Emerging advances in plasmonic nanoassemblies for biosensing and cell imaging
-
* Corresponding authors.
E-mail addresses: wangchen@njnu.edu.cn (C. Wang), xujj@nju.edu.cn (J.-J. Xu), xhxia@nju.edu.cn (X.-H. Xia).
Citation:
Jin Wang, Chen Wang, Jing-Juan Xu, Xing-Hua Xia, Hong-Yuan Chen. Emerging advances in plasmonic nanoassemblies for biosensing and cell imaging[J]. Chinese Chemical Letters,
;2023, 34(9): 108165.
doi:
10.1016/j.cclet.2023.108165
M. Sharifi, F. Attar, A.A. Saboury, et al., J. Control. Release 311-312 (2019) 170–189.
doi: 10.1016/j.jconrel.2019.08.032
J. Li, Z. Lou, B. Li, Chin. Chem. Lett. 33 (2022) 1154–1168.
doi: 10.1016/j.cclet.2021.07.059
D. Liu, N. Yang, Q. Zeng, et al., Chin. Chem. Lett. 32 (2021) 3288–3297.
doi: 10.1016/j.cclet.2021.04.053
Y. Zhao, X.Y. Gao, H. Wang, et al., Anal. Chem. 91 (2019) 15988–15992.
doi: 10.1021/acs.analchem.9b04715
Y. Wu, M.R.K. Ali, K. Chen, N. Fang, M.A. El-Sayed, Nano Today 24 (2019) 120–140.
doi: 10.1016/j.nantod.2018.12.006
S.S. Wang, X.P. Zhao, F.F. Liu, et al., Anal. Chem. 91 (2019) 4413–4420.
doi: 10.1021/acs.analchem.8b04908
K.M. Mayer, J.H. Hafner, Chem. Rev. 111 (2011) 3828–3857.
doi: 10.1021/cr100313v
M. Rycenga, C.M. Cobley, J. Zeng, et al., Chem. Rev. 111 (2011) 3669–3712.
doi: 10.1021/cr100275d
S. Lee, Y. Sun, Y. Cao, S.H. Kang, Trends Analyt. Chem. 117 (2019) 58–68.
doi: 10.3348/kjr.2018.0012
P.F. Gao, Y.F. Li, C.Z. Huang, Appl. Spectrosc. Rev. 54 (2019) 237–249.
doi: 10.1080/05704928.2018.1554581
X.W. Liao, Q.Y. Xu, Z. Tan, Y. Liu, C. Wang, Electroanal. 34 (2021) 923–936.
L. Zhu, Z. Lu, L. Zhang, N. He, Chin. Chem. Lett. 33 (2022) 2491–2495.
doi: 10.1016/j.cclet.2021.11.038
B. Zhang, Y. Xia, Chin. Chem. Lett. 30 (2019) 1663–1666.
doi: 10.1016/j.cclet.2019.06.038
A. Liu, M. Li, J. Wang, et al., Chin. Chem. Lett. 31 (2020) 1133–1136.
doi: 10.1016/j.cclet.2019.10.011
S. Lee, K. Sim, S.Y. Moon, et al., Adv. Mater. 33 (2021) e2007668.
doi: 10.1002/adma.202007668
R.E. Armstrong, M. Horacek, P. Zijlstra, Small 16 (2020) e2003934.
doi: 10.1002/smll.202003934
P. Dey, T.A. Tabish, S. Mosca, et al., Small 16 (2020) e1906780.
doi: 10.1002/smll.201906780
M.Q. He, Y.L. Yu, J.H. Wang, Nano Today 35 (2020) 101005.
doi: 10.1016/j.nantod.2020.101005
Q. Fu, Z. Li, F. Fu, et al., Nano Today 36 (2021) 101014.
doi: 10.1016/j.nantod.2020.101014
R. Zhu, J. Li, L. Lin, J. Song, H. Yang, Adv. Funct. Mater. 31 (2020) 2005709.
A.R. Salmon, M.E. Kleemann, J. Huang, et al., ACS Nano 14 (2020) 4982–4987.
