Citation: Dengke Wang, Siqi Chen, Shiqin Lai, Weili Dai, Lixia Yang, Lanqing Deng, Mengjuan Suo, Xuyang Wang, Jian-Ping Zou, Sheng-Lian Luo. Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis[J]. Chinese Chemical Letters, ;2023, 34(5): 107861. doi: 10.1016/j.cclet.2022.107861 shu

Advanced municipal wastewater treatment and simultaneous energy/resource recovery via photo(electro)catalysis

    * Corresponding author.
    E-mail address: zjp_112@126.com (J.-P. Zou).
  • Received Date: 30 April 2022
    Revised Date: 11 September 2022
    Accepted Date: 26 September 2022
    Available Online: 28 September 2022

Figures(14)

  • Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis. Although both operation processes are driven effectively by the same interfacial charge, each system is practiced separately since they require very different reaction conditions. In this review, we showcase the recent advancements in photo(electro)catalytic process that enables the wastewater treatment and simultaneous energy/resource recovery (WT-ERR). Various literatures based on photo(electro)catalysis for wastewater treatment coupled with CO2 conversion, H2 production and heavy metal recovery are summarized. Besides, the fundamentals of photo(electro)catalysis and the influencing factors in such synergistic process are also presented. The essential feature of the catalysis lies in effectively utilizing hole oxidation for pollutant degradation and electron reduction for energy/resource recovery. Although in its infancy, the reviewed technology provides new avenue for developing next-generation wastewater treatment process. Moreover, we expect that this review can stimulate intensive researches to rationally design photo(electro)catalytic systems for environmental remediation accompanied with energy and resource recovery.
  • Precise tumor targeting and on-demand drug release show great potentials in cancer therapy, which have been achieved by the continuously emerging smart prodrugs activated by the specific stimuli [1]. Most of the reported activatable prodrugs (>80%) are sensitive to a single trigger, including the tumor microenvironments (TMEs) like pH [2], glutathione (GSH) [3,4], reactive oxygen species (ROS) [5,6] and enzyme [7], or the external triggers like light, ultrasound, heat, and magnetic field [8,9]. However, in most of the cases, the nonspecific drug accumulation or activation in normal tissues is inevitable because some TMEs are not “specific” enough to sensitively differentiate tumor and normal tissues [10]. Applying “logic gate” involving multiple triggers into the molecular structures can remarkably magnify the specific tumor targeting and attenuate the undesired toxicity via the introduction of multistage “locks” and sophisticating the “unlock” conditions [11]. More than two stimuli co-govern the “on and off” of the drug, exhibiting “OR gate” or “AND gate” features [12]. Most of the reported prodrugs with logic gates are “OR gates”, that is, drugs can be partially activated by either stimulus [13,14]. Even though sometimes the tumor targeting and anti-cancer efficacy can be magnified upon the combination of multiple stimuli, the partial activation feature of the “OR gate” determines the toxicity induced by single stimulus cannot be thoroughly avoided [15]. Compared to “OR gate”, “AND gate” endows the prodrug with the “only” activation upon the co-existence of all the stimuli [16,17], which was first reported in the design of a boron dipyrromethene responsive to both Na+ and H+ ions by Akkaya [18]. However, due to the molecule synthesis and design challenging, the “AND gate” is infrequent among numerous prodrugs.

    Among the stimuli, a combination of external stimulus and internal stimulus owns advanced strengths due to the tumor-specific and spatio-temporal control features. Ultrasound (US) as a mechanical force has been applied into the cancer treatment as an external stimulus, called sonodynamic therapy (SDT) [19]. Sonosensitizers bearing macrocyclic structures like porphyrin and phthalocyanine, can be activated under low-intensity US irradiation to produce highly toxic ROS through the sonoluminescence mechanism [20,21]. Compared to other treatments, SDT owns the advantages of spatio-temporal control, noninvasiveness, minor energy attenuation, and deep tissue-penetration [22,23]. However, the US-triggered “AND gate” prodrug has been rarely reported due to the following challenges. First, unlike the pro-chemodrug which the drug activation is based on the transformation or exposure of specific functional groups upon the triggers, it is hard to inhibit the sonosensitizers’ toxicity upon US trigger via simple change of functional groups [24,25]. As the toxicity of sonosensitizers is mainly originated from the US's energy and sonoluminescence, Förster resonance energy transfer (FRET) effect which has been widely applied in the design of dyes, is a promising strategy to suppress the toxicity from the “only” US irradiation [26]. Second, killing of the tumor cells for SDT greatly relies on the ROS (singlet oxygen (1O2) and oxygen-based radicals (OH)) produced by the US-irradiated sonosensitizers. Limited by the tolerate dosage and intracellular uptake level of the sonosensitizers, as well as the oxidative ability and life time of the ROS, the anticancer efficacy for SDT cannot reach as good as that for chemotherapy or radiotherapy [27,28]. Therefore, stronger ROS agents or toxic agents are extremely needed to boost the cytotoxicity.

    Considering the above-mentioned two issues in the design of “AND gate” SDT prodrugs, we specially design two monomers including a meso‑carboxyl-porphyrin-based sonosensitizer (5,10,15,20-tetrakis(carboxyl)porphyrin, TCP) and a croconium (thiophenyl-croconium (2,5-bis[(2-(2-(2-hydroxyethoxy)ethoxy)ethyl-4-carboxylate-piperidylamino)thiophenyl]-croconium, CR), as well as their polymers (pTCP-CR) to solve all the listed obstacles in a US and enzyme co-activated system. 5,10,15,20-Tetrakis(carboxyl)porphyrin (TCP) was selected since it can release ROS and carbon monoxide (CO) with US irradiation [29]. To further improve the toxicity of the ROS generated by SDT, sulfate radicals (SO4•−) with stronger oxidation capability are introduced into the molecule design. SO4•− has an oxidation potential of 2.5–3.1 eV, which is similar to that of OH (2.80 eV), but the half-life (SO4•−, 30 µs) is 30 times versus OH, which means that it has stronger cytotoxicity due to longer diffusion distance and leads to more effective oxidation reactions [30]. Recently, it has been revealed that SO4•− can be produced by sulfate ions (SO42−) and OH, which is a mild method appliable in biomedical field [31]. Therefore, a specific CR dye bearing thiophene group is designed as a SO42− precursor since sulfur-containing dye owns the potential to release SO42− upon ROS treatment [32]. Third, the absorbance of the CR usually covers the emission of most porphyrin-based sonosensitizers upon US irradiation. Thus, CR can act as a quencher to lock the undesired US-induced ROS generated due to the FRET effect once it is connected with porphyrin via suitable linkers [26].

    With the features of meso‑carboxyl porphyrin and thiophene-croconium at hand, TCP and CR are designed and polymerized into a polymeric prodrug (pTCP-CR) with cross-linked network structure via ester linkers (Scheme 1). Through self-assembly in water, it is prepared into nanoparticles (pTCP-CR NPs) (Scheme S2 in Supporting information) [33]. As shown in Scheme 1, activation of pTCP-CR NPs requires the presence of both carboxylesterase (CEs) and US. Under “only CEs” activation, pTCP-CR NPs cleave into TCP and CR monomers with low cytotoxicity. Under “only US” activation, ROS generation by TCP is quenched by CR, and CO generation is blocked by ester linkers. Only with the co-existence of CEs and US, TCP and CR release as monomers, enabling ROS and CO generation. ROS from TCP further decompose CR into SO42− and more toxic SO4•−, enhancing cytotoxicity. This enzyme and US co-triggered “AND gate” design enables precise spatio-temporal control over the release of anticancer agents. The efficacy of pTCP-CR NPs as a smart decomposable polysonosensitizer is demonstrated through in vitro experiments using cell lines with varying CEs expression levels and in vivo SDT efficacy on mice with hepatocellular carcinoma (HCC).

    Scheme 1

    Scheme 1.  Schematic illustration of the “AND gate” logic in the design of pTCP-CR NPs for the releasing of CO, ROS and SO4•− under the co-triggers of US and CEs.

    Although the instability and bleachability of squarylium dyes and CR dyes in the presence of metal ions or light have been reported [34], the phenomenon that CR dye can be degraded by ROS and transformed into active agents has not been reported. As sulfur-containing dyes owned the potentials to be converted to SO42− after being treated by ROS [32], CR bearing thiophenol group was selected as the special monomer for the releasing of surfur-based radicals. CR was synthesized by the nucleophilic substitution, alkali saponification/acid hydrolysis, condensation processes with croconic acid as shown in Scheme S2. All the intermediates and finally compounds were fully characterized (Figs. S1–S8 in Supporting information). It has been demonstrated before that US could trigger the porphyrin derivatives to generate OH, similar with the porphyrin-based photodynamic therapy mechanism [35]. We then evaluated whether the ROS generated by the US and TCP would lead to the decomposition of CR into SO42− as well as more active SO4•− radicals (Fig. 1a). Adding OH to a phosphate buffer saline (PBS) solution of CR led to a significant reduction in CR absorption in the near-infrared (NIR) region (around 700 nm) (Fig. 1b). 1H nuclear magnetic resonance spectroscopy (1H NMR) and high resolution mass spectrometry (HRMS) analyses confirmed CR decomposition after OH treatment for 20 and 50 min, with CR molecules breaking down into low molecular weight compounds (Figs. S9 and S10 in Supporting information). Additionally, we assessed if OH generated by TCP could decompose CR. As anticipated, CR absorption in the NIR region decreased after US treatment of a mixed solution of TCP and CR in PBS (Fig. S11 in Supporting information), while minimal change occurred in the CR + US group and the CR+TCP group (Fig. S11). This suggested CR decomposition relied on ROS from TCP and US combination. Furthermore, high performance high performance (HPIC) was utilized to determine SO42− concentration in various CR solutions (only CR group, CR + US group, CR + TCP + US group, and deionized water group). Results showed a significantly higher SO42− concentration in the CR + TCP + US group (3.88 mg/L) compared to control groups (0.5–0.7 mg/L) (Fig. 1d, Fig. S12 and Table S1 in Supporting information).

