 March 2023

Figures(19)

  • Ammonia borane (NH3BH3, AB) is an ideal raw material of hydrogen production with higher hydrogen storage capacity. In this paper, the catalytic processes of AB dehydrogenation were described from different ways, including thermal dehydrogenation, hydrolysis, methanolysis, photocatalysis and photo-piezoelectric synergy catalysis with experimental research and theoretical calculations. Catalyst models include bulk materials, two-dimensional materials, nanocluster particles and single/diatomic structures. Among them, the proportion of H2 released is different, and the reaction conditions are also different, which are suitable for different application scenarios. Through this review, we could have a preliminary comprehensive understanding of AB dehydrogenation reaction.
  • The goal of achieving carbon neutrality and the rapid development of global electro-mobility push forward the development of energy storage technologies [1-22], which also emphasize the importance of rechargeable lithium-ion batteries (LIBs). Over nearly three decades, olivine structure LiMPO4 (M = Fe, Mn, Co, and Ni) cathodes are extremely popular for LIBs with the merits of low cost, good stability and competitive electrochemical performance [1-15]. Among these cathodes, LiMnPO4 stands out with its higher operating voltage platform (4.1 V vs. Li+/Li) [2]. Unfortunately, its extremely low conductivity hinders the practical application of the pristine material [3-5]. In response, major approaches including minimizing particle size, coating carbon and doping cations have been attempted to overcome this limitation from the nature of the material itself [6-10], and great improvement in the electrochemical activity has been made by the combination of these approaches [9,10]. Nevertheless, the modified LiMnPO4 based materials still suffered undesirable capacity fading upon cycling because of the intrinsic instability of the materials themselves [11,12] and the side-reactions occurring between the cathode and electrolyte [13,14]. Therefore, besides the nature of the materials themselves, the cathode/electrolyte interface also affects the performance of the LiMnPO4 based materials. Evidently, the interface can be engineered by tuning the property of the electrolyte, and a compatible electrolyte will be highly beneficial to the formation of a favorable interface. In this regard, introducing functional additives into the electrolyte is recognized as one of the most economic and effective strategies, and various functional electrolyte additives have been studied [23-35]. Fluoroethylene carbonate (FEC) is a typical electrolyte additive and has been widely studied on the performance of LIBs. Although it is well-recognized that the FEC in the electrolyte plays a positive effect on the anode of LIBs, there exist obvious discrepancies regarding its effect on the cathode [26-33]. As a single additive added into the carbonate electrolytes, positive effects of FEC were reported on the LiFePO4 [26,27], Li1.16[Mn0.75Ni0.25]0.84O2 [28], LiCoO2 [29] and LiNi0.8Co0.1Mn0.1O2 [30] cathodes, while negative effects were reported on the LiMn2O4 [31] and LiNi0.5Mn1.5O4 [32,33] cathodes. Moreover, the FEC-induced variation in the amount of LiF, LixPOyFz and carbonate species generated by the interfacial side-reactions on the cathode surface are highly different in these reports, and accordingly, multiple explanations were suggested. Based on these available reports, it is difficult to predict the possible effect of FEC on a new cathode, and thus more research is needed to reveal and understand the functions of FEC as an additive in the electrolyte.

    Now, there still lack specific studies on the behavior of the LiMnPO4 based materials in the FEC-containing electrolyte, and exploring the effect of FEC on the LiMnPO4 based materials may promote a better understanding on the functions of FEC in the electrolyte. In this work, LiMn0.8Fe0.2PO4 is taken as a case study material and the effect of FEC in the electrolyte on the performance of LiMn0.8Fe0.2PO4 is explored. The experimental and theoretical studies reveal that FEC is an effective electrolyte additive for tuning the property of the electrolyte to form a favorable cathode/electrolyte interface for improving the performance of the LiMn0.8Fe0.2PO4, which provides an interfacial strategy to improve the performance of LiMnPO4 based materials.

    The electrochemical performance of LiMn0.8Fe0.2PO4 cathodes in the electrolyte with and without FEC additive are comparatively evaluated using CR2025 coin-type cells. The typical charge-discharge curves at different cycles at 1 C (1 C is equal to 150 mA/g) for LiMn0.8Fe0.2PO4 cathode in the electrolyte with and without FEC are shown in Fig. 1a. All curves similarly consist of two typical voltage plateaus at about 3.5 and 4.1 V corresponding to Fe3+/Fe2+ and Mn3+/Mn2+ redox couples, respectively. Noted that the first charge-discharge curves show a relatively larger polarization, lower reversible capacity and coulombic efficiency in the FEC-containing electrolyte than those in the FEC-free electrolyte, because introducing FEC into the electrolyte may increase the electrolyte viscosity which in turn reduces the ionic conductivity and wettability of the electrolyte [36]. Therefore, the addition amount of FEC should be well controlled. The situation changes upon cycling, and the polarizations at the 300th and 500th cycle are noticeably larger in the FEC-free electrolyte, and the cell charge was greatly limited due to the severe polarization, which ultimately led to an obvious decrease in the reversible capacity. This phenomenon can be seen more visually in Fig. 1b, which shows the cycle performance and the difference between the average charge and discharge voltage (called ΔV here) in the voltage range of 3.0–4.5 V (vs. Li+/Li). It is clear that the LiMn0.8Fe0.2PO4 cathode in the FEC-containing electrolyte has the better cycle performance, and its discharge capacity decreases from 121.8 mAh/g to 104.1 mAh/g with a capacity retention of 85.5% after 500 cycles at 1 C, while that in the FEC-free electrolyte decreases from 125.9 mAh/g to 89.2 mAh/g with a capacity retention of only 70.8% after 500 cycles at 1 C, showing that the capacity fading of LiMn0.8Fe0.2PO4 is effectively suppressed by adding FEC additive. According to the variation of ΔV versus cycle number, it is found that the ΔV for the FEC-free electrolyte starts to be greater than that for the FEC-containing electrolyte after about 100 cycles, and the gap becomes more significant with extending the cycle, indicating that the addition of FEC into the electrolyte can reduce the charge-discharge polarization. The slower growing polarization coupled with the higher capacity retention of the LiMn0.8Fe0.2PO4 cathode in the FEC-containing electrolyte indicates that the present of FEC in the electrolyte favors the charge and discharge of LiMn0.8Fe0.2PO4 cathode by suppressing the increase of polarization. Moreover, a close observation of the charge-discharge curves (Fig. 1a) also reveals that the voltage plateaus of the Fe3+/Fe2+ redox couple shorten with the increased cycle, indicating the possible loss of the active material induced by the interfacial side-reactions of the cathode/electrolyte. It is well-documented that the products generated by interfacial side-reactions of cathode/electrolyte under high voltages can lead to the increase of polarization upon cycling [37]. These results indicate that the FEC in the electrolyte can improve the interfacial interaction of LiMn0.8Fe0.2PO4 cathode and electrolyte, which in turn suppress the increase of polarization and the capacity fading during long cycle. Fig. 1c depicts the rate performance of LiMn0.8Fe0.2PO4 cathodes in the electrolytes. There are no appreciable differences at low rates (0.1–3 C), but when the discharge rate is increased up to 5 C or higher, higher discharge capacities are observed in the FEC-containing electrolyte. Notably, the discharge capacity in the FEC-containing electrolyte is closed to 100 mAh/g at 10 C, while only a discharge capacity of 82.8 mAh/g is observed in the FEC-free electrolyte at 10 C. It is not hard to understand that the suppressed charge-discharge polarization induced by incorporation of FEC into the electrolyte can enhance the rate capability of the LiMn0.8Fe0.2PO4 cathode.

    Figure 1

    Figure 1.  (a) Typical charge-discharge curves of the LiMn0.8Fe0.2PO4 cathode in the electrolyte with and without FEC at 1 C (1 C is equal to 150 mA/g). (b) Cycle performance and the difference between the average charge and discharge voltage (∆V) as a function of cycle number at 1 C and (c) rate performance. EIS spectra of the cathodes in the two electrolytes recorded at the fully discharge state: (d) Uncycled, (e) after 5 cycles at 0.2 C and (f) after 500 cycles at 1 C. SEM images of the cathodes: (g) Uncycled, (h) after 500 cycles in the FEC-free electrolyte at 1 C and (i) after 500 cycles in the FEC-containing electrolyte at 1 C.

    The electrochemical behavior of LiMn0.8Fe0.2PO4 cathodes in the two electrolytes was further studied by EIS which was measured using the assembled and the cycled CR2025 coin-type cells. As shown in Figs. 1d-f, all spectra generally consist of arcs at high-frequency and medium-frequency region, representing the interfacial impedances including the cathode surface film resistance (Rf) and the charge transfer resistance (Rct), and a sloped line at low-frequency region belonging to Warburg impedance [38]. From Fig. 1d, it is interesting that the uncycled cathode has a higher interfacial resistance in the FEC-containing electrolyte than that in the FEC-free electrolyte, which is well coupled with the larger polarization of the first charge-discharge in the FEC-containing electrolyte (Fig. 1a). It indicates that the interaction between the cathode and electrolyte has already been taken place before cycling and the FEC has begun to take effect. However, reverse results are observed after 5 cycles and thereafter. From Fig. 1e, the interfacial resistance (Rf and Rct) in the FEC-free electrolyte increased substantially and is notably larger than the decreased one in the FEC-containing electrolyte after 5 cycles, indicating a positive effect of FEC on the cathode/electrolyte interface. Similarly, the interfacial resistance in the FEC-free electrolyte is found to be larger than 1000 Ohm, which is much larger than that in the FEC-containing electrolyte (<500 Ohm) after 500 cycles (Fig. 1f). Therefore, it is apparent that the introduction of FEC into the electrolyte can effectively improve the interaction of LiMn0.8Fe0.2PO4 cathode/electrolyte to suppress the increase of the cathode interfacial resistance upon cycling, which thus facilitates the charge transfer between the interface and leads to the better charge-discharge performance (Figs. 1a-c).