doi: 10.1021/acsnano.0c01213
Z. Wu, L. Li, T. Liao, et al., Nano Today 22 (2018) 62–82.
doi: 10.1016/j.nantod.2018.08.009
M. Ha, J.H. Kim, M. You, et al., Chem. Rev. 119 (2019) 12208–12278.
doi: 10.1021/acs.chemrev.9b00234
N. Pazos-Perez, J.M. Fitzgerald, V. Giannini, L. Guerrini, R.A. Alvarez-Puebla, Nanoscale Adv. 1 (2019) 122–131.
doi: 10.1039/c8na00257f
T. Chen, M. Pourmand, A. Feizpour, B. Cushman, B.M. Reinhard, J. Phys. Chem. Lett. 4 (2013) 2147–2152.
doi: 10.1021/jz401066g
Z. Zhu, W. Liu, Z. Li, et al., ACS Nano 6 (2012) 2326–2332.
doi: 10.1021/nn2044802
M.N. Biutty, M. Zakia, S.I. Yoo, Bull. Korean Chem. Soc. 41 (2020) 1033–1039.
doi: 10.1002/bkcs.12106
N. Liu, T. Liedl, Chem. Rev. 118 (2018) 3032–3053.
doi: 10.1021/acs.chemrev.7b00225
K. Martens, F. Binkowski, L. Nguyen, et al., Nat. Commun. 12 (2021) 2025.
doi: 10.1038/s41467-021-22289-8
F. Li, J. Lu, X. Kong, T. Hyeon, D. Ling, Adv. Mater. 29 (2017) 1605897.
doi: 10.1002/adma.201605897
W. Rechberger, A. Hohenau, A. Leitner, et al., Opt. Commun. 220 (2003) 137–141.
doi: 10.1016/S0030-4018(03)01357-9
S.S. Acimovic, M.P. Kreuzer, M.U. Gonzalez, R. Quidant, ACS Nano 3 (2009) 1231–1237.
doi: 10.1021/nn900102j
R. Near, C. Tabor, J. Duan, R. Pachter, M. El-Sayed, Nano Lett. 12 (2012) 2158–2164.
doi: 10.1021/nl300622p
O. Colomer-Ferrer, S. Toda Cosi, Y. Conti, et al., J. Mater. Chem. C 10 (2022) 13913–13921.
doi: 10.1039/d2tc01148d
X. Wu, C. Hao, J. Kumar, et al., Chem. Soc. Rev. 47 (2018) 4677–4696.
doi: 10.1039/c7cs00894e
R. Ogier, L. Shao, M. Svedendahl, M. Kall, Adv. Mater. 28 (2016) 4658–4664.
doi: 10.1002/adma.201600112
D. Paria, K. Roy, H.J. Singh, et al., Adv. Mater. 27 (2015) 1751–1758.
doi: 10.1002/adma.201404312
L. Lermusiaux, A. Nisar, A.M. Funston, Nano Res. 14 (2020) 635–645.
C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382 (1996) 607–609.
doi: 10.1038/382607a0
A.P. Alivisatos, K.P. Johnsson, X.G. Peng, et al., Nature 382 (1996) 609–611.
doi: 10.1038/382609a0
Y. Zhao, C. Xu, Adv. Mater. 32 (2020) e1907880.
doi: 10.1002/adma.201907880
X. Lan, Z. Chen, B.J. Liu, et al., Small 9 (2013) 2308–2315.
doi: 10.1002/smll.201202503
X.L. Li, Z.L. Zhang, W. Zhao, et al., Chem. Sci. 7 (2016) 3256–3263.
doi: 10.1039/C5SC04369G
Y. Li, Z. Deng, Acc. Chem. Res. 52 (2019) 3442–3454.
doi: 10.1021/acs.accounts.9b00463
X. Song, Y. Wang, Y. Hao, et al., Chem. Sci. 13 (2022) 4788–4793.
doi: 10.1039/d2sc01171a
K. Tapio, A. Mostafa, Y. Kanehira, et al., ACS Nano 15 (2021) 7065–7077.
doi: 10.1021/acsnano.1c00188
J. Lee, J.H. Huh, K. Kim, S. Lee, Adv. Funct. Mater. 28 (2018) 1707309.
doi: 10.1002/adfm.201707309
J. Ryssy, A.K. Natarajan, J. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 5859–5863.
doi: 10.1002/anie.202014963
S. Tanwar, K.K. Haldar, T. Sen, J. Am. Chem. Soc. 139 (2017) 17639–17648.
doi: 10.1021/jacs.7b10410
H. Yu, T. Man, W. Ji, et al., Chin. Chem. Lett. 30 (2019) 175–178.
doi: 10.1016/j.cclet.2018.04.020
H. Cha, J.H. Yoon, S. Yoon, ACS Nano 8 (2014) 8554–8563.
doi: 10.1021/nn5032438
T. Li, J. Sun, J. Liu, et al., Chin. Chem. Lett. 31 (2020) 439–442.
doi: 10.1016/j.cclet.2019.08.051
L.L. Tan, M. Wei, L. Shang, Y.W. Yang, Adv. Funct. Mater. 31 (2020) 2007277.