    Figure 1

    Figure 1.  (a) The ROS-induced CR decomposition and release of SO4•−. (b) Absorption spectra of a 50 µmol/L solution of CR after reaction with OH. (c) The degradation efficiency of MB by OH and SO4•− produced by different experimental groups. (d) The concentration of SO42− in H2O, CR, CR with US irradiation and CR + TCP with US irradiation. (e) EPR spectra of produced OH and SO4•− radicals from H2O by the CR, CR with US irradiation and CR + TCP with US irradiation. Data are means ± SD (n = 3). ***P < 0.001.

    It has been reported that SO42− can be efficiently converted into SO4•− by OH [36]. Electron paramagnetic resonance (EPR) analyses were used to examine the SO4•− radicals that are derived from both CR and TCP under US treatment (Fig. 1a). Obvious sulfate anion (DMPO-SO4•−, labeled by red star) signals were observed only in the CR + TCP + US treatment group (Fig. 1e). The EPR spectra supported that the OH produced by TCP under US irradiation can effectively convert SO42− into SO4•−. Since the degradation of methylene blue (MB) could indirectly reflect the oxidative ability of OH and SO4•−, the capability of OH and SO4•− were compared using different combination of CR, TCP and US [37]. The results indicated that CR can effectively degrade MB in the presence of TCP and US, with up to 84.5% of MB being degraded, indicating that CR can produce OH and SO4•− under the combined treatment of TCP and US (Fig. 1c and Fig. S13 in Supporting information).

    Considering the advanced features of TCP and CR including the generation of CO, 1O2 and SO4•−, a polymerized TCP and CR (pTCP-CR) with cross-linked network structure connected by flexible ester linkers was designed and synthesized using our previously reported polycondensation method (Scheme S3 in Supporting information) [21,38]. As controls, polymerized TCPP and CR (pTCPP-CR) which could not release CO, and polymerized TCP with hexaethylene glycol (pTCP-HG) which did not generate SO4•− were also synthesized for comparisons. Their chemical structures were characterized by 1H NMR spectroscopy (Figs. S14–S16 in Supporting information). Their molecular weights (MWs) were calculated to be around 6900 (pTCP-CR), 9200 (pTCPP-CR) and 6100 (pTCP-HG) g/mol by gel permeation chromatography (GPC) (Fig. S17 in Supporting information). pTCP-CR, pTCPP-CR and pTCP-HG were prepared into nanoparticles (pTCP-CR NPs, pTCPP-CR NPs and pTCP NPs) in PBS by the self-assembly of hydrophilic and hydrophobic units [39,40]. These NPs showed unimodal size distributions with the average hydrodynamic diameters of 79.5 ± 2.8 nm (pTCP-CR NPs), 187.3 ± 3.3 nm (pTCPP-CR NPs) and 232.5 ± 6.2 nm (pTCP-HG NPs) measured by dynamic light scattering (DLS) (Fig. S18 in Supporting information). A spherical morphology of pTCP-CR NPs was observed with scanning electron microscopy (SEM) (Fig. S19 in Supporting information). After co-incubation with CEs (20 U/mL), the size of pTCP-CR NPs increased to over 1000 nm due to ester linker cleavage, causing nanoparticle structure destruction. These NPs contain three anti-cancer agents: CO, 1O2, and SO4•−, making them a prodrug. pTCP-CR NPs degrade into TCP and CR monomers when interacting with cancer cells overexpressing CEs but remain stable against normal tissues with limited CEs expression. TCP's emission (600–750 nm) overlaps with CR's absorption (600–800 nm), enabling the FRET effect (Figs. 2a, c and d) [41]. Therefore, the CR moiety in pTCP-CR NPs structure had the potential to act as a quencher, which would fully quench the fluorescence emission and ROS generation of TCP segment due to the presence of FRET process. However, the FRET effect of pTCP-CR NPs was inhibited in the monomeric state after CEs treatment (Fig. 2c and Figs. S22–S24 in Supporting information). The distance between the energy donor (TCP) and energy acceptor (CR) was an important factor affecting FRET effect [42]. The intermolecular interaction between TCP unit and CR unit is simulated. The intermolecular distance in the polymer mode (<10 Å) is much lower than that in the monomer mode (>15 Å) (Fig. S20 in Supporting information). In addition, due to the cleavage of pTCP-CR NPs by esterase, the change of FRET effect was time-dependent. In the polymer state, all the three active agents including CO, 1O2 and SO4•− were inactivated due to the quenching effect of CR on TCP.

    Figure 2

    Figure 2.  (a) Schematic illustration of the FRET effect between the TCP and CR. (b) Absorbance intensity change of pTCP-CR NPs in response to 5 min US treatment with or without CEs. (c) Fluorescence spectra and intensity change of CR, TCP, pTCP-CR NPs and pTCP-CR NPs with 20 U/mL CEs in aqueous solution (excitation wavelength: 525 nm) and ultraviolet–visible spectroscopy (UV–vis) spectra of CR in H2O (black dashed line). (d) Time-dependent fluorescence spectra of DCFH indicating US-induced ROS generation by CR, pTCP-CR NPs, pTCPP-CR NPs, pTCP-CR NPs + CEs and pTCPP-CR NPs + CEs. (e) US trigger CO release of pTCP-CR NPs with and without CEs as a function of time.

    As a result, all the active agents were double-locked into pTCP-CR NPs, which could be only unlocked by the simultaneous existence of US and CEs (Scheme S4 in Supporting information). As shown in Fig. 2b, pTCP-CR NPs is processed by both US and CEs, both the TCP absorbance at 300–450 nm and CR absorbance at 600–1000 nm dramatically decreased. This indicates that both TCP and CR are decomposed after CEs/US dual processing. As a control, pTCP-CR NPs showed strong stability under only US or CEs irradiation (Fig. S25 in Supporting information). Subsequently, the ROS generation ability of CR, TCP + CR, pTCP-CR NPs and pTCPP-CR NPs in water upon different treatment conditions was evaluated. 1,3-Diphenylisobenzofuran (DPBF) and 2′,7′-dichlorodihyrofluorescein (DCFH) were used as 1O2 and ROS analytical reagent [43]. For CEs/US-co-treated pTCP-CR NPs and pTCPP-CR NPs, the absorption of DPBF (420 nm) decreased significantly with the prolongation of US treatment time, indicating the 1O2 generation upon US irradiation. As controls, if pTCP-CR NPs and pTCPP-CR NPs were only irradiation by US without CEs treatment, the absorption of DPBF did not change and no generation of 1O2 (Fig. S26 in Supporting information). Such results were in consistent with the fluorescence results that FRET effect inhibited the generation of 1O2 from TCP unit. Apart from DPBF, DCFH as a fluorescent probe, was also selected to demonstrate it. Compared with the only US triggered group, CEs/US co-triggered pTCP-CR NPs or pTCPP-CR NPs showed notable stronger fluorescence intensity, revealing the “on and off” of ROS was fully determined by the co-existence of CEs and US (Fig. 2d and Fig. S27 in Supporting information).

    The CEs/US co-triggered CO release ability of pTCP-CR NPs was quantified by hemoglobin method, 9-(diethylamino)−5H-benzo[a]phenoxazin-5-one palladium complex (1-Ac) CO fluorescence probe method and CO gas sensor method. UV spectra indicated conversion of Hb-Fe(Ⅱ) to Hb-Fe(CO) after incubating CEs-treated pTCP-CR NPs with hemoglobin under US treatment. Fluorescence intensity of CEs-treated pTCP-CR NPs with 1-Ac increased significantly under US treatment, confirming CO release (Fig. S28 in Supporting information). CO gas sensor method quantified CO release at 280 mmol CO/mol TCP after 40 min of US treatment. No CO release was observed in pTCP-CR NPs treated only with US irradiation (Fig. 2e). Similar results were observed with pTCP-HG NPs (Fig. S28). Additionally, SO42− release from pTCP-CR NPs under CEs/US dual activation was significantly higher compared to other groups (Fig. S29 in Supporting information). In summary, the co-existence of CEs and US triggered the generation of CO, 1O2, and SO4•−.

    Subsequently, we evaluated the in vitro release of ROS and CO from the double-blocked pTCP-CR NPs upon CEs/US triggers. It was known that the CEs expression in liver tumors was much higher than normal tissues [44]. CEs-positive hepatoma cells (HepG2) and CEs-negative cells (293T and LO2) were selected as the models to demonstrate the in vitro anticancer efficacy [45]. After incubation with pTCP-CR NPs (20 µmol/L porphyrin) for 4 h, bright fluorescence showed internalization in HepG2 cells, confirmed by colocalization with Mito-Tracker Green, indicating effective enrichment in mitochondria (Fig. 3a). Cellular uptake of pTCP-CR NPs was higher than free TCP in both HepG2 and 293T cells, suggesting improved internalization due to NPs formation [46]. Similar results were observed with pTCPP-CR NPs (Fig. S30 in Supporting information).

    Figure 3

    Figure 3.  (a) Fluorescence images of cells with ROS probe DCFH-DA after 4 h of treatment with pTCP-CR NPs with or without US. (b) Intracellular ROS levels in various cells after pTCP-CR NPs, pTCPP-CR NPs, or pTCP-HG NPs with US. (c) CLSM images of cells stained with 1-Ac probe for CO detection after treatment with pTCP-CR NPs and pTCP-HG NPs with US. (d) Intracellular CO release from NPs with and without US in different cells. (e) Cell viabilities of cells incubated with pTCP-CR NPs at varying concentrations with US treatment. (f) Ratio and (g) CLSM images of JC-1 monomer to aggregate in mitochondria after pTCP-CR NPs treatment with or without US. Data are means ± SD (n = 4). ***P < 0.001. Scale bar: 50 µm.