    The results of the EIS suggest that the interfacial side-reactions of cathode/electrolyte lead to the formation of solid film on the cathode surface upon cycling. The presence of the interfacial film can be observed by SEM, and the images of the uncycled LiMn0.8Fe0.2PO4 cathode and those after 500 cycles in the two electrolytes are shown in Figs. 1g-i. Compared with the porous particles with open pores of the uncycled LiMn0.8Fe0.2PO4 cathode, it's not hard to see that the pores in the particles of the cathode after 500 cycles in the FEC-free electrolyte was severely blocked, and the degree of blockage is obviously reduced in the FEC-containing electrolyte, which directly demonstrates the existence of the interfacial film on the cathode surface and more products of the interfacial side-reactions formed in the FEC-free electrolyte. Apparently, the blockage of pores would impede the electrolyte penetration and Li+ diffusion into the LiMn0.8Fe0.2PO4 particles, thus leading to the increase of the charge-discharge polarization. More products of the interfacial side-reactions mean a thick solid film deposited on the cathode surface, also leading to the increase of the charge-discharge polarization. From the above results, we can conclude that the present of FEC can improve the interfacial interaction between the LiMn0.8Fe0.2PO4 cathode and electrolyte to suppress the occurrence of the interfacial side-reactions, and thus thin solid film is formed and less pores are blocked, which ultimately lead to the improved electrochemical performance of the LiMn0.8Fe0.2PO4.

    To probe the deposited compounds generated by the interfacial side-reactions of the cathode/electrolyte upon cycling, the LiMn0.8Fe0.2PO4 cathodes after 500 cycles were studied by XPS. Fig. 2 displays the XPS spectra of C 1s, O 1s, P 2p, F 1s, Mn 2p and Fe 2p for the LiMn0.8Fe0.2PO4 cathodes. The C 1s spectrum of the uncycled LiMn0.8Fe0.2PO4 cathode consists of three peaks. The peak at 284.8 eV is attributed to C-C in the graphite, and two other peaks at 286.0 and 290.8 eV are attributed to C-O and C-F bonds in the PVDF binder. Some additional peaks are observed in the spectra of the cycled cathode. The peak at 288.7 eV is associated with C=O bonds in lithium alkyl carbonates and polycarbonates, and the peak at 290.0 eV is associated with Li2CO3 [39]. It is seen that the Li2CO3 peak for the LiMn0.8Fe0.2PO4 cathode cycled in the FEC-containing electrolyte is weaker than that in the FEC-free electrolyte, which means that less Li2CO3 was generated in the FEC-containing electrolyte upon cycling. Consistent results are observed in the O 1s spectra, and the Li2CO3 peak at 531.5 eV is also weaker for the cathode cycled in the FEC-containing electrolyte. In addition, a peak at 534.0 eV of LixPOyFz is additionally observed in the O 1s spectrum of each cycled cathode [40,41], and it is well-documented that LixPOyFz is an intermediate product of the LiPF6 decomposition of the electrolyte [28]. Obviously, the LixPOyFz peak is much weaker for the LiMn0.8Fe0.2PO4 cathode cycled in the FEC-containing electrolyte as compared with that in the FEC-free electrolyte, which indicates that less LixPOyFz was generated in the FEC-containing electrolyte upon cycling. The presence of LixPOyFz is also supported by the P 2p (the peak at 134.0 eV) and F 1s spectra (the peak at 685.8 eV), and likewise, the LixPOyFz peak for the cathode cycled in the FEC-containing electrolyte is clearly lower than that in the FEC-free electrolyte. In the F 1s spectra of the cycled cathodes, another new peak at 684.8 eV is related to LiF [42], and its intensity is much lower for the cathode cycled in the FEC-containing electrolyte. According to the available literature [42,43], HF can be generated by the hydrolysis of LiPF6 in the electrolyte and then will consume Li+ to form LiF deposited on the electrode surface. The C 1s, O 1s, P 2p and F 1s spectra of the LiMn0.8Fe0.2PO4 cathodes all demonstrate the presence of Li2CO3, polycarbonate, LiF and LixPOyFz on the cycled cathode surface, which is well consistent with the observations of the XRD and FTIR measurements (Figs. S1 and S2 in Supporting information), and evidence that the addition of FEC into the electrolyte can suppress the interfacial side-reactions occurring between the LiMn0.8Fe0.2PO4 cathode and electrolyte.

    Figure 2

    Figure 2.  The C 1s, O 1s, P 2p, F 1s, Mn 2p and Fe 2p XPS spectra of LiMn0.8Fe0.2PO4 electrodes: (a) Uncycled, (b) after 500 cycles at 1 C in the FEC-free electrolyte and (c) after 500 cycles at 1 C in the FEC-containing electrolyte. All XPS measurements were using a monochromatic Al Kα source (1486.68 eV) and the data were calibrated using adventitious C 1s peak with a fixed value of 284.8 eV.

    Apparently, the generation of Li2CO3, LiF and LixPOyFz on the cathode surface consumes active Li+ from the cathode and electrolyte. The XPS spectra of Mn 2p and Fe 2p show the appearance of Mn3+ and Fe3+ (peaks at 642, 654.5, 712.5 and 726 eV) in the cathodes after 500 cycles [44], indicating the loss of active Li+ from the cathodes upon cycling. It is seen that the Mn3+ and Fe3+ peaks for the cathode cycled in the FEC-free electrolyte are all higher than those in the FEC-containing electrolyte, which means that more Mn3+ and Fe3+-containing compounds are present in the LiMn0.8Fe0.2PO4 cathode cycled in the FEC-free electrolyte. The formation of Mn3+ and Fe3+-containing compounds is associated with the occurrence of the irreversible reaction upon cycling, and the increased amount indicates a more serious loss of the active Li+, which is another factor causing the accelerated capacity loss and the shortened charge-discharge plateaus around 4.1 and 3.5 V for the LiMn0.8Fe0.2PO4 in the FEC-free electrolyte (Figs. 1a-c). From the above analyses, the products generated from the side-reactions between the cathode and electrolyte upon cycling are mainly composed of Li2CO3, LiF, LixPOyFz, polycarbonate and inorganic or organic phosphates. These compounds are all poor conductors, and the deposit of these compounds on the cathode surface will increase the interfacial impedance of the cathode. Noted that reduced amounts of these compounds are observed on the cathode surface cycled in the FEC-containing electrolyte, therefore, when the LiMn0.8Fe0.2PO4 cathode cycled in the FEC-containing electrolyte, the less amounts of decomposition products are generated by the interfacial side-reactions of the cathode/electrolyte, the less pores in the porous particles of the LiMn0.8Fe0.2PO4 are blocked and the smaller interfacial impedance is yielded, which ultimately lead to the improved electrochemical performance of LiMn0.8Fe0.2PO4 cathode in the FEC-containing electrolyte.

    Moreover, metal dissolution from the cathode was often found to be a part of side-reactions between the cathode and electrolyte due to the attack of HF in the electrolyte, and thus caused the capacity loss [30,45,46]. Fig. 3 compares the dissolution content of Mn and Fe for the charged LiMn0.8Fe0.2PO4 cathode aged in the electrolytes without and with 3 wt% FEC for 20 d at room temperature. The dissolved content of Mn and Fe in the FEC-free electrolyte is remarkably higher than that in the electrolyte with 3 wt% FEC, demonstrating that the Mn and Fe dissolution in the FEC-containing electrolyte was significantly suppressed. Therefore, the decreased metal dissolution should be another factor for the improved capacity retention of the LiMn0.8Fe0.2PO4 cathode cycled in the FEC-containing electrolyte. Considering thinner solid film was formed and less pores were blocked for the LiMn0.8Fe0.2PO4 cathode in the FEC-containing electrolyte due to less products generated from the interfacial side-reactions between the cathode and electrolyte upon cycling, the physical protection of the cathode should be weakened and an increased metal dissolution should be expected if similar or more (FEC decomposition can release HF) HF was formed in the FEC-containing electrolyte. Consequently, the present observed decrease in the metal dissolution means that less HF was formed in the FEC-containing electrolyte comparative to the FEC-free electrolyte.

    Figure 3

    Figure 3.  The dissolution content of Mn and Fe for the charged LiMn0.8Fe0.2PO4 cathode aged in the electrolytes without and with 3 wt% FEC for 20 d at room temperature.