J.H. Yoon, F. Selbach, L. Langolf, S. Schlucker, Small 14 (2018) 1702754.
doi: 10.1002/smll.201702754
J.H. Yoon, J. Lim, S. Yoon, ACS Nano 6 (2012) 7199–7208.
doi: 10.1021/nn302264f
J.F. Stoddart, Nat. Chem. 1 (2009) 14–15.
doi: 10.1038/nchem.142
S. Das, P. Ranjan, P.S. Maiti, et al., Adv. Mater. 25 (2013) 422–426.
doi: 10.1002/adma.201201734
S.A.A. Kooijmans, L.A.L. Fliervoet, R. van der Meel, et al., J. Control. Release 224 (2016) 77–85.
doi: 10.1016/j.jconrel.2016.01.009
L. Tian, C. Wang, H. Zhao, et al., J. Am. Chem. Soc. 143 (2021) 8631–8638.
doi: 10.1021/jacs.0c13377
T. Ding, A.W. Rudrum, L.O. Herrmann, V. Turek, J.J. Baumberg, Nanoscale 8 (2016) 15864–15869.
doi: 10.1039/C6NR05199E
R. Zhu, H. Feng, Q. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 12560–12568.
doi: 10.1002/anie.202102893
M.S. Inkpen, Z.F. Liu, H. Li, et al., Nat. Chem. 11 (2019) 351–358.
doi: 10.1038/s41557-019-0216-y
B. Han, Z. Zhu, Z. Li, W. Zhang, Z. Tang, J. Am. Chem. Soc. 136 (2014) 16104–16107.
doi: 10.1021/ja506790w
J. Lu, Y.X. Chang, N.N. Zhang, et al., ACS Nano 11 (2017) 3463–3475.
doi: 10.1021/acsnano.6b07697
X. Li, Z. Wu, X. Zhou, J. Hu, Biosens. Bioelectron. 92 (2017) 496–501.
doi: 10.1016/j.bios.2016.10.075
A.D. Merg, J.C. Boatz, A. Mandal, et al., J. Am. Chem. Soc. 138 (2016) 13655–13663.
doi: 10.1021/jacs.6b07322
S. Zhu, R. Tian, A.L. Antaris, X. Chen, H. Dai, Adv. Mater. 31 (2019) e1900321.
doi: 10.1002/adma.201900321
C.Y. Poon, L. Wei, Y. Xu, et al., Anal. Chem. 88 (2016) 8849–8856.
doi: 10.1021/acs.analchem.6b02429
X. Liang, X. Du, A. Liu, et al., Chin. Chem. Lett. 34 (2023) 107491.
doi: 10.1016/j.cclet.2022.05.005
J. Qiu, Q.N. Nguyen, Z. Lyu, Q. Wang, Y. Xia, Adv. Mater. 34 (2022) e2102591.
doi: 10.1002/adma.202102591
J. Wang, D. Luo, Y.D. Cai, et al., Biosens. Bioelectron. 213 (2022) 114422.
doi: 10.1016/j.bios.2022.114422
F. Zheng, W. Ke, L. Shi, H. Liu, Y. Zhao, Anal. Chem. 91 (2019) 11812–11820.
doi: 10.1021/acs.analchem.9b02469
Y. Feng, J. He, H. Wang, et al., J. Am. Chem. Soc. 134 (2012) 2004–2007.
doi: 10.1021/ja211086y
J. Huang, Y. Zhu, C. Liu, et al., Nano Lett. 16 (2016) 617–623.
doi: 10.1021/acs.nanolett.5b04329
Y. Feng, Y. Wang, X. Song, S. Xing, H. Chen, Chem. Sci. 8 (2017) 430–436.
doi: 10.1039/C6SC02276F
Q.K. Fan, K. Liu, J. Feng, et al., Adv. Funct. Mater. 28 (2018) 1803199.