    DCFH-diacetate (DA) and 1-Ac were furthermore used to detect the intracellular ROS and CO. In HepG2 cells, both pTCP-CR NPs and pTCPP-CR NPs showed green fluorescence upon US irradiation, while fluorescence dropped significantly in 293T and LO2 with or without US (Fig. 3a, Figs. S31 and S32 in Supporting information). Sole US treatment did not induce green fluorescence. The US-triggered ROS generation of pTCP-HG NPs was not influenced by cell type, blurring the tumor-normal cell distinction (Fig. S32). Adding CEs inhibitor bis-p-nitrophenyl phosphate (BNPP) to HepG2 cells reduced green fluorescence in pTCP-CR NPs + US and pTCPP-CR NPs + US groups, but not in pTCP-HG NPs + US group (Fig. 3b and Fig. S32). This aligns with ROS generation tuned by CEs and US co-existence, targeting toxicity to tumor cells under US. Similarly, intracellular CO release upon US showed CEs/US dependency. HepG2 cells incubated with pTCP-CR NPs and pTCP-HG NPs displayed intracellular CO production after US, evidenced by strong red fluorescence using 1-Ac (Figs. 3c and d, Fig. S33 in Supporting information). No CO was detected in 293T cells or HepG2 cells treated with BNPP. Thus, pTCP-CR NPs specifically generate ROS and CO only with CEs and US co-existence, targeting high CEs tumor cells under US.

    The MTT assay evaluated the toxicity of pTCP-CR NPs, pTCPP-CR NPs, and pTCP-HG NPs on cancer cells. All NPs showed low cytotoxicity without US irradiation, indicating their safety (Fig. 3e and Fig. S34 Supporting information). Upon US irradiation, HepG2 cells treated with pTCP-CR NPs and pTCPP-CR NPs exhibited significantly higher cytotoxicity (Fig. 3f and Fig. S35 in Supporting information). Pre-treatment of HepG2 cells with BNPP decreased therapeutic efficiency, consistent with results in cells with limited CEs expression. At 25 µmol/L concentration (porphyrin equivalent), cell mortality was significantly higher in the pTCP-CR NPs + US group (81.37% ± 3.27%) compared to pTCPP-CR NPs + US (59.77% ± 1.35%) due to CO gas therapy from the TCP moiety (Fig. 3f). Additionally, mortality was higher in the pTCP-CR NPs + US group than pTCP-HG NPs + US (64.36% ± 2.25%) due to more efficient oxidative toxicity of SO4•− from CR (Fig. S36 in Supporting information). These results demonstrate the contribution of both SDT and GT therapy to cell death, activated only by CEs and US. CO and ROS can induce mitochondrial dysfunction and lead to cell apoptosis by decreasing mitochondrial membrane potential (MMP). To assess the therapeutic effect, MMP reduction was measured using 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolo carbocyanine iodide (JC-1) dye. Following US-triggered treatment, HepG2 cells showed a significant decrease in MMP, shifting JC-1 dye fluorescence from red to green, indicating mitochondrial dysfunction (Fig. 3g). The green/red fluorescence intensity ratio, indicative of mitochondrial damage, was highest in HepG2 cells treated with pTCP-CR NPs and US, demonstrating the most effective mitochondrial damage compared to other cell lines (Figs. S36–S38 in Supporting information).

    The in vivo synergistic anti-cancer therapy was furthermore evaluated using mice bearing H22 tumors. All animal experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Dalian Medical University. The approval number of animal experiments is AEE22049. Initially, pTCP-CR NPs served as an in vivo fluorescence imaging agent to assess drug accumulation and retention. After intravenous injection into mice, fluorescence signals were recorded over time. Results showed discernible signals at the tumor site 2 h post-injection, peaking at 8 h. Minimal signals were observed in mice injected with free CR. Major organs and tumors were harvested 24 h post-injection for ex vivo fluorescence imaging (Fig. 4a). We evaluated the combined therapeutic efficacy of pTCP-CR NPs, pTCPP-CR NPs and pTCP-HG NPs in H22 tumor-bearing mice. Mice were divided into seven groups: PBS only, NPs only, NPs with US, with detailed administration in Fig. 4b, monitoring tumor sizes and body weights daily. Tumors in untreated and NPs-treated mice grew rapidly, while those in groups receiving US showed some inhibition compared to PBS. Notably, group Ⅲ (pTCP-CR NPs + US) displayed the highest inhibition, releasing both CO and enhanced ROS upon US. Tumor images and hematoxylin-eosin staining (H&E) staining confirmed these findings. Mice treated with NPs and US showed no significant weight loss or organ damage, suggesting safety (Figs. 4ce, Figs. S39 and S40 in Supporting information).

    Figure 4

    Figure 4.  (a) In vivo and ex vivo fluorescence images of subcutaneous H22 tumor-bearing mice at different time points (2, 4, 6, 8, and 24 h) post-injection of CR or pTCP-CR NPs (5 mg/kg dose equivalence of CR), with excised organs and tumors at 8 h. (b) Scheme of in vivo tumor suppression experiment. (c) Time-dependent tumor-volume curves. (d) Body weight changes. (e) Digital graphs of dissected solid tumors on day 14. All data are means ± SD (n = 6). ***P < 0.001.

    In summary, a CEs and US co-triggered polysonosensitizer pTCP-CR NPs with “AND gate” logic was developed, in which TCP with ROS and CO generation ability was polymerized with CR with FRET quenching effect and SO4•− generation capability via ester linkers. Either CEs or US itself could not “unlock” pTCP-CR NPs with the releasing of active agents while the anti-cancer efficacy could only be activated upon the co-existence of CEs and US. Such design could avoid the nonspecific targeting and drug activation in the normal tissues via the combination of CEs as the internal trigger and US as an external trigger. A spatio-temporal control of the toxicity activation could also be achieved. Upon activation by two triggers, advanced anti-cancer agents beyond traditional ROS from SDT were simultaneously generated due to the smart design of TCP and CR monomers. TCP monomer can not only generate traditional ROS upon US irradiation, but also be decomposed into CO as therapeutic gas. CR monomer can not only quench the toxicity of TCP at polymer state due to FRET effect, but also be decomposed into SO4•− as more toxic ROS for toxicity boosting. Post SDT treatment, pTCP-CR NPs can be thoroughly decomposed into low-toxic molecules for the fast clearance, avoiding phototoxic side-ffect. Such “AND gate” logic design provided a promising strategy for the precise tumor treatment with limited side-effect.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Shuxin Liu: Writing – review & editing, Writing – original draft, Data curation. Jinjuan Ma: Data curation. Aiguo Wang: Writing – review & editing, Writing – original draft, Resources. Nan Zheng: Writing – review & editing, Writing – original draft, Project administration, Conceptualization.

    This work was supported by grants from the National Natural Science Foundation of China (No. 22375027), the Natural Science Foundation of Jiangsu Province (Nos. BK20221265, BK20211100), the Fundamental Research Funds for the Central Universities (No. DUT23YG133), and the Research Funds from Liaoning Cancer Hospital (No. 2024ZLKF-35). The authors acknowledge the assistance of DUT Instrumental Analysis Center.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2024.110032.


    1. [1]

      N.H. Tran, M. Reinhard, K.Y.H. Gin, Water Res. 133(2018) 182–207.  doi: 10.1016/j.watres.2017.12.029

    2. [2]

      P. Chowdhary, A. Raj, R.N. Bharagava, Chemosphere 194(2018) 229–246.  doi: 10.1016/j.chemosphere.2017.11.163

    3. [3]

      Z.N. Wang, M.Y. Liu, F. Xiao, et al., Chin. Chem. Lett. 33(2022) 653–662.  doi: 10.1016/j.cclet.2021.07.044

    4. [4]

      R. Khiewwijit, H. Temmink, H. Rijnaarts, K.J. Keesman, Environ. Model. Softw. 68(2015) 156–165.  doi: 10.1016/j.envsoft.2015.02.011

    5. [5]

      F.Q. Fan, R.H. Xu, D.P. Wang, F.G. Meng, Water Res. 181(2020) 115915.  doi: 10.1016/j.watres.2020.115915

    6. [6]

      Z.W. Zhang, Y.H. Wu, L.W. Luo, et al., Sci. Total Environ. 792(2021) 148291.  doi: 10.1016/j.scitotenv.2021.148291

    7. [7]

      M.N. Hasan, M.M. Altaf, N.A. Khan, et al., Chemosphere 277(2021) 130328.  doi: 10.1016/j.chemosphere.2021.130328

    8. [8]

      J.D. Xiao, Y.B. Xie, J. Rabeah, A. Brückner, H.B. Cao, Acc. Chem. Res. 53(2020) 1024–1033.  doi: 10.1021/acs.accounts.9b00624

    9. [9]

      R.C. Ji, J.B. Chen, T.C. Liu, X.F. Zhou, Y.L. Zhang, Chin. Chem. Lett. 33(2022) 643–652.  doi: 10.1016/j.cclet.2021.07.043

    10. [10]

      Y. Li, Y.G. Chen, J. Wu, Appl. Energy 240(2019) 120–137.  doi: 10.1016/j.apenergy.2019.01.243

    11. [11]

      H.Y. Wang, F. Qian, Y. Li, Nano Energy 8(2014) 264–273.  doi: 10.1016/j.nanoen.2014.06.004

    12. [12]

      T.H. Jeon, M.S. Koo, H. Kim, W. Choi, ACS Catal. 8(2018) 11542–11563.  doi: 10.1021/acscatal.8b03521

    13. [13]

      J. Highfield, Molecules 20(2015) 6739–6793.  doi: 10.3390/molecules20046739

    14. [14]

      H.J. Lewerenz, C. Heine, K. Skorupska, et al., Energy Environ. Sci. 3(2010) 748–760.  doi: 10.1039/b915922n

    15. [15]

      Z.D. Wei, J.Y. Liu, W.F. Shangguan, Chin. J. Catal. 41(2020) 1440–1450.  doi: 10.1016/S1872-2067(19)63448-0

    16. [16]

      Q. Wang, K. Domen, Chem. Rev. 120(2020) 919–985.  doi: 10.1021/acs.chemrev.9b00201

    17. [17]

      S. Kampouri, K.C. Stylianou, ACS Catal. 9(2019) 4247–4270.  doi: 10.1021/acscatal.9b00332

    18. [18]