    The above experimental results show that the addition of FEC in the electrolyte has a positive effect on the performance of the LiMn0.8Fe0.2PO4 cathode, which can be attributed to the reduced decomposition products generated by the interfacial side-reactions and the decreased metal dissolution in the FEC-containing electrolyte. The available reports have revealed that the FEC is more oxidation-resistant than the carbonate solvents of EC, PC, DMC, EMC and DEC [24,25,28], and the binding of FEC-PF6 is stronger than that of EC, DMC and DEC with PF6 [28]. For the electrolyte of 1.0 mol/L LiPF6-EC/EMC/DMC used in this work, our theoretical calculations also show that, similar to that of the EC and DMC with PF6, the binding of EMC-PF6 is also weaker than that of FEC-PF6 as shown in Fig. 4, indicating an easier coordination of FEC and PF6. The present observed improvements in the performance of LiMn0.8Fe0.2PO4 cathode in the FEC-containing electrolyte are thought to be the result of combined effect of the stronger binding of FEC-PF6 complex and the higher oxidation resistance of FEC, which work jointly on suppressing the decomposition of LiPF6 and the oxidation of carbonate solvents (EC, DMC and EMC) during charging. The easier and stronger binding of FEC and PF6 could suppress the decomposition of LiPF6, and thus less HF and LiF was generated and less metal dissolution was observed in the FEC-containing electrolyte. Meanwhile, during charging, the negative ions in the electrolyte tends to accumulate in the vicinity of cathode, and the FEC gets closer to the cathode surface than other carbonate solvents (EC, DMC and EMC) due to the easier and stronger binding of FEC and PF6. Since the FEC is more oxidation resistant than other carbonate solvents, the attracted FEC close to the cathode surface may act as a protecting layer to suppress the oxidation of EC, DMC and EMC during charging. Noted that the FEC peaks are still present after the initial charge and discharge (Fig. S3 in Supporting information), and thus the remaining FEC would continue working as a protecting solvent to suppress the oxidation of EC, DMC and EMC in the subsequent cycles, and as a result, less surface products are generated by the interfacial side-reactions as observed on the cathode surface.

    Figure 4

    Figure 4.  The density functional theory (DFT) calculations: (a) Comparison of the binding energy between PF6 and DMC, EMC, EC and FEC; (b) The molecular electrostatic potential (MESP) distribution of DMC, EMC, EC and FEC.

    In addition, it is noted that positive effects of FEC on the LiFePO4 and the layered cathodes (Li1.16[Mn0.75Ni0.25]0.84O2, LiCoO2 and LiNi0.8Mn0.1Co0.1O2) have been reported in the available literature [26-30], but it is interesting that the FEC-induced variation in the amount of the main component LiF generated on the surface of these cathodes was much different. For example, decreased amount of LiF was observed on the LiFePO4 cathode surface [27], while increased amount of LiF was observed on the Li1.16[Mn0.75Ni0.25]0.84O2 cathode surface [28]. In the present work, the LiMn0.8Fe0.2PO4 cathode surface also showed a decreased amount of LiF in the FEC-containing electrolyte, which is the same as that of the LiFePO4 cathode. Since the solvents of the electrolyte used in the available reports and the present work are different, it is difficult to know whether the cathode or the solvent caused the difference in the FEC-induced variation in the amount of LiF, and a comparative study on the different cathodes in the same FEC-free and FEC-containing electrolytes is needed. Moreover, we should not neglect that the well-recognized positive effects of FEC on lithium anode might also contributed partly to the overall improvement in the performance of LiMn0.8Fe0.2PO4 in the present work.

    In conclusion, our comparative studies reveal that the addition of FEC additive into the electrolyte can reduce the amount of the products generated by the interfacial side-reactions between the LiMn0.8Fe0.2PO4 cathode and electrolyte and the metal dissolution in the electrolyte, due to the higher oxidation resistance of FEC and the easier and stronger binding of FEC and PF6. These improvements lead to the results that less poor conductive compounds are deposited on the cathode surface, less pores in the porous particles of the LiMn0.8Fe0.2PO4 are blocked, less active material is lost, and thus, improved performance of the LiMn0.8Fe0.2PO4 is observed in the FEC-containing electrolyte. Therefore, the addition of FEC additive into the electrolyte provides a simple and cost-effective strategy for engineering the cathode/electrolyte interface to improve the performance of LiMnPO4 based materials.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This work is supported by National Natural Science Foundation of China (Nos. 51874155 and 52177214) and the Fujian Provincial STS program supporting project of Chinese Academy of sciences (No. 2022T3001).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108799.


    1. [1]

      Q. Li, Y. Wang, J. Zeng, et al., Chin. Chem. Lett. 32 (2021) 3355–3358.  doi: 10.1016/j.cclet.2021.03.063

    2. [2]

      Y. Liu, Q. Feng, W. Liu, et al., Nano Energy 81 (2021) 105641.  doi: 10.1016/j.nanoen.2020.105641

    3. [3]

      L. Chen, Y. Wang, X. Zhao, et al., J. Mater. Sci. Technol. 110 (2022) 128–135.  doi: 10.1016/j.jmst.2021.08.083

    4. [4]

      S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 77 (1955) 19–20.

    5. [5]

      S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 80 (1958) 8–12.  doi: 10.1021/ja01534a003

    6. [6]

      D.J. Heldebrant, A. Karkamkar, J.C. Linehan, et al., Energy Environ. Sci. 1 (2008) 156.  doi: 10.1039/b808865a

    7. [7]

      P.V. Ramachandran, B.C. Raju, P.D. Gagare, Org. Lett. 14 (2012) 6119–6121.  doi: 10.1021/ol302421t

    8. [8]

      P.V. Ramachandran, H. Mistry, A.S. Kulkarni, et al., Dalton Trans. 43 (2014) 16580–16583.  doi: 10.1039/C4DT02467B

    9. [9]

      P.V. Ramachandran, A.S. Kulkarni, Inorg. Chem. 54 (2015) 5618–5620.  doi: 10.1021/acs.inorgchem.5b00572

    10. [10]

      H.T. Hwang, A. Al-Kukhun, A. Varma, Int. J. Hydrog. Energy 37 (2012) 2407–2411.  doi: 10.1016/j.ijhydene.2011.10.088

    11. [11]

      H.T. Hwang, A. Al-Kukhun, A. Varma, Int. J. Hydrog. Energy 37 (2012) 6764–6770.  doi: 10.1016/j.ijhydene.2012.01.098

    12. [12]

      N. Patel, A. Kale, A. Miotello, Appl. Catal. B 111-112 (2012) 178–184.

    13. [13]

      A.C. Gangal, P. Kale, R. Edla, et al., Int. J. Hydrog. Energy 37 (2012) 6741–6748.  doi: 10.1016/j.ijhydene.2012.01.017

    14. [14]

      J.F. Petit, U.B. Demirci, Inorg. Chem. 58 (2019) 489–494.  doi: 10.1021/acs.inorgchem.8b02721

    15. [15]

      G.J. Kim, S.G. Hunt, H.T. Hwang, Int. J. Hydrog. Energy 45 (2020) 33751–33758.  doi: 10.1016/j.ijhydene.2020.09.054

    16. [16]

      F. Toche, R. Chiriac, U.B. Demirci, et al., Int. J. Hydrog. Energy 37 (2012) 6749–6755.  doi: 10.1016/j.ijhydene.2012.01.037

    17. [17]

      D. Salinas-Torres, M. Navlani-García, Y. Kuwahara, et al., Catal. Today 351 (2020) 6–11.  doi: 10.1016/j.cattod.2019.03.072

    18. [18]

      M. Tong, Z. Yin, Y. Wang, et al., Int. J. Hydrog. Energy 38 (2013) 15285–15294.  doi: 10.1016/j.ijhydene.2013.09.097

    19. [19]

      T. Zhou, G. Wang, H. Cui, et al., Int. J. Hydrog. Energy 41 (2016) 11746–11760.  doi: 10.1016/j.ijhydene.2015.12.201

    20. [20]

      A. Kuang, T. Zhou, G. Wang, et al., Appl. Surf. Sci. 362 (2016) 562–571.  doi: 10.1016/j.apsusc.2015.11.011

    21. [21]

      H. Wu, Q.Q. Luo, R.Q. Zhang, et al., Chin. J. Chem. Phys. 31 (2018) 641–648.  doi: 10.1063/1674-0068/31/cjcp1804063

    22. [22]

      A.C. Gangal, P. Sharma, Int. J. Chem. Kinet. 45 (2013) 452–461.  doi: 10.1002/kin.20781

    23. [23]

      Q. Zhang, C. He, J. Huo, Comp. Mater. Sci. 207 (2022) 111306.  doi: 10.1016/j.commatsci.2022.111306

    24. [24]

      C. He, Q. Zhang, J. Huo, et al., Chin. Chem. Lett. 33 (2022) 3281–3286.  doi: 10.1016/j.cclet.2022.02.055

    25. [25]

      J. Huo, L. Fu, C. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2269–2273.  doi: 10.1016/j.cclet.2020.12.059

    26. [26]