doi: 10.1002/adfm.201803199
J. Jia, G. Liu, W. Xu, et al., Angew. Chem. Int. Ed. 59 (2020) 14443–14448.
doi: 10.1002/anie.202000474
A. Klinkova, R.M. Choueiri, E. Kumacheva, Chem. Soc. Rev. 43 (2014) 3976–3991.
doi: 10.1039/c3cs60341e
J. Shen, L. Liang, M. Xiao, et al., J. Am. Chem. Soc. 141 (2019) 11938–11946.
doi: 10.1021/jacs.9b03498
Y. Guo, Y. Liu, W. Zhou, G. Wang, ACS Sens. 6 (2021) 958–966.
doi: 10.1021/acssensors.0c02136
P.F. Gao, G. Lei, C.Z. Huang, Anal. Chem. 93 (2021) 4707–4726.
doi: 10.1021/acs.analchem.0c04390
T.T. Zhai, D. Ye, Y. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 33966–33975.
doi: 10.1021/acsami.8b11477
Y.W. Jun, S. Sheikholeslami, D.R. Hostetter, et al., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 17735–17740.
doi: 10.1073/pnas.0907367106
M.X. Li, W. Zhao, H. Wang, et al., Anal. Chem. 90 (2018) 14255–14259.
doi: 10.1021/acs.analchem.8b03322
M.X. Li, C.H. Xu, N. Zhang, et al., ACS Nano 12 (2018) 3341–3350.
doi: 10.1021/acsnano.7b08673
Y. Park, S. Shin, H. Jin, et al., J. Am. Chem. Soc. 140 (2018) 15161–15165.
doi: 10.1021/jacs.8b09037
S. Kim, J.E. Park, W. Hwang, et al., J. Am. Chem. Soc. 139 (2017) 3558–3566.
doi: 10.1021/jacs.7b01311
Y.K. Lee, S. Kim, J.W. Oh, J.M. Nam, J. Am. Chem. Soc. 136 (2014) 4081–4088.
doi: 10.1021/ja501225p
S. Liu, Y. Ying, Y. Long, Chin. Chem. Lett. 31 (2020) 473–475.
doi: 10.1016/j.cclet.2019.07.057
J.M. Kim, C. Lee, Y. Lee, et al., Adv. Mater. 33 (2021) e2006966.
doi: 10.1002/adma.202006966
D. Wu, Y. Chen, S. Hou, W. Fang, H. Duan, ChemBioChem 20 (2019) 2432–2441.
doi: 10.1002/cbic.201900191
X. Zhang, Y. Ge, M. Liu, et al., Anal. Chem. 94 (2022) 7823–7832.
doi: 10.1021/acs.analchem.1c05649
W. Zhu, C.Y. Wang, J.M. Hu, A.G. Shen, Anal. Chem. 93 (2021) 4876–4883.
doi: 10.1021/acs.analchem.0c04997
C. Zong, M. Xu, L.J. Xu, et al., Chem. Rev. 118 (2018) 4946–4980.
doi: 10.1021/acs.chemrev.7b00668
Q. Li, X. Ge, J. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 7323–7332.
doi: 10.1002/anie.202015451
C. Dong, X. Fang, J. Xiong, et al., ACS Nano 16 (2022) 14055–14065.
doi: 10.1021/acsnano.2c03914
C. Liu, T. Xu, G. Cheng, X. Zhang, Sens. Actuators B Chem. 330 (2021) 129319.
doi: 10.1016/j.snb.2020.129319
C. Liu, C. Chen, S. Li, et al., Anal. Chem. 90 (2018) 10591–10599.
doi: 10.1021/acs.analchem.8b02819
Y. Wen, Z. Li, J. Jiang, Chin. Chem. Lett. 30 (2019) 1565–1574.
doi: 10.1016/j.cclet.2019.05.036
X.T. Kong, L.V. Besteiro, Z. Wang, A.O. Govorov, Adv. Mater. 32 (2020) e1801790.
doi: 10.1002/adma.201801790
B.H. Lee, N.A. Kotov, G. Arya, ACS Nano 15 (2021) 13547–13558.