      T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Chemosphere 262(2021) 128379.  doi: 10.1016/j.chemosphere.2020.128379

    19. [19]

      L.M. Yang, W.B. Hu, Z.W. Chang, et al., Environ. Int. 152(2021) 106512.  doi: 10.1016/j.envint.2021.106512

    20. [20]

      L. Candish, K.D. Collins, G.C. Cook, et al., Chem. Rev. 122(2022) 2907–2980.  doi: 10.1021/acs.chemrev.1c00416

    21. [21]

      A. Fujishima, K. Honda, Nature 238(1972) 37–38.  doi: 10.1038/238037a0

    22. [22]

      Q. Guo, Z.B. Ma, C.Y. Zhou, Z.F. Ren, X.M. Yang, Chem. Rev. 119(2019) 11020–11041.  doi: 10.1021/acs.chemrev.9b00226

    23. [23]

      T.L. Xia, Y.C. Lin, W.Z. Li, M.T. Ju, Chin. Chem. Lett. 32(2021) 2975–2984.  doi: 10.1016/j.cclet.2021.02.058

    24. [24]

      F.E. Osterloh, ACS Energy Lett. 2(2017) 445–453.  doi: 10.1021/acsenergylett.6b00665

    25. [25]

      C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. 35(2006) 1324–1340.  doi: 10.1039/B517632H

    26. [26]

      G.Q. Zhao, Y.Z. Jiang, S.X. Dou, W.P. Sun, H.G. Pan, Sci. Bull. 66(2021) 85–96.  doi: 10.1016/j.scib.2020.09.014

    27. [27]

      H.X. Zhong, M.C. Wang, G.B. Chen, R.H. Dong, X.L. Feng, ACS Nano 16(2022) 1759–1780.  doi: 10.1021/acsnano.1c10544

    28. [28]

      J. Linnemann, K. Kanokkanchana, K. Tschulik, ACS Catal. 11(2021) 5318–5346.  doi: 10.1021/acscatal.0c04118

    29. [29]

      L. Rebollar, S. Intikhab, N.J. Oliveira, et al., ACS Catal. 10(2020) 14747–14762.  doi: 10.1021/acscatal.0c03801

    30. [30]

      X.V. Medvedeva, J.J. Medvedev, S.W. Tatarchuk, R.M. Choueiri, A. Klinkova, Green Chem. 22(2020) 4456–4462.  doi: 10.1039/D0GC01754J

    31. [31]

      Y.L. Quan, J.X. Zhu, G.F. Zheng, Small 1(2021) 2100043.  doi: 10.1002/smsc.202100043

    32. [32]

      D. Shahidi, R. Roy, A. Azzouz, Appl. Catal. B: Environ. 174(2015) 277–292.

    33. [33]

      S.Z. Xu, E.A. Carter, Chem. Rev. 119(2019) 6631–6669.  doi: 10.1021/acs.chemrev.8b00481

    34. [34]

      B.M. Tackett, E. Gomez, J.G. Chen, Nat. Catal. 2(2019) 381–386.  doi: 10.1038/s41929-019-0266-y

    35. [35]

      P. Prabhu, V. Jose, J.M. Lee, Adv. Funct. Mater. 30(2020) 1910768.  doi: 10.1002/adfm.201910768

    36. [36]

      X.X. Chang, T. Wang, J.L. Gong, Energy Environ. Sci. 9(2016) 2177–2196.  doi: 10.1039/C6EE00383D

    37. [37]

      D.N. Jiang, P. Xu, H. Wang, et al., Coordin. Chem. Rev. 376(2018) 449–466.  doi: 10.1016/j.ccr.2018.08.005

    38. [38]

      Z.J. Wang, H. Song, H.M. Liu, J.H. Ye, Angew. Chem. Int. Ed. 59(2020) 8016–8035.  doi: 10.1002/anie.201907443

    39. [39]

      M. Melchionna, P. Fornasiero, ACS Catal. 10(2020) 5493–5501.  doi: 10.1021/acscatal.0c01204

    40. [40]

      J.P. Zou, D.D. Wu, J.M. Luo, et al., ACS Catal. 6(2016) 6861–6867.  doi: 10.1021/acscatal.6b01729

    41. [41]

      G. Rossi, L. Pasquini, D. Catone, et al., Appl. Catal. B: Environ. 237(2018) 603–612.  doi: 10.1016/j.apcatb.2018.06.011

    42. [42]

      Y.B. Yan, J. Gong, J. Chen, et al., Adv. Mater. 31(2019) 1808283.  doi: 10.1002/adma.201808283

    43. [43]

      V.C. Hoang, K. Dave, V.G. Gomes, Nano Energy 66(2019) 104093.  doi: 10.1016/j.nanoen.2019.104093

    44. [44]

      Y. Yamaguchi, A. Kudo, Front. Energy 15(2021) 568–576.  doi: 10.1007/s11708-021-0774-8

    45. [45]

      R. Acharya, K. Parida, J. Environ. Chem. Eng. 8(2020) 103896.  doi: 10.1016/j.jece.2020.103896

    46. [46]

      W.H. Dong, D.D. Wu, J.M. Luo, et al., J. Catal. 349(2017) 218–225.  doi: 10.1016/j.jcat.2017.02.004

    47. [47]

      X. Lu, C.Q. Zhu, Z.S. Wu, et al., J. Am. Chem. Soc. 142(2020) 15438–15444.  doi: 10.1021/jacs.0c06779

    48. [48]

      D.A. Henckel, M.J. Counihan, H.E. Holmes, et al., ACS Catal. 11(2021) 255–263.  doi: 10.1021/acscatal.0c04297

    49. [49]

      Q. Xie, W.M. He, S.W. Liu, Chin. J. Catal. 41(2020) 140–153.  doi: 10.1016/S1872-2067(19)63481-9

    50. [50]

      M.F.R. Samsudin, H. Ullah, R. Bashiri, et al., ACS Sustain. Chem. Eng. 8(2020) 9393–9403.  doi: 10.1021/acssuschemeng.0c02063

    51. [51]

      Y. Wang, G.Q. Tan, T. Liu, et al., Appl. Catal. B: Environ. 234(2018) 37–49.  doi: 10.1016/j.apcatb.2018.04.026

    52. [52]

      R.Z. Zhang, B.Y. Wu, Q. Li, et al., Coordin. Chem. Rev. 422(2020) 213436.  doi: 10.1016/j.ccr.2020.213436

    53. [53]

      L. Zhang, Z.J. Zhao, T. Wang, J.L. Gong, Chem. Soc. Rev. 47(2018) 5423–5443.  doi: 10.1039/C8CS00016F

    54. [54]

      Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355(2017) eaad4998.  doi: 10.1126/science.aad4998

    55. [55]

      F. Franco, C. Rettenmaier, H.S. Jeon, B.R. Cuenya, Chem. Soc. Rev. 49(2020) 6884–6946.  doi: 10.1039/D0CS00835D

    56. [56]

      Q. Lu, J. Rosen, Y. Zhou, et al., Nat. Commun. 5(2014) 3242.  doi: 10.1038/ncomms4242

    57. [57]

      J. Rosen, G.S. Hutchings, Q. Lu, et al., ACS Catal. 5(2015) 4586–4591.  doi: 10.1021/acscatal.5b00922

    58. [58]

      D.S. Ripatti, T.R. Veltman, M.W. Kanan, Joule 3(2019) 240–256.  doi: 10.1016/j.joule.2018.10.007

    59. [59]

      S. Verma, X. Lu, S.C. Ma, R.I. Masel, P.J. Kenis, Phys. Chem. Chem. Phys. 18(2016) 7075–7084.  doi: 10.1039/C5CP05665A

    60. [60]

      D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C. Berlinguette, Acc. Chem. Res. 51(2018) 910–918.  doi: 10.1021/acs.accounts.8b00010

    61. [61]

      G. Bharath, K. Rambabu, C. Aubry, et al., ACS Appl. Energy Mater. 4(2021) 11408–11418.  doi: 10.1021/acsaem.1c02196

    62. [62]

      Y.K. Long, J. Dai, S.Y. Zhao, et al., Environ. Sci. Technol. 55(2021) 5357–5370.  doi: 10.1021/acs.est.0c07794

    63. [63]

      Y.L. Chen, X. Bai, Y.T. Ji, T. Shen, Chem. Eng. J. 430(2022) 132951.  doi: 10.1016/j.cej.2021.132951

    64. [64]

      L. Wang, J.W. Wan, Y.S. Zhao, N.L. Yang, D. Wang, J. Am. Chem. Soc. 141(2019) 2238–2241.  doi: 10.1021/jacs.8b13528

    65. [65]

      W.C. Lai, Z.S. Ma, J.W. Zhang, et al., Adv. Func. Mater. 32(2022) 2111193.  doi: 10.1002/adfm.202111193

    66. [66]

      Q.N. Wang, X.Q. Wang, C. Wu, Y.Y. Cheng, Q.Y. Sun, H.B. Yu, J. CO2 Util. 26(2018) 425–433.  doi: 10.1016/j.jcou.2018.05.027

    67. [67]

      T.N. Nguyen, C.T. Dinh, Chem. Soc. Rev. 49(2020) 7488–7504.  doi: 10.1039/D0CS00230E

    68. [68]

      H. Rabiee, L. Ge, X.Q. Zhang, et al., Energy Environ. Sci. 14(2021) 1959–2008.  doi: 10.1039/D0EE03756G

    69. [69]

      H. Dong, M. Lu, Y. Wang, et al., Appl. Catal. B: Environ. 303(2022) 120897.  doi: 10.1016/j.apcatb.2021.120897

    70. [70]

      M.L. Zhang, Z.D. Zhang, Z.H. Zhao, et al., ACS Catal. 11(2021) 11103–11108.  doi: 10.1021/acscatal.1c02556

    71. [71]

      W.F. Xie, H. Li, G.Q. Cui, et al., Angew. Chem. Int. Ed. 60(2021) 7382–7388.  doi: 10.1002/anie.202014655

    72. [72]