      J. Huo, H. Wei, L. Fu, et al., Chin. Chem. Lett. 34 (2023) 107261.  doi: 10.1016/j.cclet.2022.02.066

    27. [27]

      C.Y. Peng, L. Kang, S. Cao, et al., Angew. Chem. 127 (2015) 15951–15955.  doi: 10.1002/ange.201508113

    28. [28]

      C. Hou, Q. Li, C. Wang, et al., Energy Environ. Sci. 10 (2017) 1770–1776.  doi: 10.1039/C7EE01553D

    29. [29]

      Z. Li, T. He, D. Matsumura, et al., ACS Catal. 7 (2017) 6762–6769.  doi: 10.1021/acscatal.7b01790

    30. [30]

      Q. Wang, F. Fu, S. Yang, et al., ACS Catal. 9 (2019) 1110–1119.  doi: 10.1021/acscatal.8b04498

    31. [31]

      Y. Peng, Y. He, Y. Wang, et al., J. Colloid Interface Sci. 594 (2021) 131–140.  doi: 10.1016/j.jcis.2021.02.086

    32. [32]

      L. Semiz, Chem. Phys. Lett. 767 (2021) 138365.  doi: 10.1016/j.cplett.2021.138365

    33. [33]

      W. Wang, M. Liang, Y. Jiang, et al., Mater. Lett. 293 (2021) 129702.  doi: 10.1016/j.matlet.2021.129702

    34. [34]

      H. Wu, Y. Cheng, B. Wang, et al., J. Energy Chem. 57 (2021) 198–205.  doi: 10.1016/j.jechem.2020.08.051

    35. [35]

      J. Xu, K. Feng, Y. Chen, et al., Appl. Surf. Sci. 537 (2021) 147823.  doi: 10.1016/j.apsusc.2020.147823

    36. [36]

      J. Zhang, J. Li, L. Yang, et al., Int. J. Hydrog. Energy 46 (2021) 3964–3973.  doi: 10.1016/j.ijhydene.2020.10.234

    37. [37]

      L. Zhao, Q. Wei, L. Zhang, et al., Renew. Energy 173 (2021) 273–282.  doi: 10.1016/j.renene.2021.03.100

    38. [38]

      Y. Chen, K. Feng, G. Yuan, et al., Chem. Eng. J. 428 (2022) 131219.  doi: 10.1016/j.cej.2021.131219

    39. [39]

      P. Li, R. Chen, Y. Huang, et al., Appl. Catal. B 300 (2022) 120725.  doi: 10.1016/j.apcatb.2021.120725

    40. [40]

      H. Song, Y. Cheng, B. Li, et al., ACS Sustain. Chem. Eng. 8 (2020) 3995–4002.  doi: 10.1021/acssuschemeng.0c00745

    41. [41]

      Y. SÜRME, Int. J. Chem. Technol. 4 (2020) 103–108.  doi: 10.32571/ijct.732677

    42. [42]

      S. Akbayrak, S. Ozkar, J. Colloid Interface Sci. 596 (2021) 100–107.  doi: 10.1016/j.jcis.2021.03.039

    43. [43]

      Y. Feng, Y. Shao, X. Chen, et al., ACS Appl. Energy Mater. 4 (2021) 633–642.  doi: 10.1021/acsaem.0c02521

    44. [44]

      Y. He, Y. Peng, Y. Wang, et al., Fuel 297 (2021) 120750.  doi: 10.1016/j.fuel.2021.120750

    45. [45]

      X. Huang, Y. Liu, H. Wen, et al., Appl. Catal. B 287 (2021) 119960.  doi: 10.1016/j.apcatb.2021.119960

    46. [46]

      J. Liu, P. Li, R. Jiang, et al., ChemCatChem 13 (2021) 1–10.  doi: 10.1002/cctc.202001851

    47. [47]

      H. Lv, R. Wei, X. Guo, et al., J. Phys. Chem. Lett. 12 (2021) 696–703.  doi: 10.1021/acs.jpclett.0c03547

    48. [48]

      S. Rej, L. Mascaretti, E.Y. Santiago, et al., ACS Catal. 10 (2020) 5261–5271.  doi: 10.1021/acscatal.0c00343

    49. [49]

      Q. Xu, M. Chandra, J. Power Sources 163 (2006) 364–370.  doi: 10.1016/j.jpowsour.2006.09.043

    50. [50]

      D. Sun, V. Mazumder, O. Metin, et al., ACS Nano 5 (2011) 6458–6464.  doi: 10.1021/nn2016666

    51. [51]

      Z.C. Fu, Y. Xu, S.L. Chan, et al., Chem. Commun. 53 (2017) 705–708 Camb. .  doi: 10.1039/C6CC08120G

    52. [52]

      C. Tang, F. Qu, A.M. Asiri, et al., Inorg. Chem. Front. 4 (2017) 659–662.  doi: 10.1039/C6QI00518G

    53. [53]

      B. Coşkuner Filiz, A. Kantürk Figen, P. Sabriye, Appl. Catal. A: Gen. 550 (2018) 320–330.  doi: 10.1016/j.apcata.2017.11.022

    54. [54]

      F. Fu, C. Wang, Q. Wang, et al., J. Am. Chem. Soc. 140 (2018) 10034–10042.  doi: 10.1021/jacs.8b06511

    55. [55]

      Q. Zhou, L. Qi, H. Yang, et al., J. Colloid Interface Sci. 513 (2018) 258–265.  doi: 10.1016/j.jcis.2017.11.040

    56. [56]

      Y. Lin, L. Yang, H. Jiang, et al., J. Phys. Chem. Lett. 10 (2019) 1048–1054.  doi: 10.1021/acs.jpclett.9b00122

    57. [57]

      Y. Wang, D. Wang, C. Zhao, et al., Int. J. Hydrog. Energy 44 (2019) 10508–10518.  doi: 10.1016/j.ijhydene.2019.02.157

    58. [58]

      X. Yang, Q. Li, L. Li, et al., J. Power Sources 431 (2019) 135–143.  doi: 10.1016/j.jpowsour.2019.05.038

    59. [59]

      M. Zhang, X. Xiao, Y. Wu, et al., Catalysts 9 (2019) 1009.  doi: 10.3390/catal9121009

    60. [60]

      X. Zhou, X.F. Meng, J.M. Wang, et al., Int. J. Hydrog. Energy 44 (2019) 4764–4770.  doi: 10.1016/j.ijhydene.2019.01.026

    61. [61]

      S. Akbayrak, Y. Tonbul, S. Özkar, ACS Sustain. Chem. Eng. 8 (2020) 4216–4224.  doi: 10.1021/acssuschemeng.9b07402

    62. [62]

      W. Chen, W. Fu, G. Qian, et al., iScience 23 (2020) 100922.  doi: 10.1016/j.isci.2020.100922

    63. [63]

      L.L. Fu, D.F. Zhang, Z. Yang, et al., ACS Sustain. Chem. Eng. 8 (2020) 3734–3742.  doi: 10.1021/acssuschemeng.9b06865

    64. [64]

      Y.T. Li, X.L. Zhang, Z.K. Peng, et al., Fuel 277 (2020) 118243.  doi: 10.1016/j.fuel.2020.118243

    65. [65]

      Y.T. Li, X.L. Zhang, Z.K. Peng, et al., ACS Sustain. Chem. Eng. 8 (2020) 8458–8468.  doi: 10.1021/acssuschemeng.0c03009

    66. [66]

      S. Prabu, K.Y. Chiang, Mater. Adv. 1 (2020) 1952–1962.  doi: 10.1039/D0MA00441C

    67. [67]

      M. Rakap, Renew. Energy 154 (2020) 1076–1082.  doi: 10.1016/j.renene.2020.03.088

    68. [68]

      J. Li, Q. Guan, H. Wu, et al., J. Am. Chem. Soc. 141 (2019) 14515–14519.  doi: 10.1021/jacs.9b06482

    69. [69]

      P.V. Ramachandran, P.D. Gagare, Inorg. Chem. 46 (2007) 7810–7817.  doi: 10.1021/ic700772a

    70. [70]

      Y. Karataş, M. Gülcan, M. Çelebi, et al., ChemistrySelect 2 (2017) 9628–9635.  doi: 10.1002/slct.201701616

    71. [71]

      C. Reller, F.O. Mertens, Angew. Chem. Int. Ed. 51 (2012) 11731–11735.  doi: 10.1002/anie.201201134

    72. [72]

      C. Reller, F. Mertens, ChemPlusChem 83 (2018) 1013–1020.  doi: 10.1002/cplu.201800347

    73. [73]

      H. Erdogan, O. Metin, S. Ozkar, Phys. Chem. Chem. Phys. 11 (2009) 10519–10525.  doi: 10.1039/b916459f

    74. [74]

      D. Sun, V. Mazumder, Ö. Metin, et al., ACS Catal. 2 (2012) 1290–1295.  doi: 10.1021/cs300211y

    75. [75]

      D. Sun, P. Li, B. Yang, et al., RSC Adv. 6 (2016) 105940–105947.  doi: 10.1039/C6RA21691A

    76. [76]

      P. Lara, K. Philippot, A. Suárez, ChemCatChem 11 (2019) 766–771.  doi: 10.1002/cctc.201801702

    77. [77]