doi: 10.1021/acsnano.1c04326
L. Nguyen, M. Dass, M.F. Ober, et al., ACS Nano 14 (2020) 7454–7461.
doi: 10.1021/acsnano.0c03127
W. Ma, L. Xu, L. Wang, C. Xu, H. Kuang, Adv. Funct. Mater. 29 (2019) 1805512.
doi: 10.1002/adfm.201805512
H. Li, X. Gao, C. Zhang, et al., Biosensors 12 (2022) 957.
doi: 10.3390/bios12110957
L. Xu, Y. Gao, H. Kuang, L.M. Liz-Marzan, C. Xu, Angew. Chem. Int. Ed. 57 (2018) 10544–10548.
doi: 10.1002/anie.201805640
C.L. Hao, L.G. Xu, M.Z. Sun, et al., Adv. Funct. Mater. 28 (2018) 1802372.
doi: 10.1002/adfm.201802372
D. Meng, W. Ma, X. Wu, C. Xu, H. Kuang, Small 16 (2020) e2000003.
doi: 10.1002/smll.202000003
X. Shen, W. Xu, J. Ouyang, N. Na, Chin. Chem. Lett. 33 (2022) 4505–4516.
doi: 10.1016/j.cclet.2021.12.061
R. Ranjan, E.N. Esimbekova, M.A. Kirillova, V.A. Kratasyuk, Anal. Chim. Acta 971 (2017) 1–13.
doi: 10.1016/j.aca.2017.03.051
M. Garai, N. Gao, Q.H. Xu, J. Phys. Chem. C 122 (2018) 23102–23110.
doi: 10.1021/acs.jpcc.8b07094
D. Botequim, I.I.R. Silva, S.G. Serra, et al., Nanoscale 12 (2020) 6334–6345.
doi: 10.1039/d0nr00267d
Z.J. Zhu, P.Y. Yuan, S. Li, et al., ACS Appl. Bio Mater. 1 (2018) 118–124.
doi: 10.1021/acsabm.8b00032
D.F. Zhang, S. Li, Q.H. Xu, Y. Cao, Langmuir 36 (2020) 4721–4727.
doi: 10.1021/acs.langmuir.0c00712
R. Gao, L. Xu, C. Hao, C. Xu, H. Kuang, Angew. Chem. Int. Ed. 58 (2019) 3913–3917.
doi: 10.1002/anie.201814282
A.H. Qu, L.G. Xu, M.Z. Sun, et al., Adv. Funct. Mater. 27 (2017) 1703408.
doi: 10.1002/adfm.201703408
A. Qu, X. Wu, S. Li, et al., Adv. Mater. 32 (2020) e2000184.
doi: 10.1002/adma.202000184
R.A. Guzman, G.G. Rubio, J.G. Izquierdo, et al., ACS Omega 1 (2016) 388–395.
doi: 10.1021/acsomega.6b00184
M. Kim, J.H. Lee, J.M. Nam, Adv. Sci. 6 (2019) 1900471.
doi: 10.1002/advs.201900471
Q.Y. Xu, Z. Tan, X.W. Liao, C. Wang, Chin. Chem. Lett. 33 (2022) 22–32.
doi: 10.1016/j.cclet.2021.06.015
Q. Zhang, Y. Tian, Z. Liang, et al., Anal. Chem. 93 (2021) 3308–3314.
doi: 10.1021/acs.analchem.0c05440
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Ting Pan , Dinghu Zhang , Guomei You , Xiaoxia Wu , Chenguang Zhang , Xinyu Miao , Wenzhi Ren , Yiwei He , Lulu He , Yuanchuan Gong , Jie Lin , Aiguo Wu , Guoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857
Ran Zhu , Pan Zhang , Yitong Xu , Jiutong Ma , Qiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
Yiyang Shen , Zhen Zhang , Ruyi Liang , Tongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
Ran Wu , Dongxu Jiang , Hao Hu , Chenyu Yang , Liang Qin , Lulu Chen , Zehui Hu , Hualei Xu , Jinrong Li , Haiqiang Liu , Hua Guo , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Qiang Wang , Xiaodong Wang . 4-Aminoazobenzene: A novel negative ion matrix for enhanced MALDI tissue imaging of metabolites. Chinese Chemical Letters, 2024, 35(11): 109624-. doi: 10.1016/j.cclet.2024.109624