      Q.N. Wang, C.Q. Zhu, C. Wu, H.B. Yu, Electrochim. Acta 319(2019) 138–147.  doi: 10.1016/j.electacta.2019.06.167

    73. [73]

      J. Wu, K. Zhu, H. Xu, W. Yan, Chin. J. Catal. 40(2019) 917–927.  doi: 10.1016/S1872-2067(19)63342-5

    74. [74]

      N. Nandal, S.L. Jain, Coordin. Chem. Rev. 451(2022) 214271.  doi: 10.1016/j.ccr.2021.214271

    75. [75]

      E. Kusmierek, Catalysts 10(2020) 439.  doi: 10.3390/catal10040439

    76. [76]

      S.S. Liu, Q.J. Xing, Y. Chen, et al., ACS Sustain. Chem. Eng. 7(2019) 1250–1259.  doi: 10.1021/acssuschemeng.8b04917

    77. [77]

      J. Zhang, S. Lv, J.L. Zheng, et al., ACS Sustain. Chem. Eng. 8(2020) 11133–11140.  doi: 10.1021/acssuschemeng.0c01906

    78. [78]

      J.F. de Brito, J.A.L. Perini, S. Perathoner, M.V.B. Zanoni, Electrochim. Acta 306(2019) 277–284.  doi: 10.1016/j.electacta.2019.03.134

    79. [79]

      D. Wang, Y.N. He, N. Zhong, et al., J. Hazard. Mater. 410(2021) 124563.  doi: 10.1016/j.jhazmat.2020.124563

    80. [80]

      D.B. Miklos, C. Remy, M. Jekel, et al., Water Res. 139(2018) 118–131.  doi: 10.1016/j.watres.2018.03.042

    81. [81]

      X.G. Duan, H.Q. Sun, S.B. Wang, Acc. Chem. Res. 51(2018) 678–687.  doi: 10.1021/acs.accounts.7b00535

    82. [82]

      J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54(2020) 3064–3081.  doi: 10.1021/acs.est.9b07082

    83. [83]

      J.P. Zou, Y. Chen, S.S. Liu, et al., Water Res. 150(2019) 330–339.  doi: 10.1016/j.watres.2018.11.077

    84. [84]

      W.D. Oh, Z.L. Dong, T.T. Lim, Appl. Catal. B: Environ. 194(2016) 169–201.  doi: 10.1016/j.apcatb.2016.04.003

    85. [85]

      R. Cheula, M. Maestri, G. Mpourmpakis, ACS Catal. 10(2020) 6149–6158.  doi: 10.1021/acscatal.0c01005

    86. [86]

      H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou, Environ. Sci. Technol. 49(2015) 8675–8682.  doi: 10.1021/acs.est.5b01264

    87. [87]

      M. Zhu, L.S. Zhang, S.S. Liu, et al., Chin. Chem. Lett. 31(2020) 1961–1965.  doi: 10.1016/j.cclet.2020.01.017

    88. [88]

      J. Wang, W. Liu, D.M. Li, Y.P. Wang, J. Alloy. Compd. 588(2014) 378–383.  doi: 10.1016/j.jallcom.2013.11.040

    89. [89]

      Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48(2019) 2109–2125.  doi: 10.1039/C8CS00542G

    90. [90]

      L. Wang, X.L. Geng, L. Zhang, et al., Chemosphere 286(2022) 131558.  doi: 10.1016/j.chemosphere.2021.131558

    91. [91]

      C.G. Liu, Z.F. Lei, Y.N. Yang, Z.Y. Zhang, Water Res. 47(2013) 49586–49592.

    92. [92]

      X.J. Zheng, C.L. Li, M. Zhao, et al., Int. J. Hydrog. Energy 42(2017) 7917–7929.  doi: 10.1016/j.ijhydene.2016.12.131

    93. [93]

      Y. Rong, L. Tang, Y.H. Song, et al., RSC Adv. 6(2016) 80595–80603.  doi: 10.1039/C6RA15320H

    94. [94]

      K.H. Chu, L.Q. Ye, W. Wang, et al., Chemosphere 183(2016) 219–228.

    95. [95]

      L. He, L. Li, T.T. Wang, et al., Dalton Trans. 43(2014) 16981–16985.  doi: 10.1039/C4DT02557A

    96. [96]

      R. Shwetharani, M. Sakar, H.R. Chandan, R.G. Balakrishna, Mater. Lett. 218(2018) 262–265.  doi: 10.1016/j.matlet.2018.02.031

    97. [97]

      Y.P. Peng, H.L. Chen, C.P. Huang, Appl. Catal. B: Environ. 209(2017) 437–446.  doi: 10.1016/j.apcatb.2017.02.084

    98. [98]

      J. Han, Y.R. Bian, X.Z. Zheng, X.M. Sun, L.W. Zhang, Chin. Chem. Lett. 28(2017) 2239–2243.  doi: 10.1016/j.cclet.2017.08.031

    99. [99]

      A. Patsoura, D.I. Kondarides, X.E. Verykios, Appl. Catal. B: Environ. 64(2006) 171–179.  doi: 10.1016/j.apcatb.2005.11.015

    100. [100]

      J.G. Wang, P. Zhang, X. Li, J. Zhu, H.X. Li, Appl. Catal. B: Environ. 134-135(2013) 198–204.  doi: 10.1016/j.apcatb.2013.01.006

    101. [101]

      M.Q. Hu, Z.P. Xing, Y. Cao, et al., Appl. Catal. B: Environ. 226(2018) 499–508.  doi: 10.1016/j.apcatb.2017.12.069

    102. [102]

      K.X. Li, Z.X. Zeng, L.S. Yan, et al., Appl. Catal. B: Environ. 187(2016) 269–280.  doi: 10.1016/j.apcatb.2016.01.046

    103. [103]

      H. Park, A. Bak, Y.Y. Ahn, J. Choi, M.R. Hoffmannn, J. Hazard. Mater. 211-212(2012) 47–54.  doi: 10.1016/j.jhazmat.2011.05.009

    104. [104]

      Y.C. Nie, F. Yu, L.C. Wang, et al., Appl. Catal. B: Environ. 227(2018) 312–321.  doi: 10.1016/j.apcatb.2018.01.033

    105. [105]

      X.H. Jiang, L.C. Wang, F. Yu, et al., ACS Sustain. Chem. Eng. 6(2018) 12695–12705.  doi: 10.1021/acssuschemeng.8b01695

    106. [106]

      J.P. Zou, D.D. Wu, S.K. Bao, et al., ACS Appl. Mater. Interfaces 7(2015) 28429–28437.  doi: 10.1021/acsami.5b09255

    107. [107]

      D.K. Wang, H. Zeng, X. Xiong, et al., Sci. Bull. 65(2020) 113–122.  doi: 10.1016/j.scib.2019.10.015

    108. [108]

      F. Lu, D. Astruc, Coordin. Chem. Rev. 356(2018) 147–164.  doi: 10.1016/j.ccr.2017.11.003

    109. [109]

      K. Vikrant, K.H. Kim, Chem. Eng. J. 358(2019) 264–282.  doi: 10.1016/j.cej.2018.10.022

    110. [110]

      J.J. Rueda-Marquez, I. Levchuk, P.F. Ibanez, M. Sillanpaa, J. Clean. Prod. 258(2020) 120694.  doi: 10.1016/j.jclepro.2020.120694

    111. [111]

      S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, et al., Chem. Eng. J. 380(2020) 122231.  doi: 10.1016/j.cej.2019.122231

    112. [112]

      G.R. Xu, Z.H. An, K. Xu, et al., Coordin. Chem. Rev. 427(2021) 213554.  doi: 10.1016/j.ccr.2020.213554

    113. [113]

      Y. Zhu, W.H. Fan, T.T. Zhou, X.M. Li, Sci. Total Environ. 678(2019) 253–266.  doi: 10.1016/j.scitotenv.2019.04.416

    114. [114]

      Z. Xu, Q.R. Zhang, X.C. Li, X.F. Huang, Chem. Eng. J. 429(2022) 131688.  doi: 10.1016/j.cej.2021.131688

    115. [115]

      X. Zhao, L.B. Guo, B.F. Zhang, H.J. Liu, J.H. Qu, Environ. Sci. Technol. 47(2013) 4480–4488.  doi: 10.1021/es3046982

    116. [116]

      F. Zhang, W.L. Wang, C.Z. Zhou, Y.L. Sun, J.F. Niu, Chemosphere 278(2021) 130465.  doi: 10.1016/j.chemosphere.2021.130465

    117. [117]

      H.B. Zeng, S.S. Liu, B.Y. Chai, et al., Environ. Sci. Technol. 50(2016) 6459–6466.  doi: 10.1021/acs.est.6b00632

    118. [118]

      Z H, W.Q. Guo Wang, B.H. Liu, et al., Water Res. 160(2019) 405–414.  doi: 10.1016/j.watres.2019.05.059

    119. [119]

      D.K. Wang, H. Zeng, S.Q. Chen, J. Catal. 406(2022) 1–8.  doi: 10.1016/j.jcat.2021.12.027

    120. [120]

      L. Tian, P. Chen, X.H. Jiang, et al., Water Res. 209(2022) 117890.  doi: 10.1016/j.watres.2021.117890

    121. [121]

      S.C. Tian, C.Z. Dang, R. Mao, X. Zhao, ACS Sustain. Chem. Eng. 6(2018) 10273–10281.  doi: 10.1021/acssuschemeng.8b01634

    122. [122]

      K. Xiao, B. Zhou, S.Y. Chen, et al., Electrochem. Commun. 100(2019) 34–38.  doi: 10.1016/j.elecom.2019.01.018

    123. [123]

      X. Zhao, J.J. Zhang, M. Qiao, H.J. Liu, J.H. Qu, Environ. Sci. Technol. 49(2015) 4567–4574.  doi: 10.1021/es5062374

    124. [124]

      K.H. Xue, J. Wang, R. He, et al., Sci. Total Environ. 732(2020) 138963.  doi: 10.1016/j.scitotenv.2020.138963

    125. [125]

      X.H. Jiang, Q.J. Xing, X.B. Luo, et al., Appl. Catal. B: Environ. 228(2018) 29–38.  doi: 10.1016/j.apcatb.2018.01.062

    126. [126]

      J.M. Luo, S.Q. Zhang, M. Sun, et al., ACS Nano 13(2019) 9811–9840.  doi: 10.1021/acsnano.9b03649

    127. [127]

      Y.Y. Wu, Y.Q. Li, H.J. Hu, G.S. Zeng, C.H. Li, ACS ES & T Eng. 1(2021) 603–611.