      H.B. Dai, X.D. Kang, P. Wang, Int. J. Hydrog. Energy 35 (2010) 10317–10323.  doi: 10.1016/j.ijhydene.2010.07.164

    78. [78]

      Y. Karatas, M. Gülcan, F. Sen, Int. J. Hydrog. Energy 44 (2019) 13432–13442.  doi: 10.1016/j.ijhydene.2019.04.012

    79. [79]

      H. Erdogan, Ö. Metin, S. Özkar, Catal. Today 170 (2011) 93–98. ˘  doi: 10.1016/j.cattod.2010.08.024

    80. [80]

      S. Peng, J. Liu, J. Zhang, et al., Int. J. Hydrog. Energy 40 (2015) 10856–10866.  doi: 10.1016/j.ijhydene.2015.06.113

    81. [81]

      Y. Fang, J. Li, T. Togo, et al., Chem 4 (2018) 555–563.  doi: 10.1016/j.chempr.2018.01.004

    82. [82]

      S. Çalışkan, M. Zahmakıran, S. Özkar, Appl. Catal. B 93 (2010) 387–394.  doi: 10.1016/j.apcatb.2009.10.013

    83. [83]

      D. Özhava, S. Özkar, Appl. Catal. B 237 (2018) 1012–1020.  doi: 10.1016/j.apcatb.2018.06.064

    84. [84]

      W. Luo, W. Cheng, M. Hu, et al., ChemSusChem 12 (2019) 535–541.  doi: 10.1002/cssc.201802157

    85. [85]

      B. Abay, M. Rakap, Catal. Sci. Technol. 10 (2020) 7270–7279.  doi: 10.1039/D0CY01422B

    86. [86]

      D. Özhava, S. Özkar, Int. J. Hydrog. Energy 40 (2015) 10491–10501.  doi: 10.1016/j.ijhydene.2015.06.144

    87. [87]

      D. Özhava, S. Özkar, Appl. Catal. B 181 (2016) 716–726.  doi: 10.1016/j.apcatb.2015.08.038

    88. [88]

      D. Özhava, S. Özkar, Mol. Catal. 439 (2017) 50–59.  doi: 10.1016/j.mcat.2017.06.016

    89. [89]

      J.K. Sun, W.W. Zhan, T. Akita, et al., J. Am. Chem. Soc. 137 (2015) 7063–7066.  doi: 10.1021/jacs.5b04029

    90. [90]

      Q. Yao, M. Huang, Z.H. Lu, et al., Dalton Trans. 44 (2015) 1070–1076.  doi: 10.1039/C4DT02873B

    91. [91]

      M. Yurderi, A. Bulut, I.E. Ertas, et al., Appl. Catal. B 165 (2015) 169–175. ˙  doi: 10.1016/j.apcatb.2014.10.011

    92. [92]

      C. Yu, J. Fu, M. Muzzio, et al., Chem. Mater. 29 (2017) 1413–1418.  doi: 10.1021/acs.chemmater.6b05364

    93. [93]

      K. Mori, P. Verma, R. Hayashi, et al., Chemistry 21 (2015) 11885–11893.  doi: 10.1002/chem.201501361

    94. [94]

      S. Jo, P. Verma, Y. Kuwahara, et al., J. Mater. Chem. A 5 (2017) 21883–21892.  doi: 10.1039/C7TA07264C

    95. [95]

      H. Cheng, T. Kamegawa, K. Mori, et al., Angew. Chem. Int. Ed. 53 (2014) 2910–2914.  doi: 10.1002/anie.201309759

    96. [96]

      H. Yin, Y. Kuwahara, K. Mori, et al., J. Mater. Chem. A 5 (2017) 8946–8953.  doi: 10.1039/C7TA01217A

    97. [97]

      Z. Lou, Q. Gu, L. Xu, et al., Chem. Asian J. 10 (2015) 1291–1294.  doi: 10.1002/asia.201500319

    98. [98]

      X. Li, Y. Yan, Y. Jiang, et al., Nanoscale Adv. 1 (2019) 3941–3947.  doi: 10.1039/C9NA00424F

    99. [99]

      S.W. Lai, J.W. Park, S.H. Yoo, et al., Int. J. Hydrog. Energy 41 (2016) 3428–3435.  doi: 10.1016/j.ijhydene.2015.12.058

    100. [100]

      H. Zhang, X. Gu, P. Liu, et al., J. Mater. Chem. A 5 (2017) 2288–2296.  doi: 10.1039/C6TA08987A

    101. [101]

      L.T. Guo, Y.Y. Cai, J.M. Ge, et al., ACS Catal. 5 (2014) 388–392.

    102. [102]

      B. Pant, H.R. Pant, M. Park, et al., Catal. Commun. 50 (2014) 63–68.  doi: 10.1016/j.catcom.2014.03.002

    103. [103]

      M. Wen, Y. Cui, Y. Kuwahara, et al., ACS Appl. Mater. Interfaces 8 (2016) 21278–21284.  doi: 10.1021/acsami.6b04169

    104. [104]

      H. Zhang, X. Gu, J. Song, et al., ACS Appl. Mater. Interfaces 9 (2017) 32767–32774.  doi: 10.1021/acsami.7b10280

    105. [105]

      J. Song, X. Gu, J. Cheng, et al., Appl. Catal. B 225 (2018) 424–432.  doi: 10.1016/j.apcatb.2017.12.024

    106. [106]

      S. Zhang, M. Li, L. Li, et al., ACS Catal. 10 (2020) 14903–14915.  doi: 10.1021/acscatal.0c03965

    107. [107]

      S.H. Xu, J.F. Wang, A. Valério, et al., Inorg. Chem. Front. 8 (2021) 48–58.  doi: 10.1039/D0QI00659A

    108. [108]

      M. Navlani-García, P. Verma, Y. Kuwahara, et al., J. Photochem. Photobiol. A Chem. 358 (2018) 327–333.  doi: 10.1016/j.jphotochem.2017.09.007

    109. [109]

      L. Wei, Y. Yang, Y.N. Yu, et al., Int. J. Hydrog. Energy 46 (2021) 3811–3820.  doi: 10.1016/j.ijhydene.2020.10.177

    110. [110]

      J. Song, X. Gu, Y. Cao, et al., J. Mater. Chem. A 7 (2019) 10543–10551.  doi: 10.1039/C9TA01674K

    111. [111]

      H. Huang, C. Wang, Q. Li, et al., Adv. Funct. Mater. 31 (2020) 2007591.

    112. [112]

      Y. Wang, G. Shen, Y. Zhang, et al., Appl. Catal. B 260 (2020) 118183.  doi: 10.1016/j.apcatb.2019.118183

    113. [113]

      D. Sun, Y. Hao, C. Wang, et al., Int. J. Hydrog. Energy 45 (2020) 4390–4402.  doi: 10.1016/j.ijhydene.2019.11.212

    114. [114]

      Y. Yan, J. Li, T. Jia, et al., Energy Fuels 35 (2021) 16035–16045.  doi: 10.1021/acs.energyfuels.1c01893

    115. [115]

      N. Kang, Q. Wang, R. Djeda, et al., ACS Appl. Mater. Interfaces 12 (2020) 53816–53826.  doi: 10.1021/acsami.0c16247

    116. [116]

      P. Xu, W. Lu, J. Zhang, et al., ACS Sustain. Chem. Eng. 8 (2020) 12366–12377.  doi: 10.1021/acssuschemeng.0c02276

    117. [117]

      J. Song, F. Wu, Y. Lu, et al., ACS Appl. Nano Mater. 4 (2021) 4800–4809.

    118. [118]

      R. Fang, Z. Yang, Z. Wang, et al., Energy 244 (2022) 123187.  doi: 10.1016/j.energy.2022.123187

    119. [119]

      H. Li, Y. Yan, S. Feng, et al., Fuel 255 (2019) 115771.  doi: 10.1016/j.fuel.2019.115771

    120. [120]

      B. Wang, L. Xiong, H. Hao, et al., J. Alloys Compd. 844 (2020) 156253.  doi: 10.1016/j.jallcom.2020.156253

    121. [121]

      J. Yu, C. He, J. Huo, et al., Int. J. Hydrog. Energy 47 (2022) 7738–7750.  doi: 10.1016/j.ijhydene.2021.12.095

    122. [122]

      J. Huo, H. Wei, L. Fu, et al., Mater. Today. Commun. 31 (2022) 103544.  doi: 10.1016/j.mtcomm.2022.103544

    123. [123]

      D. Hong, W. Zang, X. Guo, et al., ACS Appl. Mater. Interfaces 8 (2016) 21302–21314.  doi: 10.1021/acsami.6b05252

    124. [124]

      H. You, Z. Wu, Y. Jia, et al., Chemosphere 183 (2017) 528–535.  doi: 10.1016/j.chemosphere.2017.05.130

    125. [125]

      S. Li, Z. Zhao, D. Yu, et al., Nano Energy 66 (2019) 104083.  doi: 10.1016/j.nanoen.2019.104083

    126. [126]

      D. Yu, Z. Liu, J. Zhang, et al., Nano Energy 58 (2019) 695–705.  doi: 10.1016/j.nanoen.2019.01.095

    127. [127]

      K.S. Hong, H. Xu, H. Konishi, et al., J. Phys. Chem. Lett. 1 (2010) 997–1002.  doi: 10.1021/jz100027t

    128. [128]

      R. Tang, D. Gong, Y. Zhou, et al., Appl. Catal. B 303 (2022) 120929.  doi: 10.1016/j.apcatb.2021.120929

    129. [129]

      H. Li, Y. Sang, S. Chang, et al., Nano Lett. 15 (2015) 2372–2379.  doi: 10.1021/nl504630j

    130. [130]

      J. Song, X. Gu, H. Zhang, ChemistryOpen 9 (2020) 366–373.  doi: 10.1002/open.201900335

    131. [131]

      M. Pan, S. Liu, J.W. Chew, Nano Energy 68 (2020) 104366.  doi: 10.1016/j.nanoen.2019.104366

    132. [132]

      S. Liu, K. Huang, W. Liu, et al., New J. Chem. 44 (2020) 14291–14298.  doi: 10.1039/D0NJ01053G

    133. [133]

      Zhou Yiwen, Huang Kuangzheng, Liu Wenxiao, et al., J. Suzhou Univ. Sci. Technol. 38 (2021) 1–11.