    128. [128]

      X.X. Ma, X.K. Liu, J.H. Tang, et al., Appl. Surf. Sci. 602(2022) 154276.  doi: 10.1016/j.apsusc.2022.154276

    129. [129]

      M.S. Koo, X.F. Chen, K. Cho, T.C. An, W. Choi, Environ. Sci. Technol. 53(2019) 9926–9936.  doi: 10.1021/acs.est.9b02401

    130. [130]

      X.H. Jiang, L.S. Zhang, H.Y. Liu, et al., Angew. Chem. Int. Ed. 59(2020) 23112–23116.  doi: 10.1002/anie.202011495

    131. [131]

      L.S. Zhang, X.H. Jiang, Z.A. Zhong, et al., Angew. Chem. Int. Ed. 60(2021) 21751–21755.  doi: 10.1002/anie.202109488

    132. [132]

      M. Govindan, K.C. Pillai, B. Subramanian, I.S. Moon, ACS Omega 2(2017) 3562–3571.  doi: 10.1021/acsomega.7b00352

    133. [133]

      J. Kim, W. Choi, Energy Environ. Sci. 6(2010) 1042–1045.

    134. [134]

      J. Kim, D. Monllor-Satoca, W. Choi, Energy Environ. Sci. 5(2012) 7647–7656.  doi: 10.1039/c2ee21310a

    135. [135]

      G. Iervolino, V. Vaiano, J.J. Murcia, et al., J. Catal. 339(2016) 47–56.  doi: 10.1016/j.jcat.2016.03.032

    136. [136]

      D. Monllor-Satoca, R. Gómez, J. Phys. Chem. C 112(2008) 139–147.  doi: 10.1021/jp075672r

    137. [137]

      A. Heuer-Jungemann, N. Feliu, I. Bakaimi, et al., Chem. Rev. 119(2019) 4819–4880.  doi: 10.1021/acs.chemrev.8b00733

    138. [138]

      G. Hippargi, S. Anjankar, R.J. Krupadam, S.S. Rayalu, Fuel 291(2021) 120113.  doi: 10.1016/j.fuel.2020.120113

    139. [139]

      N. Sun, Y. Qu, C.H. Yang, et al., Appl. Catal. B: Environ. 263(2020) 118313.  doi: 10.1016/j.apcatb.2019.118313

    140. [140]

      Z.Y. Wu, Z.Y. Zhou, Y.J. Zhang, et al., Electrochim. Acta 254(2017) 140–147.  doi: 10.1016/j.electacta.2017.09.130

    141. [141]

      S.Q. Zhang, L.L. Wang, C.B. Liu, et al., Water Res. 121(2017) 11–19.  doi: 10.1016/j.watres.2017.05.013

    1. [1]

      N.H. Tran, M. Reinhard, K.Y.H. Gin, Water Res. 133(2018) 182–207.  doi: 10.1016/j.watres.2017.12.029

    2. [2]

      P. Chowdhary, A. Raj, R.N. Bharagava, Chemosphere 194(2018) 229–246.  doi: 10.1016/j.chemosphere.2017.11.163

    3. [3]

      Z.N. Wang, M.Y. Liu, F. Xiao, et al., Chin. Chem. Lett. 33(2022) 653–662.  doi: 10.1016/j.cclet.2021.07.044

    4. [4]

      R. Khiewwijit, H. Temmink, H. Rijnaarts, K.J. Keesman, Environ. Model. Softw. 68(2015) 156–165.  doi: 10.1016/j.envsoft.2015.02.011

    5. [5]

      F.Q. Fan, R.H. Xu, D.P. Wang, F.G. Meng, Water Res. 181(2020) 115915.  doi: 10.1016/j.watres.2020.115915

    6. [6]

      Z.W. Zhang, Y.H. Wu, L.W. Luo, et al., Sci. Total Environ. 792(2021) 148291.  doi: 10.1016/j.scitotenv.2021.148291

    7. [7]

      M.N. Hasan, M.M. Altaf, N.A. Khan, et al., Chemosphere 277(2021) 130328.  doi: 10.1016/j.chemosphere.2021.130328

    8. [8]

      J.D. Xiao, Y.B. Xie, J. Rabeah, A. Brückner, H.B. Cao, Acc. Chem. Res. 53(2020) 1024–1033.  doi: 10.1021/acs.accounts.9b00624

    9. [9]

      R.C. Ji, J.B. Chen, T.C. Liu, X.F. Zhou, Y.L. Zhang, Chin. Chem. Lett. 33(2022) 643–652.  doi: 10.1016/j.cclet.2021.07.043

    10. [10]

      Y. Li, Y.G. Chen, J. Wu, Appl. Energy 240(2019) 120–137.  doi: 10.1016/j.apenergy.2019.01.243

    11. [11]

      H.Y. Wang, F. Qian, Y. Li, Nano Energy 8(2014) 264–273.  doi: 10.1016/j.nanoen.2014.06.004

    12. [12]

      T.H. Jeon, M.S. Koo, H. Kim, W. Choi, ACS Catal. 8(2018) 11542–11563.  doi: 10.1021/acscatal.8b03521

    13. [13]

      J. Highfield, Molecules 20(2015) 6739–6793.  doi: 10.3390/molecules20046739

    14. [14]

      H.J. Lewerenz, C. Heine, K. Skorupska, et al., Energy Environ. Sci. 3(2010) 748–760.  doi: 10.1039/b915922n

    15. [15]

      Z.D. Wei, J.Y. Liu, W.F. Shangguan, Chin. J. Catal. 41(2020) 1440–1450.  doi: 10.1016/S1872-2067(19)63448-0

    16. [16]

      Q. Wang, K. Domen, Chem. Rev. 120(2020) 919–985.  doi: 10.1021/acs.chemrev.9b00201

    17. [17]

      S. Kampouri, K.C. Stylianou, ACS Catal. 9(2019) 4247–4270.  doi: 10.1021/acscatal.9b00332

    18. [18]

      T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Chemosphere 262(2021) 128379.  doi: 10.1016/j.chemosphere.2020.128379

    19. [19]

      L.M. Yang, W.B. Hu, Z.W. Chang, et al., Environ. Int. 152(2021) 106512.  doi: 10.1016/j.envint.2021.106512

    20. [20]

      L. Candish, K.D. Collins, G.C. Cook, et al., Chem. Rev. 122(2022) 2907–2980.  doi: 10.1021/acs.chemrev.1c00416

    21. [21]

      A. Fujishima, K. Honda, Nature 238(1972) 37–38.  doi: 10.1038/238037a0

    22. [22]

      Q. Guo, Z.B. Ma, C.Y. Zhou, Z.F. Ren, X.M. Yang, Chem. Rev. 119(2019) 11020–11041.  doi: 10.1021/acs.chemrev.9b00226

    23. [23]

      T.L. Xia, Y.C. Lin, W.Z. Li, M.T. Ju, Chin. Chem. Lett. 32(2021) 2975–2984.  doi: 10.1016/j.cclet.2021.02.058

    24. [24]

      F.E. Osterloh, ACS Energy Lett. 2(2017) 445–453.  doi: 10.1021/acsenergylett.6b00665

    25. [25]

      C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. 35(2006) 1324–1340.  doi: 10.1039/B517632H

    26. [26]

      G.Q. Zhao, Y.Z. Jiang, S.X. Dou, W.P. Sun, H.G. Pan, Sci. Bull. 66(2021) 85–96.  doi: 10.1016/j.scib.2020.09.014

    27. [27]

      H.X. Zhong, M.C. Wang, G.B. Chen, R.H. Dong, X.L. Feng, ACS Nano 16(2022) 1759–1780.  doi: 10.1021/acsnano.1c10544

    28. [28]

      J. Linnemann, K. Kanokkanchana, K. Tschulik, ACS Catal. 11(2021) 5318–5346.  doi: 10.1021/acscatal.0c04118

    29. [29]

      L. Rebollar, S. Intikhab, N.J. Oliveira, et al., ACS Catal. 10(2020) 14747–14762.  doi: 10.1021/acscatal.0c03801

    30. [30]

      X.V. Medvedeva, J.J. Medvedev, S.W. Tatarchuk, R.M. Choueiri, A. Klinkova, Green Chem. 22(2020) 4456–4462.  doi: 10.1039/D0GC01754J

    31. [31]

      Y.L. Quan, J.X. Zhu, G.F. Zheng, Small 1(2021) 2100043.  doi: 10.1002/smsc.202100043

    32. [32]

      D. Shahidi, R. Roy, A. Azzouz, Appl. Catal. B: Environ. 174(2015) 277–292.

    33. [33]

      S.Z. Xu, E.A. Carter, Chem. Rev. 119(2019) 6631–6669.  doi: 10.1021/acs.chemrev.8b00481

    34. [34]

      B.M. Tackett, E. Gomez, J.G. Chen, Nat. Catal. 2(2019) 381–386.  doi: 10.1038/s41929-019-0266-y

    35. [35]

      P. Prabhu, V. Jose, J.M. Lee, Adv. Funct. Mater. 30(2020) 1910768.  doi: 10.1002/adfm.201910768

    36. [36]

      X.X. Chang, T. Wang, J.L. Gong, Energy Environ. Sci. 9(2016) 2177–2196.  doi: 10.1039/C6EE00383D

    37. [37]

      D.N. Jiang, P. Xu, H. Wang, et al., Coordin. Chem. Rev. 376(2018) 449–466.  doi: 10.1016/j.ccr.2018.08.005

    38. [38]

      Z.J. Wang, H. Song, H.M. Liu, J.H. Ye, Angew. Chem. Int. Ed. 59(2020) 8016–8035.  doi: 10.1002/anie.201907443