    134. [134]

      S. Özkar, Int. J. Hydrog. Energy 45 (2020) 7881–7891.  doi: 10.1016/j.ijhydene.2019.04.125

    135. [135]

      A.D. Sutton, A.K. Burrell, D.A. Dixon, et al., Science 331 (2011) 1426–1429.  doi: 10.1126/science.1199003

    136. [136]

      S. Hausdorf, F. Baitalow, G. Wolf, et al., Int. J. Hydrog. Energy 33 (2008) 608–614.  doi: 10.1016/j.ijhydene.2007.10.035

    137. [137]

      Q. Yao, H. Du, Z.H. Lu, Prog. Chem. 32 (2020) 1930–1951.

    1. [1]

      Q. Li, Y. Wang, J. Zeng, et al., Chin. Chem. Lett. 32 (2021) 3355–3358.  doi: 10.1016/j.cclet.2021.03.063

    2. [2]

      Y. Liu, Q. Feng, W. Liu, et al., Nano Energy 81 (2021) 105641.  doi: 10.1016/j.nanoen.2020.105641

    3. [3]

      L. Chen, Y. Wang, X. Zhao, et al., J. Mater. Sci. Technol. 110 (2022) 128–135.  doi: 10.1016/j.jmst.2021.08.083

    4. [4]

      S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 77 (1955) 19–20.

    5. [5]

      S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 80 (1958) 8–12.  doi: 10.1021/ja01534a003

    6. [6]

      D.J. Heldebrant, A. Karkamkar, J.C. Linehan, et al., Energy Environ. Sci. 1 (2008) 156.  doi: 10.1039/b808865a

    7. [7]

      P.V. Ramachandran, B.C. Raju, P.D. Gagare, Org. Lett. 14 (2012) 6119–6121.  doi: 10.1021/ol302421t

    8. [8]

      P.V. Ramachandran, H. Mistry, A.S. Kulkarni, et al., Dalton Trans. 43 (2014) 16580–16583.  doi: 10.1039/C4DT02467B

    9. [9]

      P.V. Ramachandran, A.S. Kulkarni, Inorg. Chem. 54 (2015) 5618–5620.  doi: 10.1021/acs.inorgchem.5b00572

    10. [10]

      H.T. Hwang, A. Al-Kukhun, A. Varma, Int. J. Hydrog. Energy 37 (2012) 2407–2411.  doi: 10.1016/j.ijhydene.2011.10.088

    11. [11]

      H.T. Hwang, A. Al-Kukhun, A. Varma, Int. J. Hydrog. Energy 37 (2012) 6764–6770.  doi: 10.1016/j.ijhydene.2012.01.098

    12. [12]

      N. Patel, A. Kale, A. Miotello, Appl. Catal. B 111-112 (2012) 178–184.

    13. [13]

      A.C. Gangal, P. Kale, R. Edla, et al., Int. J. Hydrog. Energy 37 (2012) 6741–6748.  doi: 10.1016/j.ijhydene.2012.01.017

    14. [14]

      J.F. Petit, U.B. Demirci, Inorg. Chem. 58 (2019) 489–494.  doi: 10.1021/acs.inorgchem.8b02721

    15. [15]

      G.J. Kim, S.G. Hunt, H.T. Hwang, Int. J. Hydrog. Energy 45 (2020) 33751–33758.  doi: 10.1016/j.ijhydene.2020.09.054

    16. [16]

      F. Toche, R. Chiriac, U.B. Demirci, et al., Int. J. Hydrog. Energy 37 (2012) 6749–6755.  doi: 10.1016/j.ijhydene.2012.01.037

    17. [17]

      D. Salinas-Torres, M. Navlani-García, Y. Kuwahara, et al., Catal. Today 351 (2020) 6–11.  doi: 10.1016/j.cattod.2019.03.072

    18. [18]

      M. Tong, Z. Yin, Y. Wang, et al., Int. J. Hydrog. Energy 38 (2013) 15285–15294.  doi: 10.1016/j.ijhydene.2013.09.097

    19. [19]

      T. Zhou, G. Wang, H. Cui, et al., Int. J. Hydrog. Energy 41 (2016) 11746–11760.  doi: 10.1016/j.ijhydene.2015.12.201

    20. [20]

      A. Kuang, T. Zhou, G. Wang, et al., Appl. Surf. Sci. 362 (2016) 562–571.  doi: 10.1016/j.apsusc.2015.11.011

    21. [21]

      H. Wu, Q.Q. Luo, R.Q. Zhang, et al., Chin. J. Chem. Phys. 31 (2018) 641–648.  doi: 10.1063/1674-0068/31/cjcp1804063

    22. [22]

      A.C. Gangal, P. Sharma, Int. J. Chem. Kinet. 45 (2013) 452–461.  doi: 10.1002/kin.20781

    23. [23]

      Q. Zhang, C. He, J. Huo, Comp. Mater. Sci. 207 (2022) 111306.  doi: 10.1016/j.commatsci.2022.111306

    24. [24]

      C. He, Q. Zhang, J. Huo, et al., Chin. Chem. Lett. 33 (2022) 3281–3286.  doi: 10.1016/j.cclet.2022.02.055

    25. [25]

      J. Huo, L. Fu, C. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2269–2273.  doi: 10.1016/j.cclet.2020.12.059

    26. [26]

      J. Huo, H. Wei, L. Fu, et al., Chin. Chem. Lett. 34 (2023) 107261.  doi: 10.1016/j.cclet.2022.02.066

    27. [27]

      C.Y. Peng, L. Kang, S. Cao, et al., Angew. Chem. 127 (2015) 15951–15955.  doi: 10.1002/ange.201508113

    28. [28]

      C. Hou, Q. Li, C. Wang, et al., Energy Environ. Sci. 10 (2017) 1770–1776.  doi: 10.1039/C7EE01553D

    29. [29]

      Z. Li, T. He, D. Matsumura, et al., ACS Catal. 7 (2017) 6762–6769.  doi: 10.1021/acscatal.7b01790

    30. [30]

      Q. Wang, F. Fu, S. Yang, et al., ACS Catal. 9 (2019) 1110–1119.  doi: 10.1021/acscatal.8b04498

    31. [31]

      Y. Peng, Y. He, Y. Wang, et al., J. Colloid Interface Sci. 594 (2021) 131–140.  doi: 10.1016/j.jcis.2021.02.086

    32. [32]

      L. Semiz, Chem. Phys. Lett. 767 (2021) 138365.  doi: 10.1016/j.cplett.2021.138365

    33. [33]

      W. Wang, M. Liang, Y. Jiang, et al., Mater. Lett. 293 (2021) 129702.  doi: 10.1016/j.matlet.2021.129702

    34. [34]

      H. Wu, Y. Cheng, B. Wang, et al., J. Energy Chem. 57 (2021) 198–205.  doi: 10.1016/j.jechem.2020.08.051

    35. [35]

      J. Xu, K. Feng, Y. Chen, et al., Appl. Surf. Sci. 537 (2021) 147823.  doi: 10.1016/j.apsusc.2020.147823

    36. [36]

      J. Zhang, J. Li, L. Yang, et al., Int. J. Hydrog. Energy 46 (2021) 3964–3973.  doi: 10.1016/j.ijhydene.2020.10.234

    37. [37]

      L. Zhao, Q. Wei, L. Zhang, et al., Renew. Energy 173 (2021) 273–282.  doi: 10.1016/j.renene.2021.03.100

    38. [38]

      Y. Chen, K. Feng, G. Yuan, et al., Chem. Eng. J. 428 (2022) 131219.  doi: 10.1016/j.cej.2021.131219

    39. [39]

      P. Li, R. Chen, Y. Huang, et al., Appl. Catal. B 300 (2022) 120725.  doi: 10.1016/j.apcatb.2021.120725

    40. [40]

      H. Song, Y. Cheng, B. Li, et al., ACS Sustain. Chem. Eng. 8 (2020) 3995–4002.  doi: 10.1021/acssuschemeng.0c00745

    41. [41]

      Y. SÜRME, Int. J. Chem. Technol. 4 (2020) 103–108.  doi: 10.32571/ijct.732677

    42. [42]

      S. Akbayrak, S. Ozkar, J. Colloid Interface Sci. 596 (2021) 100–107.  doi: 10.1016/j.jcis.2021.03.039

    43. [43]

      Y. Feng, Y. Shao, X. Chen, et al., ACS Appl. Energy Mater. 4 (2021) 633–642.  doi: 10.1021/acsaem.0c02521

    44. [44]

      Y. He, Y. Peng, Y. Wang, et al., Fuel 297 (2021) 120750.  doi: 10.1016/j.fuel.2021.120750

    45. [45]

      X. Huang, Y. Liu, H. Wen, et al., Appl. Catal. B 287 (2021) 119960.  doi: 10.1016/j.apcatb.2021.119960

    46. [46]

      J. Liu, P. Li, R. Jiang, et al., ChemCatChem 13 (2021) 1–10.  doi: 10.1002/cctc.202001851

    47. [47]

      H. Lv, R. Wei, X. Guo, et al., J. Phys. Chem. Lett. 12 (2021) 696–703.  doi: 10.1021/acs.jpclett.0c03547

    48. [48]

      S. Rej, L. Mascaretti, E.Y. Santiago, et al., ACS Catal. 10 (2020) 5261–5271.  doi: 10.1021/acscatal.0c00343

    49. [49]

      Q. Xu, M. Chandra, J. Power Sources 163 (2006) 364–370.  doi: 10.1016/j.jpowsour.2006.09.043

    50. [50]

      D. Sun, V. Mazumder, O. Metin, et al., ACS Nano 5 (2011) 6458–6464.  doi: 10.1021/nn2016666

    51. [51]

      Z.C. Fu, Y. Xu, S.L. Chan, et al., Chem. Commun. 53 (2017) 705–708 Camb. .  doi: 10.1039/C6CC08120G

    52. [52]

      C. Tang, F. Qu, A.M. Asiri, et al., Inorg. Chem. Front. 4 (2017) 659–662.  doi: 10.1039/C6QI00518G

    53. [53]

      B. Coşkuner Filiz, A. Kantürk Figen, P. Sabriye, Appl. Catal. A: Gen. 550 (2018) 320–330.  doi: 10.1016/j.apcata.2017.11.022

    54. [54]

      F. Fu, C. Wang, Q. Wang, et al., J. Am. Chem. Soc. 140 (2018) 10034–10042.  doi: 10.1021/jacs.8b06511

    55. [55]

      Q. Zhou, L. Qi, H. Yang, et al., J. Colloid Interface Sci. 513 (2018) 258–265.  doi: 10.1016/j.jcis.2017.11.040

    56. [56]

      Y. Lin, L. Yang, H. Jiang, et al., J. Phys. Chem. Lett. 10 (2019) 1048–1054.  doi: 10.1021/acs.jpclett.9b00122

    57. [57]

      Y. Wang, D. Wang, C. Zhao, et al., Int. J. Hydrog. Energy 44 (2019) 10508–10518.  doi: 10.1016/j.ijhydene.2019.02.157

    58. [58]

      X. Yang, Q. Li, L. Li, et al., J. Power Sources 431 (2019) 135–143.  doi: 10.1016/j.jpowsour.2019.05.038

    59. [59]

      M. Zhang, X. Xiao, Y. Wu, et al., Catalysts 9 (2019) 1009.  doi: 10.3390/catal9121009

    60. [60]

      X. Zhou, X.F. Meng, J.M. Wang, et al., Int. J. Hydrog. Energy 44 (2019) 4764–4770.  doi: 10.1016/j.ijhydene.2019.01.026

    61. [61]

      S. Akbayrak, Y. Tonbul, S. Özkar, ACS Sustain. Chem. Eng. 8 (2020) 4216–4224.  doi: 10.1021/acssuschemeng.9b07402

    62. [62]

      W. Chen, W. Fu, G. Qian, et al., iScience 23 (2020) 100922.  doi: 10.1016/j.isci.2020.100922

    63. [63]

      L.L. Fu, D.F. Zhang, Z. Yang, et al., ACS Sustain. Chem. Eng. 8 (2020) 3734–3742.  doi: 10.1021/acssuschemeng.9b06865

    64. [64]

      Y.T. Li, X.L. Zhang, Z.K. Peng, et al., Fuel 277 (2020) 118243.  doi: 10.1016/j.fuel.2020.118243

    65. [65]

      Y.T. Li, X.L. Zhang, Z.K. Peng, et al., ACS Sustain. Chem. Eng. 8 (2020) 8458–8468.  doi: 10.1021/acssuschemeng.0c03009

    66. [66]

      S. Prabu, K.Y. Chiang, Mater. Adv. 1 (2020) 1952–1962.  doi: 10.1039/D0MA00441C

    67. [67]

      M. Rakap, Renew. Energy 154 (2020) 1076–1082.  doi: 10.1016/j.renene.2020.03.088

    68. [68]

      J. Li, Q. Guan, H. Wu, et al., J. Am. Chem. Soc. 141 (2019) 14515–14519.  doi: 10.1021/jacs.9b06482

    69. [69]

      P.V. Ramachandran, P.D. Gagare, Inorg. Chem. 46 (2007) 7810–7817.  doi: 10.1021/ic700772a

    70. [70]

      Y. Karataş, M. Gülcan, M. Çelebi, et al., ChemistrySelect 2 (2017) 9628–9635.  doi: 10.1002/slct.201701616

    71. [71]

      C. Reller, F.O. Mertens, Angew. Chem. Int. Ed. 51 (2012) 11731–11735.  doi: 10.1002/anie.201201134

    72. [72]

      C. Reller, F. Mertens, ChemPlusChem 83 (2018) 1013–1020.  doi: 10.1002/cplu.201800347

    73. [73]

      H. Erdogan, O. Metin, S. Ozkar, Phys. Chem. Chem. Phys. 11 (2009) 10519–10525.  doi: 10.1039/b916459f

    74. [74]

      D. Sun, V. Mazumder, Ö. Metin, et al., ACS Catal. 2 (2012) 1290–1295.  doi: 10.1021/cs300211y

    75. [75]

      D. Sun, P. Li, B. Yang, et al., RSC Adv. 6 (2016) 105940–105947.  doi: 10.1039/C6RA21691A

    76. [76]

      P. Lara, K. Philippot, A. Suárez, ChemCatChem 11 (2019) 766–771.  doi: 10.1002/cctc.201801702

    77. [77]

      H.B. Dai, X.D. Kang, P. Wang, Int. J. Hydrog. Energy 35 (2010) 10317–10323.  doi: 10.1016/j.ijhydene.2010.07.164

    78. [78]

      Y. Karatas, M. Gülcan, F. Sen, Int. J. Hydrog. Energy 44 (2019) 13432–13442.  doi: 10.1016/j.ijhydene.2019.04.012

    79. [79]

      H. Erdogan, Ö. Metin, S. Özkar, Catal. Today 170 (2011) 93–98. ˘  doi: 10.1016/j.cattod.2010.08.024

    80. [80]

      S. Peng, J. Liu, J. Zhang, et al., Int. J. Hydrog. Energy 40 (2015) 10856–10866.  doi: 10.1016/j.ijhydene.2015.06.113

    81. [81]

      Y. Fang, J. Li, T. Togo, et al., Chem 4 (2018) 555–563.  doi: 10.1016/j.chempr.2018.01.004

    82. [82]

      S. Çalışkan, M. Zahmakıran, S. Özkar, Appl. Catal. B 93 (2010) 387–394.  doi: 10.1016/j.apcatb.2009.10.013

    83. [83]

      D. Özhava, S. Özkar, Appl. Catal. B 237 (2018) 1012–1020.  doi: 10.1016/j.apcatb.2018.06.064

    84. [84]

      W. Luo, W. Cheng, M. Hu, et al., ChemSusChem 12 (2019) 535–541.  doi: 10.1002/cssc.201802157

    85. [85]

      B. Abay, M. Rakap, Catal. Sci. Technol. 10 (2020) 7270–7279.  doi: 10.1039/D0CY01422B

    86. [86]

      D. Özhava, S. Özkar, Int. J. Hydrog. Energy 40 (2015) 10491–10501.  doi: 10.1016/j.ijhydene.2015.06.144

    87. [87]

      D. Özhava, S. Özkar, Appl. Catal. B 181 (2016) 716–726.  doi: 10.1016/j.apcatb.2015.08.038

    88. [88]

      D. Özhava, S. Özkar, Mol. Catal. 439 (2017) 50–59.  doi: 10.1016/j.mcat.2017.06.016

    89. [89]

      J.K. Sun, W.W. Zhan, T. Akita, et al., J. Am. Chem. Soc. 137 (2015) 7063–7066.  doi: 10.1021/jacs.5b04029

    90. [90]

      Q. Yao, M. Huang, Z.H. Lu, et al., Dalton Trans. 44 (2015) 1070–1076.  doi: 10.1039/C4DT02873B

    91. [91]