    39. [39]

      M. Melchionna, P. Fornasiero, ACS Catal. 10(2020) 5493–5501.  doi: 10.1021/acscatal.0c01204

    40. [40]

      J.P. Zou, D.D. Wu, J.M. Luo, et al., ACS Catal. 6(2016) 6861–6867.  doi: 10.1021/acscatal.6b01729

    41. [41]

      G. Rossi, L. Pasquini, D. Catone, et al., Appl. Catal. B: Environ. 237(2018) 603–612.  doi: 10.1016/j.apcatb.2018.06.011

    42. [42]

      Y.B. Yan, J. Gong, J. Chen, et al., Adv. Mater. 31(2019) 1808283.  doi: 10.1002/adma.201808283

    43. [43]

      V.C. Hoang, K. Dave, V.G. Gomes, Nano Energy 66(2019) 104093.  doi: 10.1016/j.nanoen.2019.104093

    44. [44]

      Y. Yamaguchi, A. Kudo, Front. Energy 15(2021) 568–576.  doi: 10.1007/s11708-021-0774-8

    45. [45]

      R. Acharya, K. Parida, J. Environ. Chem. Eng. 8(2020) 103896.  doi: 10.1016/j.jece.2020.103896

    46. [46]

      W.H. Dong, D.D. Wu, J.M. Luo, et al., J. Catal. 349(2017) 218–225.  doi: 10.1016/j.jcat.2017.02.004

    47. [47]

      X. Lu, C.Q. Zhu, Z.S. Wu, et al., J. Am. Chem. Soc. 142(2020) 15438–15444.  doi: 10.1021/jacs.0c06779

    48. [48]

      D.A. Henckel, M.J. Counihan, H.E. Holmes, et al., ACS Catal. 11(2021) 255–263.  doi: 10.1021/acscatal.0c04297

    49. [49]

      Q. Xie, W.M. He, S.W. Liu, Chin. J. Catal. 41(2020) 140–153.  doi: 10.1016/S1872-2067(19)63481-9

    50. [50]

      M.F.R. Samsudin, H. Ullah, R. Bashiri, et al., ACS Sustain. Chem. Eng. 8(2020) 9393–9403.  doi: 10.1021/acssuschemeng.0c02063

    51. [51]

      Y. Wang, G.Q. Tan, T. Liu, et al., Appl. Catal. B: Environ. 234(2018) 37–49.  doi: 10.1016/j.apcatb.2018.04.026

    52. [52]

      R.Z. Zhang, B.Y. Wu, Q. Li, et al., Coordin. Chem. Rev. 422(2020) 213436.  doi: 10.1016/j.ccr.2020.213436

    53. [53]

      L. Zhang, Z.J. Zhao, T. Wang, J.L. Gong, Chem. Soc. Rev. 47(2018) 5423–5443.  doi: 10.1039/C8CS00016F

    54. [54]

      Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355(2017) eaad4998.  doi: 10.1126/science.aad4998

    55. [55]

      F. Franco, C. Rettenmaier, H.S. Jeon, B.R. Cuenya, Chem. Soc. Rev. 49(2020) 6884–6946.  doi: 10.1039/D0CS00835D

    56. [56]

      Q. Lu, J. Rosen, Y. Zhou, et al., Nat. Commun. 5(2014) 3242.  doi: 10.1038/ncomms4242

    57. [57]

      J. Rosen, G.S. Hutchings, Q. Lu, et al., ACS Catal. 5(2015) 4586–4591.  doi: 10.1021/acscatal.5b00922

    58. [58]

      D.S. Ripatti, T.R. Veltman, M.W. Kanan, Joule 3(2019) 240–256.  doi: 10.1016/j.joule.2018.10.007

    59. [59]

      S. Verma, X. Lu, S.C. Ma, R.I. Masel, P.J. Kenis, Phys. Chem. Chem. Phys. 18(2016) 7075–7084.  doi: 10.1039/C5CP05665A

    60. [60]

      D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C. Berlinguette, Acc. Chem. Res. 51(2018) 910–918.  doi: 10.1021/acs.accounts.8b00010

    61. [61]

      G. Bharath, K. Rambabu, C. Aubry, et al., ACS Appl. Energy Mater. 4(2021) 11408–11418.  doi: 10.1021/acsaem.1c02196

    62. [62]

      Y.K. Long, J. Dai, S.Y. Zhao, et al., Environ. Sci. Technol. 55(2021) 5357–5370.  doi: 10.1021/acs.est.0c07794

    63. [63]

      Y.L. Chen, X. Bai, Y.T. Ji, T. Shen, Chem. Eng. J. 430(2022) 132951.  doi: 10.1016/j.cej.2021.132951

    64. [64]

      L. Wang, J.W. Wan, Y.S. Zhao, N.L. Yang, D. Wang, J. Am. Chem. Soc. 141(2019) 2238–2241.  doi: 10.1021/jacs.8b13528

    65. [65]

      W.C. Lai, Z.S. Ma, J.W. Zhang, et al., Adv. Func. Mater. 32(2022) 2111193.  doi: 10.1002/adfm.202111193

    66. [66]

      Q.N. Wang, X.Q. Wang, C. Wu, Y.Y. Cheng, Q.Y. Sun, H.B. Yu, J. CO2 Util. 26(2018) 425–433.  doi: 10.1016/j.jcou.2018.05.027

    67. [67]

      T.N. Nguyen, C.T. Dinh, Chem. Soc. Rev. 49(2020) 7488–7504.  doi: 10.1039/D0CS00230E

    68. [68]

      H. Rabiee, L. Ge, X.Q. Zhang, et al., Energy Environ. Sci. 14(2021) 1959–2008.  doi: 10.1039/D0EE03756G

    69. [69]

      H. Dong, M. Lu, Y. Wang, et al., Appl. Catal. B: Environ. 303(2022) 120897.  doi: 10.1016/j.apcatb.2021.120897

    70. [70]

      M.L. Zhang, Z.D. Zhang, Z.H. Zhao, et al., ACS Catal. 11(2021) 11103–11108.  doi: 10.1021/acscatal.1c02556

    71. [71]

      W.F. Xie, H. Li, G.Q. Cui, et al., Angew. Chem. Int. Ed. 60(2021) 7382–7388.  doi: 10.1002/anie.202014655

    72. [72]

      Q.N. Wang, C.Q. Zhu, C. Wu, H.B. Yu, Electrochim. Acta 319(2019) 138–147.  doi: 10.1016/j.electacta.2019.06.167

    73. [73]

      J. Wu, K. Zhu, H. Xu, W. Yan, Chin. J. Catal. 40(2019) 917–927.  doi: 10.1016/S1872-2067(19)63342-5

    74. [74]

      N. Nandal, S.L. Jain, Coordin. Chem. Rev. 451(2022) 214271.  doi: 10.1016/j.ccr.2021.214271

    75. [75]

      E. Kusmierek, Catalysts 10(2020) 439.  doi: 10.3390/catal10040439

    76. [76]

      S.S. Liu, Q.J. Xing, Y. Chen, et al., ACS Sustain. Chem. Eng. 7(2019) 1250–1259.  doi: 10.1021/acssuschemeng.8b04917

    77. [77]

      J. Zhang, S. Lv, J.L. Zheng, et al., ACS Sustain. Chem. Eng. 8(2020) 11133–11140.  doi: 10.1021/acssuschemeng.0c01906

    78. [78]

      J.F. de Brito, J.A.L. Perini, S. Perathoner, M.V.B. Zanoni, Electrochim. Acta 306(2019) 277–284.  doi: 10.1016/j.electacta.2019.03.134

    79. [79]

      D. Wang, Y.N. He, N. Zhong, et al., J. Hazard. Mater. 410(2021) 124563.  doi: 10.1016/j.jhazmat.2020.124563

    80. [80]

      D.B. Miklos, C. Remy, M. Jekel, et al., Water Res. 139(2018) 118–131.  doi: 10.1016/j.watres.2018.03.042

    81. [81]

      X.G. Duan, H.Q. Sun, S.B. Wang, Acc. Chem. Res. 51(2018) 678–687.  doi: 10.1021/acs.accounts.7b00535

    82. [82]

      J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54(2020) 3064–3081.  doi: 10.1021/acs.est.9b07082

    83. [83]

      J.P. Zou, Y. Chen, S.S. Liu, et al., Water Res. 150(2019) 330–339.  doi: 10.1016/j.watres.2018.11.077

    84. [84]

      W.D. Oh, Z.L. Dong, T.T. Lim, Appl. Catal. B: Environ. 194(2016) 169–201.  doi: 10.1016/j.apcatb.2016.04.003

    85. [85]

      R. Cheula, M. Maestri, G. Mpourmpakis, ACS Catal. 10(2020) 6149–6158.  doi: 10.1021/acscatal.0c01005

    86. [86]

      H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou, Environ. Sci. Technol. 49(2015) 8675–8682.  doi: 10.1021/acs.est.5b01264

    87. [87]

      M. Zhu, L.S. Zhang, S.S. Liu, et al., Chin. Chem. Lett. 31(2020) 1961–1965.  doi: 10.1016/j.cclet.2020.01.017

    88. [88]

      J. Wang, W. Liu, D.M. Li, Y.P. Wang, J. Alloy. Compd. 588(2014) 378–383.  doi: 10.1016/j.jallcom.2013.11.040

    89. [89]

      Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48(2019) 2109–2125.  doi: 10.1039/C8CS00542G

    90. [90]

      L. Wang, X.L. Geng, L. Zhang, et al., Chemosphere 286(2022) 131558.  doi: 10.1016/j.chemosphere.2021.131558

    91. [91]

      C.G. Liu, Z.F. Lei, Y.N. Yang, Z.Y. Zhang, Water Res. 47(2013) 49586–49592.

    92. [92]

      X.J. Zheng, C.L. Li, M. Zhao, et al., Int. J. Hydrog. Energy 42(2017) 7917–7929.  doi: 10.1016/j.ijhydene.2016.12.131

    93. [93]

      Y. Rong, L. Tang, Y.H. Song, et al., RSC Adv. 6(2016) 80595–80603.  doi: 10.1039/C6RA15320H

    94. [94]

      K.H. Chu, L.Q. Ye, W. Wang, et al., Chemosphere 183(2016) 219–228.

    95. [95]

      L. He, L. Li, T.T. Wang, et al., Dalton Trans. 43(2014) 16981–16985.  doi: 10.1039/C4DT02557A

    96. [96]

      R. Shwetharani, M. Sakar, H.R. Chandan, R.G. Balakrishna, Mater. Lett. 218(2018) 262–265.  doi: 10.1016/j.matlet.2018.02.031

    97. [97]

      Y.P. Peng, H.L. Chen, C.P. Huang, Appl. Catal. B: Environ. 209(2017) 437–446.  doi: 10.1016/j.apcatb.2017.02.084

    98. [98]

      J. Han, Y.R. Bian, X.Z. Zheng, X.M. Sun, L.W. Zhang, Chin. Chem. Lett. 28(2017) 2239–2243.  doi: 10.1016/j.cclet.2017.08.031

    99. [99]

      A. Patsoura, D.I. Kondarides, X.E. Verykios, Appl. Catal. B: Environ. 64(2006) 171–179.  doi: 10.1016/j.apcatb.2005.11.015

    100. [100]

      J.G. Wang, P. Zhang, X. Li, J. Zhu, H.X. Li, Appl. Catal. B: Environ. 134-135(2013) 198–204.  doi: 10.1016/j.apcatb.2013.01.006

    101. [101]

      M.Q. Hu, Z.P. Xing, Y. Cao, et al., Appl. Catal. B: Environ. 226(2018) 499–508.  doi: 10.1016/j.apcatb.2017.12.069

    102. [102]

      K.X. Li, Z.X. Zeng, L.S. Yan, et al., Appl. Catal. B: Environ. 187(2016) 269–280.  doi: 10.1016/j.apcatb.2016.01.046

    103. [103]

      H. Park, A. Bak, Y.Y. Ahn, J. Choi, M.R. Hoffmannn, J. Hazard. Mater. 211-212(2012) 47–54.  doi: 10.1016/j.jhazmat.2011.05.009

    104. [104]

      Y.C. Nie, F. Yu, L.C. Wang, et al., Appl. Catal. B: Environ. 227(2018) 312–321.  doi: 10.1016/j.apcatb.2018.01.033

    105. [105]

      X.H. Jiang, L.C. Wang, F. Yu, et al., ACS Sustain. Chem. Eng. 6(2018) 12695–12705.  doi: 10.1021/acssuschemeng.8b01695

    106. [106]

      J.P. Zou, D.D. Wu, S.K. Bao, et al., ACS Appl. Mater. Interfaces 7(2015) 28429–28437.  doi: 10.1021/acsami.5b09255

    107. [107]

      D.K. Wang, H. Zeng, X. Xiong, et al., Sci. Bull. 65(2020) 113–122.  doi: 10.1016/j.scib.2019.10.015

    108. [108]

      F. Lu, D. Astruc, Coordin. Chem. Rev. 356(2018) 147–164.  doi: 10.1016/j.ccr.2017.11.003

    109. [109]

      K. Vikrant, K.H. Kim, Chem. Eng. J. 358(2019) 264–282.  doi: 10.1016/j.cej.2018.10.022

    110. [110]

      J.J. Rueda-Marquez, I. Levchuk, P.F. Ibanez, M. Sillanpaa, J. Clean. Prod. 258(2020) 120694.  doi: 10.1016/j.jclepro.2020.120694

    111. [111]

      S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, et al., Chem. Eng. J. 380(2020) 122231.  doi: 10.1016/j.cej.2019.122231

    112. [112]

      G.R. Xu, Z.H. An, K. Xu, et al., Coordin. Chem. Rev. 427(2021) 213554.  doi: 10.1016/j.ccr.2020.213554

    113. [113]

      Y. Zhu, W.H. Fan, T.T. Zhou, X.M. Li, Sci. Total Environ. 678(2019) 253–266.  doi: 10.1016/j.scitotenv.2019.04.416

    114. [114]

      Z. Xu, Q.R. Zhang, X.C. Li, X.F. Huang, Chem. Eng. J. 429(2022) 131688.  doi: 10.1016/j.cej.2021.131688

    115. [115]

      X. Zhao, L.B. Guo, B.F. Zhang, H.J. Liu, J.H. Qu, Environ. Sci. Technol. 47(2013) 4480–4488.  doi: 10.1021/es3046982

    116. [116]

      F. Zhang, W.L. Wang, C.Z. Zhou, Y.L. Sun, J.F. Niu, Chemosphere 278(2021) 130465.  doi: 10.1016/j.chemosphere.2021.130465

    117. [117]

      H.B. Zeng, S.S. Liu, B.Y. Chai, et al., Environ. Sci. Technol. 50(2016) 6459–6466.  doi: 10.1021/acs.est.6b00632

    118. [118]

      Z H, W.Q. Guo Wang, B.H. Liu, et al., Water Res. 160(2019) 405–414.  doi: 10.1016/j.watres.2019.05.059

    119. [119]

      D.K. Wang, H. Zeng, S.Q. Chen, J. Catal. 406(2022) 1–8.  doi: 10.1016/j.jcat.2021.12.027

    120. [120]

      L. Tian, P. Chen, X.H. Jiang, et al., Water Res. 209(2022) 117890.  doi: 10.1016/j.watres.2021.117890

    121. [121]

      S.C. Tian, C.Z. Dang, R. Mao, X. Zhao, ACS Sustain. Chem. Eng. 6(2018) 10273–10281.  doi: 10.1021/acssuschemeng.8b01634

    122. [122]

      K. Xiao, B. Zhou, S.Y. Chen, et al., Electrochem. Commun. 100(2019) 34–38.  doi: 10.1016/j.elecom.2019.01.018

    123. [123]

      X. Zhao, J.J. Zhang, M. Qiao, H.J. Liu, J.H. Qu, Environ. Sci. Technol. 49(2015) 4567–4574.  doi: 10.1021/es5062374

    124. [124]

      K.H. Xue, J. Wang, R. He, et al., Sci. Total Environ. 732(2020) 138963.  doi: 10.1016/j.scitotenv.2020.138963

    125. [125]

      X.H. Jiang, Q.J. Xing, X.B. Luo, et al., Appl. Catal. B: Environ. 228(2018) 29–38.  doi: 10.1016/j.apcatb.2018.01.062

    126. [126]

      J.M. Luo, S.Q. Zhang, M. Sun, et al., ACS Nano 13(2019) 9811–9840.  doi: 10.1021/acsnano.9b03649

    127. [127]

      Y.Y. Wu, Y.Q. Li, H.J. Hu, G.S. Zeng, C.H. Li, ACS ES & T Eng. 1(2021) 603–611.

    128. [128]

      X.X. Ma, X.K. Liu, J.H. Tang, et al., Appl. Surf. Sci. 602(2022) 154276.  doi: 10.1016/j.apsusc.2022.154276

    129. [129]

      M.S. Koo, X.F. Chen, K. Cho, T.C. An, W. Choi, Environ. Sci. Technol. 53(2019) 9926–9936.  doi: 10.1021/acs.est.9b02401

    130. [130]

      X.H. Jiang, L.S. Zhang, H.Y. Liu, et al., Angew. Chem. Int. Ed. 59(2020) 23112–23116.  doi: 10.1002/anie.202011495

    131. [131]

      L.S. Zhang, X.H. Jiang, Z.A. Zhong, et al., Angew. Chem. Int. Ed. 60(2021) 21751–21755.  doi: 10.1002/anie.202109488

    132. [132]

      M. Govindan, K.C. Pillai, B. Subramanian, I.S. Moon, ACS Omega 2(2017) 3562–3571.  doi: 10.1021/acsomega.7b00352

    133. [133]

      J. Kim, W. Choi, Energy Environ. Sci. 6(2010) 1042–1045.

    134. [134]

      J. Kim, D. Monllor-Satoca, W. Choi, Energy Environ. Sci. 5(2012) 7647–7656.  doi: 10.1039/c2ee21310a

    135. [135]

      G. Iervolino, V. Vaiano, J.J. Murcia, et al., J. Catal. 339(2016) 47–56.  doi: 10.1016/j.jcat.2016.03.032

    136. [136]

      D. Monllor-Satoca, R. Gómez, J. Phys. Chem. C 112(2008) 139–147.  doi: 10.1021/jp075672r

    137. [137]

      A. Heuer-Jungemann, N. Feliu, I. Bakaimi, et al., Chem. Rev. 119(2019) 4819–4880.  doi: 10.1021/acs.chemrev.8b00733

    138. [138]

      G. Hippargi, S. Anjankar, R.J. Krupadam, S.S. Rayalu, Fuel 291(2021) 120113.  doi: 10.1016/j.fuel.2020.120113

    139. [139]

      N. Sun, Y. Qu, C.H. Yang, et al., Appl. Catal. B: Environ. 263(2020) 118313.  doi: 10.1016/j.apcatb.2019.118313

    140. [140]

      Z.Y. Wu, Z.Y. Zhou, Y.J. Zhang, et al., Electrochim. Acta 254(2017) 140–147.  doi: 10.1016/j.electacta.2017.09.130

    141. [141]

      S.Q. Zhang, L.L. Wang, C.B. Liu, et al., Water Res. 121(2017) 11–19.  doi: 10.1016/j.watres.2017.05.013

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Shilong LiLiang DuanQiusheng GaoHengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997

    3. [3]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    4. [4]

      Jinshu HuangZhuochun HuangTengyu LiuYu WenJili YuanSong YangHu Li . Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue. Chinese Chemical Letters, 2025, 36(5): 110179-. doi: 10.1016/j.cclet.2024.110179

    5. [5]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    8. [8]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    9. [9]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    10. [10]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    11. [11]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    15. [15]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    20. [20]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

Metrics
  • PDF Downloads(14)
  • Abstract views(1519)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return