      M. Yurderi, A. Bulut, I.E. Ertas, et al., Appl. Catal. B 165 (2015) 169–175. ˙  doi: 10.1016/j.apcatb.2014.10.011

    92. [92]

      C. Yu, J. Fu, M. Muzzio, et al., Chem. Mater. 29 (2017) 1413–1418.  doi: 10.1021/acs.chemmater.6b05364

    93. [93]

      K. Mori, P. Verma, R. Hayashi, et al., Chemistry 21 (2015) 11885–11893.  doi: 10.1002/chem.201501361

    94. [94]

      S. Jo, P. Verma, Y. Kuwahara, et al., J. Mater. Chem. A 5 (2017) 21883–21892.  doi: 10.1039/C7TA07264C

    95. [95]

      H. Cheng, T. Kamegawa, K. Mori, et al., Angew. Chem. Int. Ed. 53 (2014) 2910–2914.  doi: 10.1002/anie.201309759

    96. [96]

      H. Yin, Y. Kuwahara, K. Mori, et al., J. Mater. Chem. A 5 (2017) 8946–8953.  doi: 10.1039/C7TA01217A

    97. [97]

      Z. Lou, Q. Gu, L. Xu, et al., Chem. Asian J. 10 (2015) 1291–1294.  doi: 10.1002/asia.201500319

    98. [98]

      X. Li, Y. Yan, Y. Jiang, et al., Nanoscale Adv. 1 (2019) 3941–3947.  doi: 10.1039/C9NA00424F

    99. [99]

      S.W. Lai, J.W. Park, S.H. Yoo, et al., Int. J. Hydrog. Energy 41 (2016) 3428–3435.  doi: 10.1016/j.ijhydene.2015.12.058

    100. [100]

      H. Zhang, X. Gu, P. Liu, et al., J. Mater. Chem. A 5 (2017) 2288–2296.  doi: 10.1039/C6TA08987A

    101. [101]

      L.T. Guo, Y.Y. Cai, J.M. Ge, et al., ACS Catal. 5 (2014) 388–392.

    102. [102]

      B. Pant, H.R. Pant, M. Park, et al., Catal. Commun. 50 (2014) 63–68.  doi: 10.1016/j.catcom.2014.03.002

    103. [103]

      M. Wen, Y. Cui, Y. Kuwahara, et al., ACS Appl. Mater. Interfaces 8 (2016) 21278–21284.  doi: 10.1021/acsami.6b04169

    104. [104]

      H. Zhang, X. Gu, J. Song, et al., ACS Appl. Mater. Interfaces 9 (2017) 32767–32774.  doi: 10.1021/acsami.7b10280

    105. [105]

      J. Song, X. Gu, J. Cheng, et al., Appl. Catal. B 225 (2018) 424–432.  doi: 10.1016/j.apcatb.2017.12.024

    106. [106]

      S. Zhang, M. Li, L. Li, et al., ACS Catal. 10 (2020) 14903–14915.  doi: 10.1021/acscatal.0c03965

    107. [107]

      S.H. Xu, J.F. Wang, A. Valério, et al., Inorg. Chem. Front. 8 (2021) 48–58.  doi: 10.1039/D0QI00659A

    108. [108]

      M. Navlani-García, P. Verma, Y. Kuwahara, et al., J. Photochem. Photobiol. A Chem. 358 (2018) 327–333.  doi: 10.1016/j.jphotochem.2017.09.007

    109. [109]

      L. Wei, Y. Yang, Y.N. Yu, et al., Int. J. Hydrog. Energy 46 (2021) 3811–3820.  doi: 10.1016/j.ijhydene.2020.10.177

    110. [110]

      J. Song, X. Gu, Y. Cao, et al., J. Mater. Chem. A 7 (2019) 10543–10551.  doi: 10.1039/C9TA01674K

    111. [111]

      H. Huang, C. Wang, Q. Li, et al., Adv. Funct. Mater. 31 (2020) 2007591.

    112. [112]

      Y. Wang, G. Shen, Y. Zhang, et al., Appl. Catal. B 260 (2020) 118183.  doi: 10.1016/j.apcatb.2019.118183

    113. [113]

      D. Sun, Y. Hao, C. Wang, et al., Int. J. Hydrog. Energy 45 (2020) 4390–4402.  doi: 10.1016/j.ijhydene.2019.11.212

    114. [114]

      Y. Yan, J. Li, T. Jia, et al., Energy Fuels 35 (2021) 16035–16045.  doi: 10.1021/acs.energyfuels.1c01893

    115. [115]

      N. Kang, Q. Wang, R. Djeda, et al., ACS Appl. Mater. Interfaces 12 (2020) 53816–53826.  doi: 10.1021/acsami.0c16247

    116. [116]

      P. Xu, W. Lu, J. Zhang, et al., ACS Sustain. Chem. Eng. 8 (2020) 12366–12377.  doi: 10.1021/acssuschemeng.0c02276

    117. [117]

      J. Song, F. Wu, Y. Lu, et al., ACS Appl. Nano Mater. 4 (2021) 4800–4809.

    118. [118]

      R. Fang, Z. Yang, Z. Wang, et al., Energy 244 (2022) 123187.  doi: 10.1016/j.energy.2022.123187

    119. [119]

      H. Li, Y. Yan, S. Feng, et al., Fuel 255 (2019) 115771.  doi: 10.1016/j.fuel.2019.115771

    120. [120]

      B. Wang, L. Xiong, H. Hao, et al., J. Alloys Compd. 844 (2020) 156253.  doi: 10.1016/j.jallcom.2020.156253

    121. [121]

      J. Yu, C. He, J. Huo, et al., Int. J. Hydrog. Energy 47 (2022) 7738–7750.  doi: 10.1016/j.ijhydene.2021.12.095

    122. [122]

      J. Huo, H. Wei, L. Fu, et al., Mater. Today. Commun. 31 (2022) 103544.  doi: 10.1016/j.mtcomm.2022.103544

    123. [123]

      D. Hong, W. Zang, X. Guo, et al., ACS Appl. Mater. Interfaces 8 (2016) 21302–21314.  doi: 10.1021/acsami.6b05252

    124. [124]

      H. You, Z. Wu, Y. Jia, et al., Chemosphere 183 (2017) 528–535.  doi: 10.1016/j.chemosphere.2017.05.130

    125. [125]

      S. Li, Z. Zhao, D. Yu, et al., Nano Energy 66 (2019) 104083.  doi: 10.1016/j.nanoen.2019.104083

    126. [126]

      D. Yu, Z. Liu, J. Zhang, et al., Nano Energy 58 (2019) 695–705.  doi: 10.1016/j.nanoen.2019.01.095

    127. [127]

      K.S. Hong, H. Xu, H. Konishi, et al., J. Phys. Chem. Lett. 1 (2010) 997–1002.  doi: 10.1021/jz100027t

    128. [128]

      R. Tang, D. Gong, Y. Zhou, et al., Appl. Catal. B 303 (2022) 120929.  doi: 10.1016/j.apcatb.2021.120929

    129. [129]

      H. Li, Y. Sang, S. Chang, et al., Nano Lett. 15 (2015) 2372–2379.  doi: 10.1021/nl504630j

    130. [130]

      J. Song, X. Gu, H. Zhang, ChemistryOpen 9 (2020) 366–373.  doi: 10.1002/open.201900335

    131. [131]

      M. Pan, S. Liu, J.W. Chew, Nano Energy 68 (2020) 104366.  doi: 10.1016/j.nanoen.2019.104366

    132. [132]

      S. Liu, K. Huang, W. Liu, et al., New J. Chem. 44 (2020) 14291–14298.  doi: 10.1039/D0NJ01053G

    133. [133]

      Zhou Yiwen, Huang Kuangzheng, Liu Wenxiao, et al., J. Suzhou Univ. Sci. Technol. 38 (2021) 1–11.

    134. [134]

      S. Özkar, Int. J. Hydrog. Energy 45 (2020) 7881–7891.  doi: 10.1016/j.ijhydene.2019.04.125

    135. [135]

      A.D. Sutton, A.K. Burrell, D.A. Dixon, et al., Science 331 (2011) 1426–1429.  doi: 10.1126/science.1199003

    136. [136]

      S. Hausdorf, F. Baitalow, G. Wolf, et al., Int. J. Hydrog. Energy 33 (2008) 608–614.  doi: 10.1016/j.ijhydene.2007.10.035

    137. [137]

      Q. Yao, H. Du, Z.H. Lu, Prog. Chem. 32 (2020) 1930–1951.

  • 加载中
    1. [1]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    2. [2]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    3. [3]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    4. [4]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    5. [5]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    6. [6]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    7. [7]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    8. [8]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    9. [9]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    13. [13]

      Kun YangAnhui LiPeng ZhangGuilin LiuLiusai HuangYumeng FoLuyuan YangXiangyang JiJian LiuWeiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663

    14. [14]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    15. [15]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    16. [16]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    17. [17]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    18. [18]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    19. [19]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    20. [20]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

Metrics
  • PDF Downloads(7)
  • Abstract views(668)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return